
Package ‘miesmuschel’
February 3, 2023

Title Mixed Integer Evolution Strategies

Description Evolutionary black box optimization algorithms building on the
'bbotk' package. 'miesmuschel' offers both ready-to-use optimization
algorithms, as well as their fundamental building blocks that can be used to
manually construct specialized optimization loops. The Mixed Integer Evolution
Strategies as described by Li et al. (2013) <doi:10.1162/EVCO_a_00059> can be
implemented, as well as the multi-objective optimization algorithms NSGA-II
by Deb, Pratap, Agarwal, and Meyarivan (2002) <doi:10.1109/4235.996017>.

URL https://github.com/mlr-org/miesmuschel

BugReports https://github.com/mlr-org/miesmuschel/issues

License MIT + file LICENSE

Encoding UTF-8

ByteCompile yes

Version 0.0.3

Depends paradox (>= 0.7.1)

Imports mlr3misc (>= 0.5.0), checkmate (>= 1.9.0), R6, bbotk (>=
0.3.0.900), data.table, matrixStats, lgr

Suggests tinytest, mlr3tuning, mlr3, mlr3learners, ranger, xgboost,
rpart

RoxygenNote 7.2.2

Collate 'dictionaries.R' 'MiesOperator.R' 'Filtor.R' 'FiltorMaybe.R'
'FiltorNull.R' 'FiltorProxy.R' 'FiltorSurrogate.R'
'FiltorSurrogateProgressive.R' 'FiltorSurrogateTournament.R'
'Mutator.R' 'MutatorCmpMaybe.R' 'MutatorDiscreteUniform.R'
'MutatorErase.R' 'MutatorGauss.R' 'MutatorMaybe.R'
'MutatorNull.R' 'MutatorProxy.R' 'MutatorSequential.R'
'ParamSetShadow.R' 'OperatorCombination.R' 'Recombinator.R'
'Selector.R' 'mies_methods.R' 'OptimizerMies.R'
'RecombinatorCmpMaybe.R' 'RecombinatorConvex.R'
'RecombinatorConvexPair.R' 'RecombinatorCrossoverNary.R'
'RecombinatorCrossoverUniform.R' 'RecombinatorMaybe.R'
'RecombinatorNull.R' 'RecombinatorProxy.R'

1

https://doi.org/10.1162/EVCO_a_00059
https://doi.org/10.1109/4235.996017
https://github.com/mlr-org/miesmuschel
https://github.com/mlr-org/miesmuschel/issues

2 R topics documented:

'RecombinatorSequential.R'
'RecombinatorSimulatedBinaryCrossover.R' 'RecombinatorSwap.R'
'Scalor.R' 'ScalorAggregate.R' 'ScalorDomcount.R'
'ScalorFixedProjections.R' 'ScalorHypervolume.R'
'ScalorNondom.R' 'ScalorOne.R' 'ScalorProxy.R'
'ScalorSingleObjective.R' 'SelectorBest.R' 'SelectorMaybe.R'
'SelectorNull.R' 'SelectorProxy.R' 'SelectorRandom.R'
'SelectorSequential.R' 'SelectorTournament.R'
'TerminatorBudget.R' 'TerminatorGenerationPerfReached.R'
'TerminatorGenerationStagnation.R' 'TerminatorGenerations.R'
'TunerMies.R' 'bibentries.R' 'repr.R' 'utils.R' 'utils_mo.R'
'zzz.R'

NeedsCompilation no

Author Martin Binder [aut, cre],
Lennart Schneider [ctb] (<https://orcid.org/0000-0003-4152-5308>),
Susanne Dandl [ctb] (<https://orcid.org/0000-0003-4324-4163>),
Andreas Hofheinz [ctb]

Maintainer Martin Binder <mlr.developer@mb706.com>

Repository CRAN

Date/Publication 2023-02-03 10:52:31 UTC

R topics documented:
miesmuschel-package . 4
crate_env . 5
dict_filtors . 6
dict_filtors_maybe . 7
dict_filtors_null . 10
dict_filtors_proxy . 11
dict_filtors_surprog . 13
dict_filtors_surtour . 16
dict_mutators . 18
dict_mutators_cmpmaybe . 19
dict_mutators_erase . 22
dict_mutators_gauss . 23
dict_mutators_maybe . 25
dict_mutators_null . 27
dict_mutators_proxy . 29
dict_mutators_sequential . 30
dict_mutators_unif . 33
dict_recombinators . 35
dict_recombinators_cmpmaybe . 36
dict_recombinators_convex . 38
dict_recombinators_cvxpair . 40
dict_recombinators_maybe . 42
dict_recombinators_null . 45

https://orcid.org/0000-0003-4152-5308
https://orcid.org/0000-0003-4324-4163

R topics documented: 3

dict_recombinators_proxy . 47
dict_recombinators_sbx . 49
dict_recombinators_sequential . 51
dict_recombinators_swap . 54
dict_recombinators_xonary . 55
dict_recombinators_xounif . 57
dict_scalors . 59
dict_scalors_aggregate . 59
dict_scalors_domcount . 62
dict_scalors_fixedprojection . 64
dict_scalors_hypervolume . 66
dict_scalors_nondom . 67
dict_scalors_one . 69
dict_scalors_proxy . 70
dict_scalors_single . 72
dict_selectors . 74
dict_selectors_best . 74
dict_selectors_maybe . 76
dict_selectors_null . 80
dict_selectors_proxy . 81
dict_selectors_random . 83
dict_selectors_sequential . 85
dict_selectors_tournament . 87
dist_crowding . 89
domhv . 90
domhv_contribution . 91
domhv_improvement . 92
Filtor . 93
FiltorSurrogate . 95
MiesOperator . 98
mies_aggregate_generations . 102
mies_aggregate_single_generation . 104
mies_evaluate_offspring . 107
mies_filter_offspring . 110
mies_generate_offspring . 111
mies_generation . 114
mies_generation_apply . 115
mies_get_fitnesses . 117
mies_get_generation_results . 119
mies_init_population . 121
mies_prime_operators . 124
mies_select_from_archive . 126
mies_step_fidelity . 128
mies_survival_comma . 131
mies_survival_plus . 133
mlr_terminators_budget . 135
mlr_terminators_genperfreached . 136
mlr_terminators_gens . 139

4 miesmuschel-package

mlr_terminators_genstag . 141
mut . 145
Mutator . 147
MutatorDiscrete . 148
MutatorNumeric . 150
OperatorCombination . 152
OptimizerMies . 160
ParamSetShadow . 167
rank_nondominated . 170
Recombinator . 170
RecombinatorPair . 173
repr . 175
SamplerRandomWeights . 176
Scalarizer . 177
scalarizer_chebyshev . 177
scalarizer_linear . 178
Scalor . 179
Selector . 181
SelectorScalar . 184
terminator_get_generations . 186

Index 188

miesmuschel-package miesmuschel: Mixed Integer Evolution Strategies

Description

miesmuschel offers both an Optimizer and a Tuner for general MIES-optimization, as well as all
the building blocks for building a custom optimization algorithm that is more flexible and can be
used for research into novel evolution strategies.

The call-graph of the default algorithm in OptimizerMies / TunerMies is as follows, and is shown
here as an overview over the mies_* functions, and how they are usually connected. (Note that only
the exported mies_* functions are shown.) See the help information of these functions for more
info.

OptimizerMies$.optimize(inst)
|- mies_prime_operators() # prime operators on instance's search_space
|- mies_init_population() # sample and evaluate first generation
| `- mies_evaluate_offspring() # evaluate sampled individuals
| `- inst$eval_batch() # The OptimInst's evaluation method
`- repeat # Repeat the following until terminated

|- mies_step_fidelity() # Evaluate individuals with changing fidelity
| `- inst$eval_batch() # The OptimInst's evaluation method
|- mies_generate_offspring() # Sample parents, recombine, mutate
| `- mies_select_from_archive() # Use 'Selector' on 'Archive'
| `- mies_get_fitnesses() # Get objective values as fitness matrix

crate_env 5

|- mies_evaluate_offspring() # evaluate sampled individuals
| `- inst$eval_batch() # The OptimInst's evaluation method
`- mies_survival_plus() / mies_survival_comma() # survival

`- mies_select_from_archive() # Use 'Selector' on 'Archive'

Author(s)

Maintainer: Martin Binder <mlr.developer@mb706.com>

Other contributors:

• Lennart Schneider <lennart.sch@web.de> (ORCID) [contributor]
• Susanne Dandl <dandl.susanne@googlemail.com> (ORCID) [contributor]
• Andreas Hofheinz <andreas.hofheinz@outlook.com> [contributor]

See Also

Useful links:

• https://github.com/mlr-org/miesmuschel

• Report bugs at https://github.com/mlr-org/miesmuschel/issues

crate_env Set a Function’s Environment

Description

Useful to represent functions efficiently within repr().

Usage

crate_env(fun, namespace = "R_GlobalEnv", ..., selfref = NULL)

Arguments

fun (function)
Function of which the environment should be set.

namespace (character(1))
Name of the namespace, as given by environmentName(), to be used as the
(parent of the) environment of fun. Special values "R_GlobalEnv" (global envi-
ronment), "R_BaseEnv" (base environment; note this one is non-standard within
R), "R_EmptyEnv" (empty environment). The content of the namespace is not
modified. Default "R_GlobalEnv".

... (list)
Content of environments within which to place fun.

selfref (character(1) | named integer | NULL)
If character(1): The name of the entry of the first element in ... that refers
to the function itself. If a named integer, then the values indicate the lists in
... where the reference to the function should be placed see examples. Default
NULL: No reference to the function itself is present.

https://orcid.org/0000-0003-4152-5308
https://orcid.org/0000-0003-4324-4163
https://github.com/mlr-org/miesmuschel
https://github.com/mlr-org/miesmuschel/issues

6 dict_filtors

Value

function: The given fun with changed environment.

Examples

identity2 = crate_env(function(x) x, "base")
identical(identity, identity2) # TRUE

y = 1
f1 = mlr3misc::crate(function(x) x + y, y, .parent = .GlobalEnv)
f2 = crate_env(function(x) x + y, "R_GlobalEnv", list(y = 1))

Note identical() does not apply because both contain (equal, but not
identical) 'y = 1'-environments
all.equal(f1, f2) # TRUE
f1(10) # 10 + 1 == 11

factorial1 = mlr3misc::crate(
function(x) if (x > 0) x * factorial1(x - 1) else 1,
y, .parent = .GlobalEnv

)
environment(factorial1)$factorial1 = factorial1

factorial2 = crate_env(
function(x) if (x > 0) x * factorial1(x - 1) else 1,
"R_GlobalEnv", list(y = 1), selfref = "factorial1")

putting 'factorial1' into the list (or repeating function(x))
would *not* work, since we want:
identical(environment(factorial2)$factorial1, factorial2) # TRUE

all.equal(factorial1, factorial2) # TRUE

g = crate_env(function(x) x + y + z, "miesmuschel",
list(y = 1), list(z = 2), selfref = c(X = 1, Y = 2, Z = 2))

g(0) # 0 + 1 + 2 == 3
identical(environment(g)$X, g)
identical(parent.env(environment(g))$Y, g)
identical(parent.env(environment(g))$Z, g)
identical(

parent.env(parent.env(environment(g))),
loadNamespace("miesmuschel")

)

dict_filtors Dictionary of Filtors

Description

Dictionary of Filtors

dict_filtors_maybe 7

Usage

dict_filtors

Format

An object of class DictionaryFiltor (inherits from DictionaryEx, Dictionary, R6) of length
15.

