
Package ‘mgss’
October 13, 2022

Type Package

Title A Matrix-Free Multigrid Preconditioner for Spline Smoothing

Version 1.2

Description Data smoothing with penalized splines is a popular method and is well estab-
lished for one- or two-dimensional covariates. The extension to multiple covariates is straightfor-
ward but suffers from exponentially increasing memory requirements and computational com-
plexity. This toolbox provides a matrix-free implementation of a conjugate gradi-
ent (CG) method for the regularized least squares problem resulting from tensor product B-
spline smoothing with multivariate and scattered data. It further provides matrix-free precondi-
tioned versions of the CG-algorithm where the user can choose between a simpler diagonal pre-
conditioner and an advanced geometric multigrid preconditioner. The main advan-
tage is that all algorithms are performed matrix-free and therefore re-
quire only a small amount of memory. For further detail see Siebenborn & Wagner (2021).

License MIT + file LICENSE

Depends R (>= 3.5.0)

Imports Rcpp (>= 1.0.5), combinat (>= 0.0-8), statmod (>= 1.1), Matrix
(>= 1.2)

LinkingTo Rcpp

RoxygenNote 7.1.1

Encoding UTF-8

Repository CRAN

Suggests testthat

BugReports https://github.com/SplineSmoothing/MGSS

NeedsCompilation yes

Author Martin Siebenborn [aut, cre, cph],
Julian Wagner [aut, cph]

Maintainer Martin Siebenborn <martin.siebenborn@uni-hamburg.de>

Date/Publication 2021-05-10 07:50:06 UTC

1

https://github.com/SplineSmoothing/MGSS

2 CG_smooth

R topics documented:
CG_smooth . 2
estimate_trace . 3
generate_test_data . 4
MGCG_smooth . 5
PCG_smooth . 6
predict_smooth . 7

Index 9

CG_smooth High-dimensional spline smoothing using a matrix-free CG-method.

Description

Fits a smooth spline to a set of given observations using penalized splines with curvature or dif-
ference penalty and multiple covariates. The underlying linear system is solved with a matrix-free
conjugated gradient (CG) method.

Usage

CG_smooth(
m,
q,
lambda,
X,
y,
pen_type = "curve",
l = NULL,
alpha_start = NULL,
K_max = NULL,
tolerance = 1e-06,
print_error = TRUE

)

Arguments

m Vector of non-negative integers. Each entry gives the number of inner knots for
the respective covariate.

q Vector of positive integers. Each entry gives the spline degree for the respective
covariate.

lambda Positive number as weight for the penalty term.

X Matrix containing the covariates as columns and the units as rows.

y Vector of length nrow(X) as the variable of interest.

pen_type Utilized penalization method. Either "curve" for the curvature penalty or "diff"
for the difference penalty. Defaults to "curve".

estimate_trace 3

l Positive integer vector of length P indicating for the penalty degree. Only re-
quired if pen_type = "diff".

alpha_start Vector of length prod(m+q+1) as starting value for the CG-method. Defaults to
zero.

K_max Positive integer as upper bound for the number of CG-iterations. Defaults to
prod(m+q+1).

tolerance Positive number as error tolerance for the stopping criterion of the CG-method.
Defaults to 1e-6.

print_error Logical, indicating if the iteration error should be printed or not.

Value

Returns a list containing the input m, q, and Omega. Further gives the fitted spline coefficients alpha,
the fitted values fitted_values, the residuals residuals, the root mean squared error rmse and
the R-squared value R_squared.

Examples

data <- generate_test_data(100, 2)
X <- data$X_train
y <- data$y_train
CG_smooth(m = c(7,7), q = c(3,3), lambda = 0.1, X = X, y = y)

estimate_trace Trace estimation of the hat matrix.

Description

Estimates the trace of the (unknown) hat-matrix by stochastic estimation in a matrix-free manner.

Usage

estimate_trace(m, q, lambda, X, pen_type = "curve", l = NULL, n_random = 5)

Arguments

m Vector of non-negative integers. Each entry gives the number of inner knots for
the respective covariate.

q Vector of positive integers. Each entry gives the spline degree for the respective
covariate.

lambda Positive number as weight for the penalty term.

X Matrix containing the covariates as columns and the units as rows.

pen_type Utilized penalization method. Either "curve" for the curvature penalty or "diff"
for the difference penalty. Defaults to "curve".

4 generate_test_data

l Positive integer vector of length P indicating for the penalty degree. Only re-
quired if pen_type = "diff".

n_random Positive integer for the number of random vectors in the trace estimate. Defaults
to 5.

Value

An estimate of the trace of the hat-matrix.

Examples

data <- generate_test_data(100, 2)
X <- data$X_train
estimate_trace(m = c(7,7), q = c(2,2), lambda = 0.1, X = X)

generate_test_data Generate multi-dimensional test data for spline smoothing.

Description

Generate a P-dimensional test data set based on a sigmoid function.

Usage

generate_test_data(n, P, split = 0.8)

Arguments

n Numer of samples

P Spatial dimension

split A value between 0 and 1 for the train / test split.

Value

A list of the covarite matrices for the train and test data X_train and X_test and of the variable of
interest y_train and y_test.