Methods

Methods inherited from Dictionary, as well as:

• help(key, help_type)
(character(1), character(1))
Displays help for the dictionary entry key. help_type is one of "text", "html", "pdf" and
given as the help_type argument of R’s help().

See Also

Other dictionaries: dict_mutators, dict_recombinators, dict_scalors, dict_selectors, mut()

dict_filtors_maybe Filtor-Combination that Filters According to Two Filtors

Description

Filtor that wraps two other Filtors given during construction and chooses which operation to
perform. Each of the resulting n_filter individuals is chosen either from $filtor, or from
$filtor_not.

This makes it possible to implement filter methods such as random interleaving, where only a
fraction of p individuals were filtered and the others were not.

Letting the number of individuals chosen by $filtor be n_filter_f, then n_filter_f is either
fixed set to round(n_filter * p), (when random_choise is FALSE) or to rbinom(1, n_filter,
p) (when random_choice is TRUE).

When random_choice is FALSE, then $needed_input() is calculated directly from $needed_input()
of $filtor and $filtor_not, as well as n_filter_f and n_filter - n_filter_f.

When random_choice is TRUE, then $needed_input() is considers the "worst case" from $filtor
and $filtor_not, and assumes that $needed_input() is monotonically increasing in its input
argument.

To make the worst case less extreme, the number of individuals chosen with random_choice set to
TRUE is limited to qbinom(-20, n_filter, p, log.p = TRUE) (with lower.tail FALSE and TRUE
for $filtor and $filtor_not, respectively), which distorts the binomial distribution with proba-
bility 1 - exp(-20) or about 1 - 0.5e-9.

8 dict_filtors_maybe

Configuration Parameters

This operator has the configuration parameters of the Filtors that it wraps: The configuration
parameters of the operator given to the filtor construction argument are prefixed with "maybe.",
the configuration parameters of the operator given to the filtor_not construction argument are
prefixed with "maybe_not.".

Additional configuration parameters:

• p :: numeric(1)
Probability per individual (when random_choise is TRUE), or fraction of individuals (when
random_choice is FALSE), that are chosen from $filtor instead of $filtor_not. Must be
set by the user.

• random_choice :: logical(1)
Whether to sample the number of individuals chosen by $filtor according to rbinom(1,
n_filter, p), or to use a fixed fraction. Initialized to FALSE.

Supported Operand Types

Supported Param classes are the set intersection of supported classes of filtor and filtor_not.

Dictionary

This Filtor can be created with the short access form ftr() (ftrs() to get a list), or through the
the dictionary dict_filtors in the following way:

preferred:
ftr("maybe", <filtor> [, <filtor_not>])
ftrs("maybe", <filtor> [, <filtor_not>]) # takes vector IDs, returns list of Filtors

long form:
dict_filtors$get("maybe", <filtor> [, <filtor_not>])

Super classes

miesmuschel::MiesOperator -> miesmuschel::Filtor -> FiltorMaybe

Active bindings

filtor (Filtor)
Filtor being wrapped. This operator gets run with probability / proportion p (configuration
parameter).

filtor_not (Filtor)
Alternative Filtor being wrapped. This operator gets run with probability / proportion 1 - p
(configuration parameter).

Methods

Public methods:
• FiltorMaybe$new()

dict_filtors_maybe 9

• FiltorMaybe$prime()

• FiltorMaybe$clone()

Method new(): Initialize the FiltorMaybe object.

Usage:
FiltorMaybe$new(filtor, filtor_not = FiltorNull$new())

Arguments:
filtor (Filtor)

Filtor to wrap. This operator gets run with probability p (Configuration parameter).
The constructed object gets a clone of this argument. The $filtor field will reflect this
value.

filtor_not (Filtor)
Another Filtor to wrap. This operator runs when filtor is not chosen. By default, this is
FiltorNull, i.e. no filtering. With this default, the FiltorMaybe object applies the filtor
operation with probability / proportion p, and no operation at all otherwise.
The constructed object gets a clone of this argument. The $filtor_not field will reflect
this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to filtor and filtor_not during construction.

Usage:
FiltorMaybe$prime(param_set)

Arguments:
param_set (ParamSet)

Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FiltorMaybe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other filtors: FiltorSurrogate, Filtor, dict_filtors_null, dict_filtors_proxy, dict_filtors_surprog,
dict_filtors_surtour

Other filtor wrappers: dict_filtors_proxy

Examples

library("mlr3")
library("mlr3learners")

fm = ftr("maybe", ftr("surprog", lrn("regr.lm"), filter.pool_factor = 2), p = 0.5)
p = ps(x = p_dbl(-5, 5))

10 dict_filtors_null

known_data = data.frame(x = 1:5)
fitnesses = 1:5
new_data = data.frame(x = c(0.5, 1.5, 2.5, 3.5, 4.5))

fm$prime(p)

fm$needed_input(2)

fm$operate(new_data, known_data, fitnesses, 2)

fm$param_set$values$p = 0.33

fm$needed_input(3)

fm$operate(new_data, known_data, fitnesses, 3)

dict_filtors_null Null-Filtor

Description

Null-filtor that does not perform filtering. Its needed_input() is always the output_size, and
operate() selects the first n_filter values from its input.

Useful in particular with operator-wrappers such as FiltorProxy, and to make filtering optional.

Configuration Parameters

This operator has no configuration parameters.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Filtor can be created with the short access form ftr() (ftrs() to get a list), or through the
the dictionary dict_filtors in the following way:

preferred:
ftr("null")
ftrs("null") # takes vector IDs, returns list of Filtors

long form:
dict_filtors$get("null")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Filtor -> FiltorNull

dict_filtors_proxy 11

Methods

Public methods:

• FiltorNull$new()

• FiltorNull$clone()

Method new(): Initialize the FiltorNull object.

Usage:
FiltorNull$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FiltorNull$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other filtors: FiltorSurrogate, Filtor, dict_filtors_maybe, dict_filtors_proxy, dict_filtors_surprog,
dict_filtors_surtour

Examples

fn = ftr("null")

p = ps(x = p_dbl(-5, 5))
known_data = data.frame(x = 1:5)
fitnesses = 1:5

new_data = data.frame(x = c(2.5, 4.5))

fn$prime(p)

fn$needed_input(1)

fn$operate(new_data, known_data, fitnesses, 1)

dict_filtors_proxy Proxy-Filtor that Filters According to its Configuration Parameter

Description

Filtor that performs the operation in its operation configuration parameter. This can be used to
make filtor operations fully parametrizable.

12 dict_filtors_proxy

Configuration Parameters

• operation :: Filtor
Operation to perform. Must be set by the user. This is primed when $prime() of SelectorProxy
is called, and also when $operate() is called, to make changing the operation as part of self-
adaption possible. However, if the same operation gets used inside multiple SelectorProxy
objects, then it is recommended to $clone(deep = TRUE) the object before assigning them
to operation to avoid frequent re-priming.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Selector can be created with the short access form sel() (sels() to get a list), or through
the the dictionary dict_selectors in the following way:

preferred:
sel("proxy")
sels("proxy") # takes vector IDs, returns list of Selectors

long form:
dict_selectors$get("proxy")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Filtor -> FiltorProxy

Methods

Public methods:
• FiltorProxy$new()

• FiltorProxy$prime()

• FiltorProxy$clone()

Method new(): Initialize the FiltorProxy object.

Usage:
FiltorProxy$new()

Method prime(): See MiesOperator method. Primes both this operator, as well as the operator
given to the operation configuration parameter. Note that this modifies the $param_set$values$operation
object.

Usage:
FiltorProxy$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

dict_filtors_surprog 13

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FiltorProxy$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other filtors: FiltorSurrogate, Filtor, dict_filtors_maybe, dict_filtors_null, dict_filtors_surprog,
dict_filtors_surtour

Other filtor wrappers: dict_filtors_maybe

Examples

library("mlr3")
library("mlr3learners")
fp = ftr("proxy")
p = ps(x = p_dbl(-5, 5))
known_data = data.frame(x = 1:5)
fitnesses = 1:5
new_data = data.frame(x = c(2.5, 4.5))

fp$param_set$values$operation = ftr("null")
fp$prime(p)
fp$operate(new_data, known_data, fitnesses, 1)

fp$param_set$values$operation = ftr("surprog", lrn("regr.lm"), filter.pool_factor = 2)
fp$operate(new_data, known_data, fitnesses, 1)

dict_filtors_surprog Progressive Surrogate Model Filtering

Description

Performs progressive surrogate model filtering. A surrogate model is used, as described in the
parent class FiltorSurrogate. The filtering is "progressive" in that successive values are filtered
more agressively.

Algorithm

Given the number n_filter of of individuals to sample, and the desired pool size at round i
pool_size(i), progressive surrogate model filtering proceeds as follows:

1. Train the surrogate_learner LearnerRegr on the known_values and their fitnesses.

2. Take pool_size(1) configurations, predict their expected performance using the surrogate
model, and put them into a pool P of configurations to consider.

14 dict_filtors_surprog

3. Initialize i to 1.

4. Take the individual that is optimal according to predicted performance, remove it from P and
add it to solution set S.

5. If the number of solutions in S equals n_filter, quit.

6. If pool_size(i + 1) is larger than pool_size(i), take the next pool_size(i + 1) - pool_size(i)
configurations, predict their expected performance using the surrogate model, and add them to
P. Otherwise, remove pool_size(i) - pool_size(i + 1) random individuals from the pool.
The size of P ends up being pool_size(i + 1) - i, as i individuals have also been removed
and added to S.

7. Increment i, jump to 4.

(The algorithm presented here is optimized for clarity; the actual implementation does all the sur-
rogate model prediction in one go, but is functionally equivalent).

pool_size(i) is calculated as round(n_filter * pool_factor * (pool_factor_last / pool_factor)
^ (i / n_filter)), i.e. a log-linear interpolation from pool_factor * n_filter to pool_factor_last
* n_filter.

The pool_factor and pool_factor_last configuration parameters of this algorithm determine
how agressively the surrogate model is used to filter out sampled configurations. If the filtering is
agressive (large values), then more "exploitation" at the cost of "exploration" is performed. When
pool_factor is small but pool_factor_last is large (or vice-versa), then different individuals
are filtered with different agressiveness, potentially leading to a tradeoff between "exploration" and
"exploitation".

When pool_factor_last is set, it defaults to pool_factor, with no new individuals added and no
individuals removed from the filter pool during filtering. It is equivalent to taking the top n_filter
individuals out of a sample of n_filter * pool_factor.

Configuration Parameters

FiltorSurrogateProgressive’s configuration parameters are the hyperparameters of the FiltorSurrogate
base class, as well as:

• filter.pool_factor :: numeric(1)
pool_factor parameter of the progressive surrogate model filtering algorithm, see the corre-
sponding section. Initialized to 1. Together with the default of filter.pool_factor_last,
this is equivalent to random sampling new individuals.

• filter.pool_factor_last :: numeric(1)
pool_factor_last parameter of the progressive surrogate model filtering algorithm, see the
corresponding section. When not given, it defaults to filter.pool_factor, equivalent to
taking the top n_filter from n_filter * pool_factor individuals.

Supported Operand Types

See FiltorSurrogate about supported operand types.

dict_filtors_surprog 15

Dictionary

This Filtor can be created with the short access form ftr() (ftrs() to get a list), or through the
the dictionary dict_filtors in the following way:

preferred:
ftr("surprog", <surrogate_learner> [, <surrogate_selector>])
ftrs("surprog", <surrogate_learner> [, <surrogate_selector>]) # takes vector IDs, returns list of Filtors

long form:
dict_filtors$get("surprog", <surrogate_learner> [, <surrogate_selector>])

Super classes

miesmuschel::MiesOperator -> miesmuschel::Filtor -> miesmuschel::FiltorSurrogate -
> FiltorSurrogateProgressive

Methods

Public methods:

• FiltorSurrogateProgressive$new()

• FiltorSurrogateProgressive$clone()

Method new(): Initialize the FiltorSurrogateProgressive.

Usage:
FiltorSurrogateProgressive$new(
surrogate_learner,
surrogate_selector = SelectorBest$new()

)

Arguments:

surrogate_learner (mlr3::LearnerRegr)
Regression learner for the surrogate model filtering algorithm.
The $surrogate_learner field will reflect this value.

surrogate_learner (mlr3::LearnerRegr)
Regression learner for the surrogate model filtering algorithm.
The $surrogate_learner field will reflect this value.

surrogate_selector (Selector) Selector for the surrogate model filtering algorithm.
The $surrogate_selector field will reflect this value.

surrogate_selector (Selector) Selector for the surrogate model filtering algorithm.
The $surrogate_selector field will reflect this value.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FiltorSurrogateProgressive$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

16 dict_filtors_surtour

See Also

Other filtors: FiltorSurrogate, Filtor, dict_filtors_maybe, dict_filtors_null, dict_filtors_proxy,
dict_filtors_surtour

Examples

library("mlr3")
library("mlr3learners")
fp = ftr("surprog", lrn("regr.lm"), filter.pool_factor = 2)

p = ps(x = p_dbl(-5, 5))
known_data = data.frame(x = 1:5)
fitnesses = 1:5
new_data = data.frame(x = c(2.5, 4.5))

fp$prime(p)

fp$needed_input(1)

fp$operate(new_data, known_data, fitnesses, 1)

dict_filtors_surtour Tournament Surrogate Model Filtering

Description

Performs tournament surrogate model filtering. A surrogate model is used, as described in the
parent class FiltorSurrogate.

Algorithm

Selects individuals from a tournament by taking the top per_tournament individuals, according to
surrogate_selector and as predicted by surrogate_learner, from a sample of tournament_size(i),
where tournament_size(1) is given by tournament_size, tournament_size(ceiling(n_filter
/ per_tournament)) is given by tournament_size_last, and tournament_size(i) for i be-
tween these values is linearly interpolated on a log scale.

Configuration Parameters

FiltorSurrogateProgressive’s configuration parameters are the hyperparameters of the FiltorSurrogate
base class, as well as:

• filter.per_tournament :: integer(1)
Number of individuals to select from each tournament. If per_tournament is not a divider of
n_filter, then the last tournament selects a random subset of n_filter %% per_tournament
individuals out of the top per_tournament individuals. Initialized to 1.

dict_filtors_surtour 17

• filter.tournament_size :: numeric(1)
Tournament size used for filtering. If tournament_size_last is not given, all n_filter
individuals are selected in batches of per_tournament from tournaments of this size. If
it is given, then the actual tournament size is interpolated between tournament_size and
tournament_size_last on a logarithmic scale. Tournaments with tournament size below
per_tournament select per_tournament individuals without tournament, i.e. no filtering.
Initialized to 1.

• filter.tournament_size_last :: numeric(1)
Tournament size used for the last tournament, see description of tournament_size. Defaults
to tournament_size when not given, i.e. all tournaments have the same size.

Supported Operand Types

See FiltorSurrogate about supported operand types.

Dictionary

This Filtor can be created with the short access form ftr() (ftrs() to get a list), or through the
the dictionary dict_filtors in the following way:

preferred:
ftr("surtour", <surrogate_learner> [, <surrogate_selector>])
ftrs("surtour", <surrogate_learner> [, <surrogate_selector>]) # takes vector IDs, returns list of Filtors

long form:
dict_filtors$get("surtour", <surrogate_learner> [, <surrogate_selector>])

Super classes

miesmuschel::MiesOperator -> miesmuschel::Filtor -> miesmuschel::FiltorSurrogate -
> FiltorSurrogateTournament

Methods

Public methods:
• FiltorSurrogateTournament$new()

• FiltorSurrogateTournament$clone()

Method new(): Initialize the FiltorSurrogateTournament.

Usage:
FiltorSurrogateTournament$new(
surrogate_learner,
surrogate_selector = SelectorBest$new()

)

Arguments:
surrogate_learner (mlr3::LearnerRegr)

Regression learner for the surrogate model filtering algorithm.
The $surrogate_learner field will reflect this value.

18 dict_mutators

surrogate_learner (mlr3::LearnerRegr)
Regression learner for the surrogate model filtering algorithm.
The $surrogate_learner field will reflect this value.

surrogate_selector (Selector) Selector for the surrogate model filtering algorithm.
The $surrogate_selector field will reflect this value.

surrogate_selector (Selector) Selector for the surrogate model filtering algorithm.
The $surrogate_selector field will reflect this value.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FiltorSurrogateTournament$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other filtors: FiltorSurrogate, Filtor, dict_filtors_maybe, dict_filtors_null, dict_filtors_proxy,
dict_filtors_surprog

Examples

library("mlr3")
library("mlr3learners")
fp = ftr("surtour", lrn("regr.lm"), filter.tournament_size = 2)

p = ps(x = p_dbl(-5, 5))
known_data = data.frame(x = 1:5)
fitnesses = 1:5
new_data = data.frame(x = c(2.5, 4.5))

fp$prime(p)

fp$needed_input(1)

fp$operate(new_data, known_data, fitnesses, 1)

dict_mutators Dictionary of Mutators

Description

Dictionary of Mutators

Usage

dict_mutators

dict_mutators_cmpmaybe 19

Format

An object of class DictionaryMutator (inherits from DictionaryEx, Dictionary, R6) of length
15.

Methods

Methods inherited from Dictionary, as well as:

• help(key, help_type)
(character(1), character(1))
Displays help for the dictionary entry key. help_type is one of "text", "html", "pdf" and
given as the help_type argument of R’s help().

See Also

Other dictionaries: dict_filtors, dict_recombinators, dict_scalors, dict_selectors, mut()

dict_mutators_cmpmaybe

Mutator Choosing Action Component-Wise Independently

Description

Mutator that chooses which operation to perform probabilistically. The Mutator wraps two other
Mutators given during construction, and both of these operators are run. The ultimate result is
sampled from the results of these operations independently for each individuum and component:
with probability p (configuration parameter), the result from the Mutator given to the mutator
construction argument is used, and with probability p - 1 the one given to mutator_not is used.

Configuration Parameters

This operator has the configuration parameters of the Mutators that it wraps: The configura-
tion parameters of the operator given to the mutator construction argument are prefixed with
"cmpmaybe.", the configuration parameters of the operator given to the mutator_not construction
argument are prefixed with "cmpmaybe_not.".

Additional configuration parameters:

• p :: numeric(1)
Probability per component with which to apply the operator given to the mutator construction
argument. Must be set by the user.

Supported Operand Types

Supported Param classes are the set intersection of supported classes of mutator and mutator_not.

20 dict_mutators_cmpmaybe

Dictionary

This Mutator can be created with the short access form mut() (muts() to get a list), or through the
the dictionary dict_mutators in the following way:

preferred:
mut("cmpmaybe", <mutator> [, <mutator_not>])
muts("cmpmaybe", <mutator> [, <mutator_not>]) # takes vector IDs, returns list of Mutators

long form:
dict_mutators$get("cmpmaybe", <mutator> [, <mutator_not>])

Super classes

miesmuschel::MiesOperator -> miesmuschel::Mutator -> MutatorCmpMaybe

Active bindings

mutator (Mutator)
Mutator being wrapped. This operator gets run with probability p (configuration parameter).

mutator_not (Mutator)
Alternative Mutator being wrapped. This operator gets run with probability 1 - p (configura-
tion parameter).

Methods

Public methods:

• MutatorCmpMaybe$new()

• MutatorCmpMaybe$prime()

• MutatorCmpMaybe$clone()

Method new(): Initialize the MutatorCmpMaybe object.

Usage:
MutatorCmpMaybe$new(mutator, mutator_not = MutatorNull$new())

Arguments:

mutator (Mutator)
Mutator to wrap. Component-wise results of this operator are used with probability p
(Configuration parameter).
The constructed object gets a clone of this argument. The $mutator field will reflect this
value.

mutator_not (Mutator)
Another Mutator to wrap. Results from this operator are used when mutator is not chosen.
By default, this is MutatorNull, i.e. no operation.
With this default, the MutatorCmpMaybe object applies the mutator operation with proba-
bility p, and no operation at all otherwise.
The constructed object gets a clone of this argument. The $mutator_not field will reflect
this value.

dict_mutators_cmpmaybe 21

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to mutator and mutator_not during construction.

Usage:
MutatorCmpMaybe$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MutatorCmpMaybe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other mutators: MutatorDiscrete, MutatorNumeric, Mutator, OperatorCombination, dict_mutators_erase,
dict_mutators_gauss, dict_mutators_maybe, dict_mutators_null, dict_mutators_proxy,
dict_mutators_sequential, dict_mutators_unif

Other mutator wrappers: OperatorCombination, dict_mutators_maybe, dict_mutators_proxy,
dict_mutators_sequential

Examples

set.seed(1)
mcm = mut("cmpmaybe", mut("gauss", sdev = 5), p = 0.5)
p = ps(x = p_int(-5, 5), y = p_dbl(-5, 5))
data = data.frame(x = rep(0, 5), y = rep(0, 5))

mcm$prime(p)
mcm$operate(data)

mcm$param_set$values$p = 0.2
mcm$operate(data)

mcm2 = mut("cmpmaybe",
mutator = mut("gauss", sdev = 0.01),
mutator_not = mut("gauss", sdev = 10),
p = 0.5

)

mcm2$prime(p)
mcm2$operate(data)

22 dict_mutators_erase

dict_mutators_erase Uniform Sample Mutator

Description

"Mutates" individuals by forgetting the current value and sampling new individuals from scratch.

Since the information loss is very high, this should in most cases be combined with MutatorCmpMaybe.

Configuration Parameters

• initializer :: function
Function that generates the initial population as a Design object, with arguments param_set
and n, functioning like paradox::generate_design_random or paradox::generate_design_lhs.
This is equivalent to the initializer parameter of mies_init_population(), see there for
more information. Initialized to generate_design_random().

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Mutator can be created with the short access form mut() (muts() to get a list), or through the
the dictionary dict_mutators in the following way:

preferred:
mut("erase")
muts("erase") # takes vector IDs, returns list of Mutators

long form:
dict_mutators$get("erase")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Mutator -> MutatorErase

Methods

Public methods:
• MutatorErase$new()

• MutatorErase$clone()

Method new(): Initialize the MutatorErase object.

Usage:
MutatorErase$new()

Method clone(): The objects of this class are cloneable with this method.

dict_mutators_gauss 23

Usage:
MutatorErase$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other mutators: MutatorDiscrete, MutatorNumeric, Mutator, OperatorCombination, dict_mutators_cmpmaybe,
dict_mutators_gauss, dict_mutators_maybe, dict_mutators_null, dict_mutators_proxy,
dict_mutators_sequential, dict_mutators_unif

Examples

set.seed(1)
mer = mut("erase")
p = ps(x = p_lgl(), y = p_fct(c("a", "b", "c")), z = p_dbl(0, 1))
data = data.frame(x = rep(TRUE, 5), y = rep("a", 5),

z = seq(0, 1, length.out = 5),
stringsAsFactors = FALSE) # necessary for R <= 3.6

mer$prime(p)
mer$operate(data)

dict_mutators_gauss Gaussian Distribution Mutator

Description

Individuals are mutated with an independent normal random variable on each component.