Examples

generate_test_data(100, 2)

MGCG_smooth 5

MGCG_smooth High-dimensional spline smoothing using a matrix-free multigrid pre-
conditioned CG-method.

Description

Fits a smooth spline to a set of given observations using penalized splines with curvature penalty
and multiple covariates. The underlying linear system is solved with a matrix-free preconditioned
conjugated gradient method using a geometric multigrid method as preconditioner.

Usage

MGCG_smooth(
G,
q,
lambda,
X,
y,
w = 0.1,
nu = c(3, 1),
alpha_start = NULL,
K_max = NULL,
tolerance = 1e-06,
print_error = TRUE,
coarse_grid_solver = "Cholesky"

)

Arguments

G Positive integer greater than one for the maximum number of grids.

q Vector of positive integers. Each entry gives the spline degree for the respective
covariate.

lambda Positive number as weight for the penalty term.

X Matrix containing the covariates as columns and the units as rows.

y Vector of length nrow(X) as the variable of interest.

w Damping factor of the Jacobi smoother. Defaults to 0.1.

nu Two-dimensional vector of non-negative integers. Gives the number of pre- and
post-smoothing steps in the multigrid algorithm.

alpha_start Vector of length prod(m+q+1) as starting value for the MGCG-method. Defaults
to zero.

K_max Positive integer as upper bound for the number of MGCG-iterations. Defaults
to prod(m+q+1).

tolerance Positive number as error tolerance for the stopping criterion of the MGCG-
method. Defaults to 1e-6.

6 PCG_smooth

print_error Logical, indicating if the iteration error should be printed or not.
coarse_grid_solver

Utilized coarse grid solver. Either "PCG" for diagonal preconditioned CG or
"Cholesky" for Cholesky decomposition. Defaults to "Cholesky".

Value

Returns a list containing the input m = 2^G-1, q, and Omega. Further gives the fitted spline coef-
ficients alpha, the fitted values fitted_values, the residuals residuals, the root mean squared
error rmse and the R-squared value R_squared.

References

Siebenborn, M. and Wagner, J. (2019) A Multigrid Preconditioner for Tensor Product Spline Smooth-
ing. arXiv:1901.00654

Examples

data <- generate_test_data(100, 2)
X <- data$X_train
y <- data$y_train
MGCG_smooth(G = 3, q = c(3,3), lambda = 0.1, w = 0.8, X = X, y = y)

PCG_smooth High-dimensional spline smoothing using a matrix-free PCG-method.

Description

Fits a smooth spline to a set of given observations using penalized splines with curvature or dif-
ference penalty and multiple covariates. The underlying linear system is solved with a matrix-free
preconditioned conjugated gradient (PCG) method using a diagonal preconditioner.

Usage

PCG_smooth(
m,
q,
lambda,
X,
y,
pen_type = "curve",
l = NULL,
alpha_start = NULL,
K_max = NULL,
tolerance = 1e-06,
print_error = TRUE

)

predict_smooth 7

Arguments

m Vector of non-negative integers. Each entry gives the number of inner knots for
the respective covariate.

q Vector of positive integers. Each entry gives the spline degree for the respective
covariate.

lambda Positive number as weight for the penalty term.

X Matrix containing the covariates as columns and the units as rows.

y Vector of length nrow(X) as the variable of interest.

pen_type Utilized penalization method. Either "curve" for the curvature penalty or "diff"
for the difference penalty. Defaults to "curve".

l Positive integer vector of length P indicating for the penalty degree. Only re-
quired if pen_type = "diff".

alpha_start Vector of length prod(m+q+1) as starting value for the PCG-method. Defaults
to zero.

K_max Positive integer as upper bound for the number of PCG-iterations. Defaults to
prod(m+q+1).

tolerance Positive number as error tolerance for the stopping criterion of the PCG-method.
Defaults to 1e-6.

print_error Logical, indicating if the iteration error should be printed or not.

Value

Returns a list containing the input m, q, and Omega. Further gives the fitted spline coefficients alpha,
the fitted values fitted_values, the residuals residuals, the root mean squared error rmse and
the R-squared value R_squared.

Examples

data <- generate_test_data(100, 2)
X <- data$X_train
y <- data$y_train
PCG_smooth(m = c(7,7), q = c(3,3), lambda = 0.1, X = X, y = y)

predict_smooth Predictions from model

Description

Makes predictions of new observations from a fitted spline model.

Usage

predict_smooth(model_smooth, X)

8 predict_smooth

Arguments

model_smooth A spline model resulting from CG_smooth, PCG_smooth, or MGCG_smooth.

X Matrix containing the new observations.

Value

Vector of length nrow(X) of predictions.

Examples

data <- generate_test_data(100, 2)
X <- data$X_train
y <- data$y_train
result <- PCG_smooth(m = c(7,7), q = c(3,3), lambda = 0.1, X = X, y = y, print_error = FALSE)
X_test <- data$X_test
predict_smooth(model_smooth = result, X = X_test)

Index

CG_smooth, 2

estimate_trace, 3

generate_test_data, 4

MGCG_smooth, 5

PCG_smooth, 6
predict_smooth, 7

9

	CG_smooth
	estimate_trace
	generate_test_data
	MGCG_smooth
	PCG_smooth
	predict_smooth
	Index