Configuration Parameters

• sdev :: numeric
Standard deviation of normal distribuion. This is absolute if sdev_is_relative is FALSE,
and multiplied with each individual component’s range (upper - lower) if sdev_is_relative
is TRUE. This may either be a scalar, in which case it is applied to all input components, or a
vector, in which case it must have the length of the input and applies to components in order
in which they appear in the priming ParamSet. Must be set by the user.

• sdev_is_relative :: logical(1)
Whether sdev is absolute (FALSE) or relative to component range (TRUE). Initialized to FALSE.

• truncated_normal :: logical(1)
Whether to draw individuals from a normal distribution that is truncated at the bounds of each
component (TRUE), or to draw from a normal distribution and then restrict to bounds afterwards
(FALSE). The former (TRUE) will lead to very few to no samples landing on the exact bounds
(analytically it would be none almost surely, but this is subject to machine precision), the latter
(FALSE) can lead to a substantial number of samples landing on the exact bounds. Initialized
to FALSE.

24 dict_mutators_gauss

Supported Operand Types

Supported Param classes are: ParamInt, ParamDbl

Dictionary

This Mutator can be created with the short access form mut() (muts() to get a list), or through the
the dictionary dict_mutators in the following way:

preferred:
mut("gauss")
muts("gauss") # takes vector IDs, returns list of Mutators

long form:
dict_mutators$get("gauss")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Mutator -> miesmuschel::MutatorNumeric -
> MutatorGauss

Methods

Public methods:

• MutatorGauss$new()

• MutatorGauss$clone()

Method new(): Initialize the MutatorGauss object.

Usage:

MutatorGauss$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:

MutatorGauss$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other mutators: MutatorDiscrete, MutatorNumeric, Mutator, OperatorCombination, dict_mutators_cmpmaybe,
dict_mutators_erase, dict_mutators_maybe, dict_mutators_null, dict_mutators_proxy,
dict_mutators_sequential, dict_mutators_unif

dict_mutators_maybe 25

Examples

set.seed(1)
mg = mut("gauss", sdev = 0.1)
p = ps(x = p_int(-5, 5), y = p_dbl(-5, 5))
data = data.frame(x = rep(0, 5), y = rep(0, 5))

mg$prime(p)
mg$operate(data)

mg$param_set$values$sdev = 100
mg$operate(data)

dict_mutators_maybe Mutator Choosing Action Probabilistically

Description

Mutator that chooses which operation to perform probabilistically. The Mutator wraps two other
Mutators given during construction, and for each individuum, the operation to perform is sam-
pled: with probability p (configuration parameter), the Mutator given to the mutator construction
argument is applied, and with probability p - 1 the one given to mutator_not is applied.

Configuration Parameters

This operator has the configuration parameters of the Mutators that it wraps: The configuration
parameters of the operator given to the mutator construction argument are prefixed with "maybe.",
the configuration parameters of the operator given to the mutator_not construction argument are
prefixed with "maybe_not.".

Additional configuration parameters:

• p :: numeric(1)
Probability per individual with which to apply the operator given to the mutator construction
argument. Must be set by the user.

Supported Operand Types

Supported Param classes are the set intersection of supported classes of mutator and mutator_not.

Dictionary

This Mutator can be created with the short access form mut() (muts() to get a list), or through the
the dictionary dict_mutators in the following way:

preferred:
mut("maybe", <mutator> [, <mutator_not>])
muts("maybe", <mutator> [, <mutator_not>]) # takes vector IDs, returns list of Mutators

long form:
dict_mutators$get("maybe", <mutator> [, <mutator_not>])

26 dict_mutators_maybe

Super classes

miesmuschel::MiesOperator -> miesmuschel::Mutator -> MutatorMaybe

Active bindings

mutator (Mutator)
Mutator being wrapped. This operator gets run with probability p (configuration parameter).

mutator_not (Mutator)
Alternative Mutator being wrapped. This operator gets run with probability 1 - p (configura-
tion parameter).

Methods

Public methods:
• MutatorMaybe$new()

• MutatorMaybe$prime()

• MutatorMaybe$clone()

Method new(): Initialize the MutatorMaybe object.
Usage:
MutatorMaybe$new(mutator, mutator_not = MutatorNull$new())

Arguments:
mutator (Mutator)

Mutator to wrap. This operator gets run with probability p (configuration parameter).
The constructed object gets a clone of this argument.
The $mutator field will reflect this value.

mutator_not (Mutator)
Another Mutator to wrap. This operator runs when mutator is not chosen. By default, this
is MutatorNull, i.e. no operation. With this default, the MutatorMaybe object applies the
mutator operation with probability p, and no operation at all otherwise.
The constructed object gets a clone of this argument. The $mutator_not field will reflect
this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to mutator and mutator_not during construction.

Usage:
MutatorMaybe$prime(param_set)

Arguments:
param_set (ParamSet)

Passed to MiesOperator$prime().
Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.
Usage:
MutatorMaybe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

dict_mutators_null 27

See Also

Other mutators: MutatorDiscrete, MutatorNumeric, Mutator, OperatorCombination, dict_mutators_cmpmaybe,
dict_mutators_erase, dict_mutators_gauss, dict_mutators_null, dict_mutators_proxy,
dict_mutators_sequential, dict_mutators_unif

Other mutator wrappers: OperatorCombination, dict_mutators_cmpmaybe, dict_mutators_proxy,
dict_mutators_sequential

Examples

set.seed(1)
mm = mut("maybe", mut("gauss", sdev = 5), p = 0.5)
p = ps(x = p_int(-5, 5), y = p_dbl(-5, 5))
data = data.frame(x = rep(0, 5), y = rep(0, 5))

mm$prime(p)
mm$operate(data)

mm$param_set$values$p = 0.3
mm$operate(data)

mm2 = mut("maybe",
mutator = mut("gauss", sdev = 0.01),
mutator_not = mut("gauss", sdev = 10),
p = 0.5

)

mm2$prime(p)
mm2$operate(data)

dict_mutators_null Null Mutator

Description

Null-mutator that does not perform any operation on its input. Useful in particular with operator-
wrappers such as MutatorMaybe or MutatorCombination.

Configuration Parameters

This operator has no configuration parameters.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

28 dict_mutators_null

Dictionary

This Mutator can be created with the short access form mut() (muts() to get a list), or through the
the dictionary dict_mutators in the following way:

preferred:
mut("null")
muts("null") # takes vector IDs, returns list of Mutators

long form:
dict_mutators$get("null")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Mutator -> MutatorNull

Methods

Public methods:

• MutatorNull$new()

• MutatorNull$clone()

Method new(): Initialize the MutatorNull object.

Usage:
MutatorNull$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MutatorNull$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other mutators: MutatorDiscrete, MutatorNumeric, Mutator, OperatorCombination, dict_mutators_cmpmaybe,
dict_mutators_erase, dict_mutators_gauss, dict_mutators_maybe, dict_mutators_proxy,
dict_mutators_sequential, dict_mutators_unif

Examples

mn = mut("null")
p = ps(x = p_int(-5, 5), y = p_dbl(-5, 5), z = p_lgl())
data = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(TRUE, 5))

mn$prime(p)
mn$operate(data)

dict_mutators_proxy 29

dict_mutators_proxy Proxy-Mutator that Mutates According to its Configuration parameter

Description

Mutator that performs the operation in its operation configuration parameter. This is useful, e.g.,
to make OptimizerMies’s mutation operation fully parametrizable.

Configuration Parameters

• operation :: Mutator
Operation to perform. Must be set by the user. This is primed when $prime() of MutatorProxy
is called, and also when $operate() is called, to make changing the operation as part of self-
adaption possible. However, if the same operation gets used inside multiple MutatorProxy
objects, then it is recommended to $clone(deep = TRUE) the object before assigning them
to operation to avoid frequent re-priming.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Mutator can be created with the short access form mut() (muts() to get a list), or through the
the dictionary dict_mutators in the following way:

preferred:
mut("proxy")
muts("proxy") # takes vector IDs, returns list of Mutators

long form:
dict_mutators$get("proxy")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Mutator -> MutatorProxy

Methods

Public methods:
• MutatorProxy$new()

• MutatorProxy$prime()

• MutatorProxy$clone()

Method new(): Initialize the MutatorProxy object.

Usage:
MutatorProxy$new()

30 dict_mutators_sequential

Method prime(): See MiesOperator method. Primes both this operator, as well as the operator
given to the operation configuration parameter. Note that this modifies the $param_set$values$operation
object.

Usage:
MutatorProxy$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MutatorProxy$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other mutators: MutatorDiscrete, MutatorNumeric, Mutator, OperatorCombination, dict_mutators_cmpmaybe,
dict_mutators_erase, dict_mutators_gauss, dict_mutators_maybe, dict_mutators_null,
dict_mutators_sequential, dict_mutators_unif

Other mutator wrappers: OperatorCombination, dict_mutators_cmpmaybe, dict_mutators_maybe,
dict_mutators_sequential

Examples

set.seed(1)
mp = mut("proxy", operation = mut("gauss", sdev = 0.1))
p = ps(x = p_int(-5, 5), y = p_dbl(-5, 5))
data = data.frame(x = rep(0, 5), y = rep(0, 5))

mp$prime(p)
mp$operate(data)

mp$param_set$values$operation = mut("null")
mp$operate(data)

dict_mutators_sequential

Run Multiple Mutator Operations in Sequence

Description

Mutator that wraps multiple other Mutators given during construction and uses them for mutation
in sequence.

dict_mutators_sequential 31

Configuration Parameters

This operator has the configuration parameters of the Mutators that it wraps: The configura-
tion parameters of the operator given to the mutators construction argument are prefixed with
"mutator_1", "mutator_2", ... up to "mutator_#", where # is length(mutators).

Supported Operand Types

Supported Param classes are the set intersection of supported classes of the Mutators given in
mutators.

Dictionary

This Mutator can be created with the short access form mut() (muts() to get a list), or through the
the dictionary dict_mutators in the following way:

preferred:
mut("sequential", <mutators>)
muts("sequential", <mutators>) # takes vector IDs, returns list of Mutators

long form:
dict_mutators$get("sequential", <mutators>)

Super classes

miesmuschel::MiesOperator -> miesmuschel::Mutator -> MutatorSequential

Active bindings

mutators (list of Mutator)
Mutators being wrapped. These operators get run sequentially in order.

Methods

Public methods:
• MutatorSequential$new()

• MutatorSequential$prime()

• MutatorSequential$clone()

Method new(): Initialize the MutatorSequential object.

Usage:
MutatorSequential$new(mutators)

Arguments:
mutators (list of Mutator)

Mutators to wrap. The operations are run in order given to mutators. The constructed
object gets a clone of this argument. The $mutators field will reflect this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to mutator and mutator_not during construction.

32 dict_mutators_sequential

Usage:
MutatorSequential$prime(param_set)

Arguments:
param_set (ParamSet)

Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MutatorSequential$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other mutators: MutatorDiscrete, MutatorNumeric, Mutator, OperatorCombination, dict_mutators_cmpmaybe,
dict_mutators_erase, dict_mutators_gauss, dict_mutators_maybe, dict_mutators_null,
dict_mutators_proxy, dict_mutators_unif

Other mutator wrappers: OperatorCombination, dict_mutators_cmpmaybe, dict_mutators_maybe,
dict_mutators_proxy

Examples

set.seed(1)

dataset:
- x1 is mutated around +- 10
- x2 influences sdev of mutation of x1
ds = data.frame(x1 = 0, x2 = c(.01, 0.1, 1))
p = ps(x1 = p_dbl(-10, 10), x2 = p_dbl(0, 10))

operator that only mutates x1, with sdev given by x2
gauss_x1 = mut("combine",

operators = list(
x1 = mut("gauss", sdev_is_relative = FALSE),
x2 = mut("null")

),
adaptions = list(x1.sdev = function(x) x$x2)

)

gauss_x1$prime(p)
gauss_x1$operate(ds) # see how x1[1] changes little, x1[3] changes a lot

operator that mutates x1 with sdev given by x2, as well as x2. However,
the value that x2 takes after mutation does not influence the value that
the mutator of x1 "sees" -- although x2 is mutated to extreme values,
mutation of x1 happens as in `gauss_x1`.
gauss_x1_x2 = mut("combine",

operators = list(

dict_mutators_unif 33

x1 = mut("gauss", sdev_is_relative = FALSE),
x2 = mut("gauss", sdev = 100)

),
adaptions = list(x1.sdev = function(x) x$x2)

)

gauss_x1_x2$prime(p)
gauss_x1_x2$operate(ds) # see how x1 changes in similar ways to above

operator that mutates sequentially: first x2, and then x1 with sdev given
by x2. The value that x2 takes after mutation *does* influence the value
that the mutator of x1 "sees": x1 is mutated either to a large degree,
or not at all.

gauss_x2_then_x1 = mut("sequential", list(
mut("combine",

operators = list(
x1 = mut("null"),
x2 = mut("gauss", sdev = 100)

)
),
mut("combine",

operators = list(
x1 = mut("gauss", sdev_is_relative = FALSE),
x2 = mut("null")

),
adaptions = list(x1.sdev = function(x) x$x2)

)
))

gauss_x2_then_x1$prime(p)
gauss_x2_then_x1$operate(ds)

dict_mutators_unif Uniform Discrete Mutator

Description

Discrete components are mutated by sampling from a uniform distribution, either from all possible
values of each component, or from all values except the original value.

Since the information loss is very high, this should in most cases be combined with MutatorCmpMaybe.

Configuration Parameters

• can_mutate_to_same :: logical(1)
Whether to sample from entire range of each parameter (TRUE) or from all values except the
current value (FALSE). Initialized to TRUE.

34 dict_mutators_unif

Supported Operand Types

Supported Param classes are: ParamLgl, ParamFct

Dictionary

This Mutator can be created with the short access form mut() (muts() to get a list), or through the
the dictionary dict_mutators in the following way:

preferred:
mut("unif")
muts("unif") # takes vector IDs, returns list of Mutators

long form:
dict_mutators$get("unif")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Mutator -> miesmuschel::MutatorDiscrete
-> MutatorDiscreteUniform

Methods

Public methods:

• MutatorDiscreteUniform$new()

• MutatorDiscreteUniform$clone()

Method new(): Initialize the MutatorDiscreteUniform object.

Usage:

MutatorDiscreteUniform$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:

MutatorDiscreteUniform$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other mutators: MutatorDiscrete, MutatorNumeric, Mutator, OperatorCombination, dict_mutators_cmpmaybe,
dict_mutators_erase, dict_mutators_gauss, dict_mutators_maybe, dict_mutators_null,
dict_mutators_proxy, dict_mutators_sequential

dict_recombinators 35

Examples

set.seed(1)
mdu = mut("unif")
p = ps(x = p_lgl(), y = p_fct(c("a", "b", "c")))
data = data.frame(x = rep(TRUE, 5), y = rep("a", 5),

stringsAsFactors = FALSE) # necessary for R <= 3.6

mdu$prime(p)
mdu$operate(data)

mdu$param_set$values$can_mutate_to_same = FALSE
mdu$operate(data)

dict_recombinators Dictionary of Recombinators

Description

Dictionary of Recombinators

Usage

dict_recombinators

Format

An object of class DictionaryRecombinator (inherits from DictionaryEx, Dictionary, R6) of
length 15.

Methods

Methods inherited from Dictionary, as well as:

• help(key, help_type)
(character(1), character(1))
Displays help for the dictionary entry key. help_type is one of "text", "html", "pdf" and
given as the help_type argument of R’s help().

See Also

Other dictionaries: dict_filtors, dict_mutators, dict_scalors, dict_selectors, mut()

36 dict_recombinators_cmpmaybe

dict_recombinators_cmpmaybe

Recombinator Choosing Action Component-Wise Independently

Description

Recombinator that chooses which operation to perform probabilistically and independently for
each component. The Recombinator wraps two other Recombinators given during construction,
and both of these operators are run. The ultimate result is sampled from the results of these opera-
tions independently for each individuum and component: with probability p (configuration param-
eter), the result from the Recombinator given to the recombinator construction argument is used,
and with probability p - 1 the one given to recombinator_not is used.

The values of $n_indivs_in and $n_indivs_out is set to the corresponding values of the wrapped
Recombinators. Both recombinator and recombinator_not must currently have the same re-
spective $n_indivs_in and $n_indivs_out values.

Configuration Parameters

This operator has the configuration parameters of the Recombinators that it wraps: The configu-
ration parameters of the operator given to the recombinator construction argument are prefixed
with "cmpmaybe.", the configuration parameters of the operator given to the recombinator_not
construction argument are prefixed with "cmpmaybe_not.".

Additional configuration parameters:

• p :: numeric(1)
Probability per component with which to use the result of applying the operator given to the
recombinator construction argument. Must be set by the user.

Supported Operand Types

Supported Param classes are the set intersection of supported classes of recombinator and recombinator_not.

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("cmpmaybe", <recombinator> [, <recombinator_not>])
recs("cmpmaybe", <recombinator> [, <recombinator_not>]) # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("cmpmaybe", <recombinator> [, <recombinator_not>])

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> RecombinatorCmpMaybe

dict_recombinators_cmpmaybe 37

Active bindings

recombinator (Recombinator)
Recombinator being wrapped. This operator gets run with probability p (configuration pa-
rameter).

recombinator_not (Recombinator)
Alternative Recombinator being wrapped. This operator gets run with probability 1 - p (con-
figuration parameter).

Methods

Public methods:
• RecombinatorCmpMaybe$new()

• RecombinatorCmpMaybe$prime()

• RecombinatorCmpMaybe$clone()

Method new(): Initialize the RecombinatorCmpMaybe object.

Usage:
RecombinatorCmpMaybe$new(recombinator, recombinator_not = NULL)

Arguments:
recombinator (Recombinator)

Recombinator to wrap. Component-wise results of this operator are used with probability
p (Configuration parameter).
The constructed object gets a clone of this argument. The $recombinator field will reflect
this value.

recombinator_not (Recombinator)
Another Recombinator to wrap. Results from this operator are used when recombinator is
not chosen. By default, this is RecombinatorNull, i.e. no operation, with both n_indivs_in
and n_indivs_out set to match recombinator. This does not work when recombinator
has n_indivs_in < n_indivs_out, in which case this argument must be set explicitly.
With this default, the RecombinatorCmpMaybe object applies the recombinator operation
with probability p, and no operation at all otherwise.
The constructed object gets a clone of this argument. The $recombinator_not field will
reflect this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to recombinator and recombinator_not during construction.

Usage:
RecombinatorCmpMaybe$prime(param_set)

Arguments:
param_set (ParamSet)

Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:

38 dict_recombinators_convex

RecombinatorCmpMaybe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_convex,
dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null, dict_recombinators_proxy,
dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap, dict_recombinators_xonary,
dict_recombinators_xounif

Other recombinator wrappers: OperatorCombination, dict_recombinators_maybe, dict_recombinators_proxy,
dict_recombinators_sequential

Examples

set.seed(1)
rm = rec("cmpmaybe", rec("swap"), p = 0.5)
p = ps(x = p_int(1, 8), y = p_dbl(1, 8), z = p_lgl())
data = data.frame(x = 1:8, y = 1:8, z = rep(TRUE, 4))

rm$prime(p)
rm$operate(data)

rm$param_set$values$p = 0.3
rm$operate(data)

equivalent to rec("cmpmaybe", rec("swap", keep_complement = FALSE), p = 0.7)
rm2 = rec("cmpmaybe",

recombinator = rec("null", 2, 1),
recombinator_not = rec("swap", keep_complement = FALSE),
p = 0.3

)

rm2$prime(p)
rm2$operate(data)

dict_recombinators_convex

Convex Combination Recombinator

Description

Numeric Values between various individuals are recombined via component-wise convex combina-
tion (or weighted mean). The number of individuals over which the convex combination is taken
must be determined during construction as n_indivs_in.

The number of output individuals is always 1, i.e. n_indivs_in are used to create one output value.
When using this recombinator in a typical EA setting, e.g. with mies_generate_offspring, it is
therefore recommended to use a parent-selector where the expected quality of selected parents does

dict_recombinators_convex 39

not depend on the number of parents selected when n_indivs_in is large: sel("tournament") is
preferred to sel("best").

Configuration Parameters

• lambda :: numeric | matrix
Combination weights; these are normalized to sum to 1 internally. Must either be a vector
of length n_indivs_in, or a matrix with n_indivs_in rows and as many columns as there
are components in the values being operated on. Must be non-negative, at least one value per
column must be greater than zero, but it is not necessary that they sum to 1.
Initialized to rep(1, n_indivs_in), i.e. equal weights to all individuals being operated on.

Supported Operand Types

Supported Param classes are: ParamDbl

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("convex")
recs("convex") # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("convex")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> RecombinatorConvex

Methods

Public methods:
• RecombinatorConvex$new()

• RecombinatorConvex$clone()

Method new(): Initialize the RecombinatorConvex object.

Usage:
RecombinatorConvex$new(n_indivs_in = 2)

Arguments:

n_indivs_in (integer(1))
Number of individuals to consider at the same time. When operating, the number of input
individuals must be divisible by this number. Default 2.
The $n_indivs_in field will reflect this value.

Method clone(): The objects of this class are cloneable with this method.

40 dict_recombinators_cvxpair

Usage:

RecombinatorConvex$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null, dict_recombinators_proxy,
dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap, dict_recombinators_xonary,
dict_recombinators_xounif

Examples

set.seed(1)
rcvx = rec("convex", n_indivs_in = 3)
p = ps(x = p_dbl(-5, 5), y = p_dbl(-5, 5), z = p_dbl(-5, 5))
data = data.frame(x = 0:5, y = 0:5, z = 0:5)

rcvx$prime(p)
rcvx$operate(data) # mean of groups of 3

rcvx = rec("convex", 3, lambda = c(0, 1, 2))$prime(p)
rcvx$operate(data) # for groups of 3, take 1/3 of 2nd and 2/3 of 3rd row

lambda = matrix(c(0, 1, 2, 1, 1, 1, 1, 0, 0), ncol = 3)
lambda

rcvx = rec("convex", 3, lambda = lambda)$prime(p)
rcvx$operate(data) # componentwise different operation

dict_recombinators_cvxpair

Convex Combination Recombinator for Pairs

Description

Numeric Values between various individuals are recombined via component-wise convex combi-
nation (or weighted mean). Exactly two individuals are being recombined, and the lambda con-
figuration parameter determines the relative weight of the first individual in each pair for the first
result, and the relative weight of the second indivudual for the complement, if initialized with
keep_complement set to TRUE.

dict_recombinators_cvxpair 41

Configuration Parameters

• lambda :: numeric
Combination weight. If keep_complement is TRUE, then two individuals are returned for each
pair of input individuals: one corresponding to lambda * <1st individual> + (1-lambda) * <2nd individual>,
and one corresponding to (1-lambda) * <1st individual> + lambda * <2nd individual>
(i.e. the complement). Otherwise, only the first of these two is generated. Must either be a
scalar, or a vector with length equal to the number of components in the values being operated
on. Must be between 0 and 1.
Initialized to 0.5.

Supported Operand Types

Supported Param classes are: ParamDbl

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("convex")
recs("convex") # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("convex")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> miesmuschel::RecombinatorPair
-> RecombinatorConvexPair

Methods

Public methods:

• RecombinatorConvexPair$new()

• RecombinatorConvexPair$clone()

Method new(): Initialize the RecombinatorConvexPair object.

Usage:
RecombinatorConvexPair$new(keep_complement = TRUE)

Arguments:

keep_complement (logical(1))
Whether the operation should keep both resulting individuals (TRUE), or only the first and
discard the complement (FALSE). Default TRUE. The $keep_complement field will reflect
this value.

Method clone(): The objects of this class are cloneable with this method.

42 dict_recombinators_maybe

Usage:

RecombinatorConvexPair$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_maybe, dict_recombinators_null, dict_recombinators_proxy,
dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap, dict_recombinators_xonary,
dict_recombinators_xounif

Examples

set.seed(1)
rcvx = rec("cvxpair")
p = ps(x = p_dbl(-5, 5), y = p_dbl(-5, 5), z = p_dbl(-5, 5))
data = data.frame(x = 0:5, y = 0:5, z = 0:5)

rcvx$prime(p)
rcvx$operate(data) # mean of groups of 2
with the default value of lambda = 0.5, the default of
keep_complement = TRUE means that pairs of equal values are generated;
consider setting keep_complement = FALSE int that case.

rcvx$param_set$values$lambda = 0.1
rcvx$operate(data)

dict_recombinators_maybe

Recombinator Choosing Action Probabilistically

Description

Recombinator that chooses which operation to perform probabilistically. The Recombinator wraps
two other Recombinators given during construction, and for each group of $n_indivs_in indi-
viduals, the operation to perform is sampled: with probability p (configuration parameter), the
Recombinator given to the recombinator construction argument is applied, and with probability
p - 1 the one given to recombinator_not is applied.

The values of $n_indivs_in and $n_indivs_out is set to the corresponding values of the wrapped
Recombinators. Both recombinator and recombinator_not must currently have the same re-
spective $n_indivs_in and $n_indivs_out values.

dict_recombinators_maybe 43

Configuration Parameters

This operator has the configuration parameters of the Recombinators that it wraps: The configura-
tion parameters of the operator given to the recombinator construction argument are prefixed with
"maybe.", the configuration parameters of the operator given to the recombinator_not construc-
tion argument are prefixed with "maybe_not.".

Additional configuration parameters:

• p :: numeric(1)
Probability per group of n_indivs_in individuals with which to apply the operator given to
the recombinator construction argument. Must be set by the user.

Supported Operand Types

Supported Param classes are the set intersection of supported classes of recombinator and recombinator_not.

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("maybe", <recombinator> [, <recombinator_not>])
recs("maybe", <recombinator> [, <recombinator_not>]) # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("maybe", <recombinator> [, <recombinator_not>])

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> RecombinatorMaybe

Active bindings

recombinator (Recombinator)
Recombinator being wrapped. This operator gets run with probability p (configuration pa-
rameter).

recombinator_not (Recombinator)
Alternative Recombinator being wrapped. This operator gets run with probability 1 - p (con-
figuration parameter).

Methods

Public methods:
• RecombinatorMaybe$new()

• RecombinatorMaybe$prime()

• RecombinatorMaybe$clone()

Method new(): Initialize the RecombinatorMaybe object.

44 dict_recombinators_maybe

Usage:

RecombinatorMaybe$new(recombinator, recombinator_not = NULL)

Arguments:

recombinator (Recombinator)
Recombinator to wrap. This operator gets run with probability p (Configuration parame-
ter).
The constructed object gets a clone of this argument. The $recombinator field will reflect
this value.

recombinator_not (Recombinator)
Another Recombinator to wrap. This operator runs when recombinator is not chosen.
By default, this is RecombinatorNull, i.e. no operation, with both n_indivs_in and
n_indivs_out set to match recombinator. This does not work when recombinator has
n_indivs_in < n_indivs_out, in which case this argument must be set explicitly.
With this default, the RecombinatorMaybe object applies the recombinator operation with
probability p, and no operation at all otherwise.
The constructed object gets a clone of this argument. The $recombinator_not field will
reflect this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to recombinator and recombinator_not during construction.

Usage:

RecombinatorMaybe$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:

RecombinatorMaybe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_cvxpair, dict_recombinators_null, dict_recombinators_proxy,
dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap, dict_recombinators_xonary,
dict_recombinators_xounif

Other recombinator wrappers: OperatorCombination, dict_recombinators_cmpmaybe, dict_recombinators_proxy,
dict_recombinators_sequential

dict_recombinators_null 45

Examples

set.seed(1)
rm = rec("maybe", rec("xounif", p = 1), p = 0.5)
p = ps(x = p_int(1, 8), y = p_dbl(1, 8), z = p_lgl())
data = data.frame(x = 1:8, y = 1:8, z = rep(TRUE, 4))

rm$prime(p)
rm$operate(data)

rm$param_set$values$p = 0.3
rm$operate(data)

rm2 = rec("maybe",
recombinator = rec("xounif", p = 1),
recombinator_not = rec("xounif", p = 0.5),
p = 0.5

)

rm2$prime(p)
rm2$operate(data)

dict_recombinators_null

Null-Recombinator

Description

Null-recombinator that does not perform any operation on its input. Useful in particular with
operator-wrappers such as RecombinatorMaybe or RecombinatorCombination.

n_indivs_in and n_indivs_out can be set during construction, where n_indivs_out must be less
or equal n_indivs_in. If it is strictly less, then the operation returns only the first n_indivs_out
individuals out of each n_indivs_in sized group.

Configuration Parameters

This operator has no configuration parameters.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

46 dict_recombinators_null

preferred:
rec("null")
recs("null") # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("null")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> RecombinatorNull

Methods

Public methods:
• RecombinatorNull$new()

• RecombinatorNull$clone()

Method new(): Initialize base class components of the Recombinator.

Usage:
RecombinatorNull$new(n_indivs_in = 1, n_indivs_out = n_indivs_in)

Arguments:
n_indivs_in (integer(1))

Number of individuals to consider at the same time. When operating, the number of input
individuals must be divisible by this number. Setting this number to a number unequal 1 is
mostly useful when incorporating this operator in wrappers such as RecombinatorMaybe or
RecombinatorCombination. Default 1.
The $n_indivs_in field will reflect this value.

n_indivs_out (integer(1))
Number of individuals that result for each n_indivs_in lines of input. Must be at most
n_indivs_in. If this is less than n_indivs_in, then only the first n_indivs_out individu-
als out of each n_indivs_in sized group are returned by an operation. Setting this number
to a number unequal 1 is mostly useful when incorporating this operator in wrappers such
as RecombinatorMaybe or RecombinatorCombination. Default equal to n_indivs_in.
The $n_indivs_out field will reflect this value.

Method clone(): The objects of this class are cloneable with this method.

Usage:
RecombinatorNull$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_proxy,
dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap, dict_recombinators_xonary,
dict_recombinators_xounif

dict_recombinators_proxy 47

Examples

rn = rec("null")
p = ps(x = p_int(-5, 5), y = p_dbl(-5, 5), z = p_lgl())
data = data.frame(x = 1:4, y = 0:3, z = rep(TRUE, 4))

rn$prime(p)
rn$operate(data)

rn_half = rec("null", n_indivs_in = 2, n_indivs_out = 1)
rn_half$prime(p)
rn_half$operate(data)

dict_recombinators_proxy

Proxy-Recombinator that Recombines According to its Configuration
parameter

Description

Recombinator that performs the operation in its operation configuration parameter. This is useful,
e.g., to make OptimizerMies’s recombination operation fully parametrizable.

Configuration Parameters

• operation :: Recombinator
Operation to perform. Must be set by the user. This is primed when $prime() of RecombinatorProxy
is called, and also when $operate() is called, to make changing the operation as part of self-
adaption possible. However, if the same operation gets used inside multiple RecombinatorProxy
objects, then it is recommended to $clone(deep = TRUE) the object before assigning them
to operation to avoid frequent re-priming.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("proxy")
recs("proxy") # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("proxy")

48 dict_recombinators_proxy

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> RecombinatorProxy

Methods

Public methods:

• RecombinatorProxy$new()

• RecombinatorProxy$prime()

• RecombinatorProxy$clone()

Method new(): Initialize the RecombinatorProxy object.

Usage:
RecombinatorProxy$new(n_indivs_in = 2, n_indivs_out = n_indivs_in)

Arguments:

n_indivs_in (integer(1))
Number of individuals to consider at the same time. When operating, the number of input
individuals must be divisible by this number. Furthermore, the Recombinator assigned to
the operation configuration parameter must have an n_indivs_in that is a divisor of this
number. Default 2.
The $n_indivs_in field will reflect this value.

n_indivs_out (integer(1))
Number of individuals that result for each n_indivs_in lines of input. Must be at most
n_indivs_in. The ratio of $n_indivs_in to $n_indivs_out of the Recombinator as-
signed to the operation configuration parameter must be the same as n_indivs_in to
n_indivs_out of this object. Default equal to n_indivs_in.
The $n_indivs_out field will reflect this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the operator
given to the operation configuration parameter. Note that this modifies the $param_set$values$operation
object.

Usage:
RecombinatorProxy$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
RecombinatorProxy$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

dict_recombinators_sbx 49

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null,
dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap, dict_recombinators_xonary,
dict_recombinators_xounif

Other recombinator wrappers: OperatorCombination, dict_recombinators_cmpmaybe, dict_recombinators_maybe,
dict_recombinators_sequential

Examples

set.seed(1)
rp = rec("proxy", operation = rec("xounif"))
p = ps(x = p_int(-5, 5), y = p_dbl(-5, 5), z = p_lgl())
data = data.frame(x = 1:4, y = 0:3, z = rep(TRUE, 4))

rp$prime(p)
rp$operate(data) # default operation: null

rp$param_set$values$operation = rec("xounif", p = 0.5)
rp$operate(data)

dict_recombinators_sbx

Simulated Binary Crossover Recombinator

Description

Numeric Values between two individuals are recombined via component-wise independent simu-
lated binary crossover. See Deb (1995) for more details.

This operator is applied to all components; It is common to apply the operator to only some ran-
domly chosen components, in which case the rec("cmpmaybe") operator should be used; see ex-
amples.

Configuration Parameters

• n :: numeric
Non-negative distribution index of the polynomial distribution for each component. Generally
spoken, the higher n, the higher the probability of creating near parent values. This may either
be a scalar in which case it is applied to all input components, or a vector, in which case it
must have the length of the input components and applies to components in order in which
they appear in the priming ParamSet. Initialized to 1.

Supported Operand Types

Supported Param classes are: ParamInt, ParamDbl

50 dict_recombinators_sbx

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("sbx")
recs("sbx") # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("sbx")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> miesmuschel::RecombinatorPair
-> RecombinatorSimulatedBinaryCrossover

Methods

Public methods:
• RecombinatorSimulatedBinaryCrossover$new()

• RecombinatorSimulatedBinaryCrossover$clone()

Method new(): Initialize the RecombinatorSimulatedBinaryCrossover object.
Usage:
RecombinatorSimulatedBinaryCrossover$new(keep_complement = TRUE)

Arguments:
keep_complement (logical(1))

Whether the operation should keep both resulting individuals (TRUE), or only the first and
discard the complement (FALSE). Default TRUE. The $keep_complement field will reflect
this value.

Method clone(): The objects of this class are cloneable with this method.
Usage:
RecombinatorSimulatedBinaryCrossover$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Deb, Kalyanmoy, Agrawal, Bhushan R, others (1995). “Simulated binary crossover for continuous
search space.” Complex systems, 9(2), 115–148.

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null,
dict_recombinators_proxy, dict_recombinators_sequential, dict_recombinators_swap,
dict_recombinators_xonary, dict_recombinators_xounif

dict_recombinators_sequential 51

Examples

set.seed(1)
rsbx = rec("cmpmaybe", rec("sbx"), p = 0.5)
p = ps(x = p_dbl(-5, 5), y = p_dbl(-5, 5), z = p_dbl(-5, 5))
data = data.frame(x = 0:5, y = 0:5, z = 0:5)

rsbx$prime(p)
rsbx$operate(data)

rsbx = rec("sbx", n = c(0.5, 1, 10))
rsbx$prime(p)
rsbx$operate(data)

dict_recombinators_sequential

Run Multiple Recombinator Operations in Sequence

Description

Recombinator that wraps multiple other Recombinators given during construction and uses them
for mutation in sequence.

When subsequent Recombinators have mismatching n_indivs_out / n_indivs_in, then RecombinatorSequential
tries to match them by running them multiple times. If e.g. recombinators[[1]]$n_indivs_out
is 2 and recombinators[[2]]$n_indivs_in is 1, then recombinators[[2]] is run twice, once
for each output of recombinators[[1]].

When the allow_lcm_packing argument is FALSE, then an error is given if neither n_indivs_out
of a Recombinator divides n_indivs_in of the following Recombinator, nor n_indivs_in of the
latter divides n_indivs_out of the former even when considering that the former is run multiple
times. If allow_lcm_packing is TRUE, then both recombinators are run multiple times, according
to the lowest common multiple ("lcm") of the two.

However, allow_lcm_packing can lead to very large values of n_indivs_in / n_indivs_out, so it
may instead be preferred to add RecombinatorNull objects with fitting n_indivs_in / n_indivs_out
values to match subsequent recombinators.

Configuration Parameters

This operator has the configuration parameters of the Recombinators that it wraps: The config-
uration parameters of the operator given to the recombinators construction argument are pre-
fixed with "recombinator_1", "recombinator_2", ... up to "recombinator_#", where # is
length(recombinators).

Additional configuration parameters:

• shuffle_between :: logical(1)
Whether to reorder values between invocations of recombinators. Initialized to TRUE.

52 dict_recombinators_sequential

Supported Operand Types

Supported Param classes are the set intersection of supported classes of the Recombinators given
in recombinators.

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("sequential", <recombinators>)
recs("sequential", <recombinators>) # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("sequential", <recombinators>)

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> RecombinatorSequential

Active bindings

recombinators (list of Recombinator)
Recombinators being wrapped. These operators get run sequentially in order.

allow_lcm_packing (logical(1))
Whether to allow lowest common multiple packing.

Methods

Public methods:
• RecombinatorSequential$new()

• RecombinatorSequential$prime()

• RecombinatorSequential$clone()

Method new(): Initialize the RecombinatorSequential object.

Usage:
RecombinatorSequential$new(recombinators, allow_lcm_packing = FALSE)

Arguments:
recombinators (list of Recombinator)

Recombinators to wrap. The operations are run in order given to recombinators. The
constructed object gets a clone of this argument. The $recombinators field will reflect this
value.

allow_lcm_packing (logical(1))
Whether to allow lowest common multiple packing. Default FALSE. The $allow_lcm_packing
field will reflect this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to recombinator and recombinator_not during construction.

dict_recombinators_sequential 53

Usage:

RecombinatorSequential$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:

RecombinatorSequential$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null,
dict_recombinators_proxy, dict_recombinators_sbx, dict_recombinators_swap, dict_recombinators_xonary,
dict_recombinators_xounif

Other recombinator wrappers: OperatorCombination, dict_recombinators_cmpmaybe, dict_recombinators_maybe,
dict_recombinators_proxy

Examples

set.seed(1)

ds = data.frame(a = c(0, 1), b = c(0, 1))
p = ps(a = p_dbl(0, 1), b = p_dbl(0, 1))

convex = rec("cvxpair", lambda = 0.7)
swap = rec("swap")

convex_then_swap = rec("sequential", list(convex, swap))

ds

convex$prime(p)$operate(ds)

swap$prime(p)$operate(ds)

convex_then_swap$prime(p)$operate(ds)

54 dict_recombinators_swap

dict_recombinators_swap

Swap Recombinator

Description

Values between two individuals are exchanged. This is relatively useless as an operator by it-
self, but is used in combination with RecombinatorCmpMaybe to get a recombinator that is cross-
ing over individuals uniformly at random. Because this is such a frequently-used operation, the
RecombinatorCrossoverUniform pseudo-class exists as a shortcut.

Configuration Parameters

None.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("swap")
recs("swap") # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("swap")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> miesmuschel::RecombinatorPair
-> RecombinatorSwap

Methods

Public methods:
• RecombinatorSwap$new()

• RecombinatorSwap$clone()

Method new(): Initialize the RecombinatorCrossoverSwap object.

Usage:
RecombinatorSwap$new(keep_complement = TRUE)

Arguments:

dict_recombinators_xonary 55

keep_complement (logical(1))
Whether the operation should keep both resulting individuals (TRUE), or only the first and
discard the complement (FALSE). Default TRUE. The $keep_complement field will reflect
this value.

Method clone(): The objects of this class are cloneable with this method.

Usage:
RecombinatorSwap$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null,
dict_recombinators_proxy, dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_xonary,
dict_recombinators_xounif

Examples

set.seed(1)
rs = rec("swap")
p = ps(x = p_int(-5, 5), y = p_dbl(-5, 5), z = p_dbl(-5, 5))
data = data.frame(x = 0:5, y = 0:5, z = 0:5)

rs$prime(p)
rs$operate(data)

rx = rec("cmpmaybe", rec("swap"), p = 0.5) # the same as 'rec("xounif")'
rx$prime(p)
rx$operate(data)

dict_recombinators_xonary

N-ary Crossover Recombinator

Description

Values are chosen componentwise independently at random from multiple individuals. The number
of individuals must be determined during construction as n_indivs_in.

The number of output individuals is always 1, i.e. n_indivs_in are used to create one output value.
When using this recombinator in a typical EA setting, e.g. with mies_generate_offspring, it is
therefore recommended to use a parent-selector where the expected quality of selected parents does
not depend on the number of parents selected when n_indivs_in is large: sel("tournament") is
preferred to sel("best").

56 dict_recombinators_xonary

Configuration Parameters

• p :: numeric | matrix
Sampling weights these are normalized to sum to 1 internally. Must either be a vector of
length n_indivs_in, or a matrix with n_indivs_in rows and as many columns as there are
components in the values being operated on. Must be non-negative, at least one value per
column must be greater than zero, but it is not necessary that they sum to 1.
Initialized to rep(1, n_indivs_in), i.e. uniform sampling from all individuals being oper-
ated on.

Supported Operand Types

Supported Param classes are: ParamDbl

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("convex")
recs("convex") # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("convex")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> RecombinatorCrossoverNary

Methods

Public methods:
• RecombinatorCrossoverNary$new()

• RecombinatorCrossoverNary$clone()

Method new(): Initialize the RecombinatorConvex object.
Usage:
RecombinatorCrossoverNary$new(n_indivs_in = 2)

Arguments:
n_indivs_in (integer(1))

Number of individuals to consider at the same time. When operating, the number of input
individuals must be divisible by this number. Default 2.
The $n_indivs_in field will reflect this value.

Method clone(): The objects of this class are cloneable with this method.
Usage:
RecombinatorCrossoverNary$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

dict_recombinators_xounif 57

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null,
dict_recombinators_proxy, dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap,
dict_recombinators_xounif

Examples

set.seed(1)
rxon = rec("xonary", n_indivs_in = 3)
p = ps(x = p_dbl(-5, 5), y = p_dbl(-5, 5), z = p_dbl(-5, 5))
data = data.frame(x = 0:5, y = 0:5, z = 0:5)

rxon$prime(p)
rxon$operate(data) # uniform sampling from groups of 3

rxon = rec("xonary", 3, p = c(0, 1, 2))$prime(p)
for groups of 3, take with probability 1/3 from 2nd and with probability 2/3 from 3rd row
rxon$operate(data)

pmat = matrix(c(0, 1, 2, 1, 1, 1, 1, 0, 0), ncol = 3)
pmat

rxon = rec("xonary", 3, p = pmat)$prime(p)
rxon$operate(data) # componentwise different operation

dict_recombinators_xounif

Crossover Recombinator

Description

Values between two individuals are exchanged with component-wise independent probability.

This is a pseudo-class: It does not create a single R6-object of a class; instead, it creates the ob-
ject rec("cmpmaybe", rec("swap"), p = 0.5), making use of the RecombinatorCmpMaybe and
RecombinatorSwap operators.

Usage

RecombinatorCrossoverUniform(keep_complement = TRUE)

Arguments

keep_complement

(logical(1))
Whether the operation should keep both resulting individuals (TRUE), or only the
first and discard the complement (FALSE). Default TRUE. The $keep_complement
field will reflect this value.

58 dict_recombinators_xounif

Value

an object of class Recombinator: rec("cmpmaybe", rec("swap")).

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("xounif")
recs("xounif") # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("xounif")

See Also

Other recombinators: OperatorCombination, RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null,
dict_recombinators_proxy, dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap,
dict_recombinators_xonary

Examples

set.seed(1)
rx = rec("xounif")

print(rx)

p = ps(x = p_int(-5, 5), y = p_dbl(-5, 5), z = p_dbl(-5, 5))
data = data.frame(x = 0:5, y = 0:5, z = 0:5)

rx$prime(p)
rx$operate(data)

rx$param_set$values$p = 0.3
rx$operate(data)

dict_scalors 59

dict_scalors Dictionary of Scalors

Description

Dictionary of Scalors

Usage

dict_scalors

Format

An object of class DictionaryScalor (inherits from DictionaryEx, Dictionary, R6) of length
15.

Methods

Methods inherited from Dictionary, as well as:

• help(key, help_type)
(character(1), character(1))
Displays help for the dictionary entry key. help_type is one of "text", "html", "pdf" and
given as the help_type argument of R’s help().

See Also

Other dictionaries: dict_filtors, dict_mutators, dict_recombinators, dict_selectors, mut()

dict_scalors_aggregate

Scalor giving Weighted Sum of Multiple Scalors

Description

Scalor that applies multiple other Scalors and calculates their weighted sum.

Configuration Parameters

This operation has the configuration parameters of the Scalors that it wraps: The configuration pa-
rameters of the operator given to the scalors construction argument are prefixed with "scalor_1",
"scalor_2", ... up to "scalor_#", where # is length(scalors).

Additional configuration parameters:

60 dict_scalors_aggregate

• weight_1, weight_2, ... :: numeric(1)
Weight factors of scalors[[1]], scalors[[2]], etc. Depending on scaling, the outputs of
scalors is multiplied with this (when scaling is "linear" or "rank"), or ties between ranks
are broken with it (when scaling is "tiebreak"). Initialized to 1.

• scaling :: character(1)
How to calculate output values, one of "linear", "rank" or "tiebreak". When scaling
is "linear", then the output is calculated as the weighted sum of the outputs of scalors,
weighted by weight_1, weight_2 etc. When scaling is "rank", then the output is calculated
as the weighted sum of the rank() of scalors, weighted by weight_1, weight_2 etc., with
ties broken by average. When scaling is "tiebreak", then the output is calculated as the
averaged rank() of the scalors with the highest weight_#, with ties broken by the average
rank() of the second highest weight_#, with remaining ties broken by scalors with third
highest weight_# etc. Initialized to "linear".

• scale_output :: logical(1)
Whether to scale the output to lie between 0 and 1. Initialized to FALSE.

Dictionary

This Scalor can be created with the short access form scl() (scls() to get a list), or through the
the dictionary dict_scalors in the following way:

preferred:
scl("aggregate", <scalors>)
scls("aggregate", <scalors>) # takes vector IDs, returns list of Scalors

long form:
dict_scalors$get("aggregate", <scalors>)

Super classes

miesmuschel::MiesOperator -> miesmuschel::Scalor -> ScalorAggregate

Active bindings

scalors (list of Scalor)
Scalors being wrapped. These operators are run and their outputs weighted.

Methods

Public methods:
• ScalorAggregate$new()

• ScalorAggregate$prime()

• ScalorAggregate$clone()

Method new(): Initialize the ScalorAggregate object.

Usage:
ScalorAggregate$new(scalors)

Arguments:

dict_scalors_aggregate 61

scalors (list of Scalor)
Scalors to wrap. The operations are run and weighted by weight_# configuration param-
eters, depending on the scaling configuration parameter. The constructed object gets a
clone of this argument. The $scalors field will reflect this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to scalors during construction.

Usage:
ScalorAggregate$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ScalorAggregate$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other scalors: Scalor, dict_scalors_domcount, dict_scalors_fixedprojection, dict_scalors_hypervolume,
dict_scalors_nondom, dict_scalors_one, dict_scalors_proxy, dict_scalors_single

Other scalor wrappers: dict_scalors_fixedprojection, dict_scalors_proxy

Examples

p = ps(x = p_dbl(-5, 5))
data = data.frame(x = rep(0, 5))

sa = scl("aggregate", list(
scl("one", objective = 1),
scl("one", objective = 2)

))
sa$prime(p)

(fitnesses = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2))

to see the fitness matrix, use:
plot(fitnesses, pch = as.character(1:5))

default weight 1 -- sum of both objectives
sa$operate(data, fitnesses)

only first objective
sa$param_set$values[c("weight_1", "weight_2")] = c(1, 0)
sa$operate(data, fitnesses)

62 dict_scalors_domcount

only 2 * second objective
sa$param_set$values[c("weight_1", "weight_2")] = c(0, 2)
sa$operate(data, fitnesses)

dict_scalors_domcount Scalor Counting Dominating Individuals

Description

Scalor that returns a the number of (weakly, epsilon-) dominated or dominating individuals for
each individuum.

Configuration Parameters

• output :: character(1)
What to count: individuals that are being dominated by the point under consideration("count_dominated"),
or individuals that do not dominate the point under consideration ("count_not_dominating").
In both cases, a larger output means the individual is "better", in some way, according to the
fitness values. Initialized with "count_not_dominating".

• epsilon :: numeric
Epsilon-value for non-dominance, as used by rank_nondominated. Initialized to 0.

• jitter :: logical(1)
Whether to add random jitter to points, with magnitude sqrt(.Machine$double.eps) rela-
tive to fitness values. This is used to effectively break ties.

• scale_output :: logical(1)
Whether to scale output by the total numberof individuals, giving output between 0 and 1
(inclusive) when TRUE or integer outputs ranging from 0 and nrow(fitnesses) (inclusive)
when FALSE. Initialized to TRUE.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Scalor can be created with the short access form scl() (scls() to get a list), or through the
the dictionary dict_scalors in the following way:

preferred:
scl("domcount")
scls("domcount") # takes vector IDs, returns list of Scalors

long form:
dict_scalors$get("domcount")

dict_scalors_domcount 63

Super classes

miesmuschel::MiesOperator -> miesmuschel::Scalor -> ScalorDomcount

Methods

Public methods:
• ScalorDomcount$new()

• ScalorDomcount$clone()

Method new(): Initialize the ScalorNondom object.

Usage:
ScalorDomcount$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ScalorDomcount$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other scalors: Scalor, dict_scalors_aggregate, dict_scalors_fixedprojection, dict_scalors_hypervolume,
dict_scalors_nondom, dict_scalors_one, dict_scalors_proxy, dict_scalors_single

Examples

p = ps(x = p_dbl(-5, 5))
data = data.frame(x = rep(0, 5))

sd = scl("domcount")
sd$prime(p)

(fitnesses = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2))

to see the fitness matrix, use:
plot(fitnesses, pch = as.character(1:5))

note that for both 2 and 4, all points do not dominate them
their value is therefore 1
sd$operate(data, fitnesses)

sd$param_set$values$scale_output = FALSE
sd$operate(data, fitnesses)

sd$param_set$values$output = "count_dominated"
point 4 dominates three other points, point 2 only one other point.
sd$operate(data, fitnesses)

64 dict_scalors_fixedprojection

dict_scalors_fixedprojection

Multi-Objective Fixed Projection Scalor

Description

Scalor that returns the maximum of a set of projections.

Priming PS must contain a "scalarization_weights" tagged ParamUty that contains weight ma-
trices (Nobjectives x Nweights) or vectors (if Nweights is 1).

Configuration Parameters

• scalarization :: function
Function taking a fitness-matrix fitnesses (Nindivs x Nobjectives, with higher values indi-
cating higher desirability) and a list of weight matrices weights (Nindivs elements of Nob-
jectives x Nweights matrices; positive weights should indicate a positive contribution to scale)
and returns a matrix of scalarizations (Nindivs x Nweights, with higher values indicating
greater desirability).
While custom functions can be used, it is recommended to use a Scalarizer, such as scalarizer_linear(),
or scalarizer_chebyshev().

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Scalor can be created with the short access form scl() (scls() to get a list), or through the
the dictionary dict_scalors in the following way:

preferred:
scl("fixedprojection")
scls("fixedprojection") # takes vector IDs, returns list of Scalors

long form:
dict_scalors$get("fixedprojection")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Scalor -> ScalorFixedProjection

Active bindings

weights_component_id (numeric(1))
search space component identifying the weights by which to scalarize.

dict_scalors_fixedprojection 65

Methods

Public methods:

• ScalorFixedProjection$new()

• ScalorFixedProjection$prime()

• ScalorFixedProjection$clone()

Method new(): Initialize the ScalorFixedProjection object.

Usage:
ScalorFixedProjection$new(weights_component_id = "scalarization_weights")

Arguments:

weights_component_id (character(1))
Id of the search space component identifying the weights by which to scalarize. Default
"scalarization_weights".

Method prime(): See MiesOperator method. Primes both this operator, as well as the operator
given to the operation configuration parameter. Note that this modifies the $param_set$values$operation
object.

Usage:
ScalorFixedProjection$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ScalorFixedProjection$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other scalors: Scalor, dict_scalors_aggregate, dict_scalors_domcount, dict_scalors_hypervolume,
dict_scalors_nondom, dict_scalors_one, dict_scalors_proxy, dict_scalors_single

Other scalor wrappers: dict_scalors_aggregate, dict_scalors_proxy

Examples

set.seed(1)

66 dict_scalors_hypervolume

dict_scalors_hypervolume

Hypervolume Scalor

Description

Scalor that returns the hypervolume of each individual, relative to nadir and as a contribution over
baseline. The returned scalar value is the measure of all points that have fitnesses that are

• greater than the respective value in nadir in all dimensions, and

• smaller than the respective value in the given point in all dimensions, and

• greater than all points in baseline in at least one dimension.

baseline should probably be a paradox::ContextPV and generate fitness values from the Archive
in the context using mies_get_fitnesses.

Configuration Parameters

• scale_output :: logical(1)
Whether to scale output to lie between 0 and 1.

• nadir :: numeric
Nadir of fitness values relative to which hypervolume ution is calculated.

• baseline :: matrix
Fitness-matrix with one column per objective, giving a population over which the hypervol-
ume improvement should be calculated.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Scalor can be created with the short access form scl() (scls() to get a list), or through the
the dictionary dict_scalors in the following way:

preferred:
scl("hypervolume")
scls("hypervolume") # takes vector IDs, returns list of Scalors

long form:
dict_scalors$get("hypervolume")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Scalor -> ScalorHypervolume

dict_scalors_nondom 67

Methods

Public methods:

• ScalorHypervolume$new()

• ScalorHypervolume$clone()

Method new(): Initialize the ScalorHypervolume object.

Usage:
ScalorHypervolume$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ScalorHypervolume$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other scalors: Scalor, dict_scalors_aggregate, dict_scalors_domcount, dict_scalors_fixedprojection,
dict_scalors_nondom, dict_scalors_one, dict_scalors_proxy, dict_scalors_single

Examples

sv = scl("hypervolume")
p = ps(x = p_dbl(-5, 5))
dummy data; note that ScalorHV does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2)
sv$param_set$values$baseline = matrix(c(1, 1), ncol = 2)
sv$param_set$values$nadir = c(0, -1)

sv$prime(p)

sv$operate(data, fitnesses)

dict_scalors_nondom Nondominated Sorting Scalor

Description

Scalor that returns a the rank of the pareto-front in nondominated sorting as scale. Higher ranks
indocate higher fitnesses and therefore "better" individuals.

68 dict_scalors_nondom

Configuration Parameters

• epsilon

• nadir

• jitter

• scale_output

• tiebreak

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Scalor can be created with the short access form scl() (scls() to get a list), or through the
the dictionary dict_scalors in the following way:

preferred:
scl("nondom")
scls("nondom") # takes vector IDs, returns list of Scalors

long form:
dict_scalors$get("nondom")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Scalor -> ScalorNondom

Methods

Public methods:
• ScalorNondom$new()

• ScalorNondom$clone()

Method new(): Initialize the ScalorNondom object.

Usage:
ScalorNondom$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ScalorNondom$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other scalors: Scalor, dict_scalors_aggregate, dict_scalors_domcount, dict_scalors_fixedprojection,
dict_scalors_hypervolume, dict_scalors_one, dict_scalors_proxy, dict_scalors_single

dict_scalors_one 69

Examples

so = scl("nondom")
p = ps(x = p_dbl(-5, 5))
dummy data; note that ScalorNondom does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2)

so$prime(p)

so$operate(data, fitnesses)

dict_scalors_one Single Dimension Scalor

Description

Scalor that returns a the fitness value of a single objective dimension as scale.

Configuration Parameters

• objective :: integer(1)
objective to return as scale, ranges from 1 (the default, first objective) to the number of objec-
tives of the function being optimized.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Scalor can be created with the short access form scl() (scls() to get a list), or through the
the dictionary dict_scalors in the following way:

preferred:
scl("one")
scls("one") # takes vector IDs, returns list of Scalors

long form:
dict_scalors$get("one")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Scalor -> ScalorOne

70 dict_scalors_proxy

Methods

Public methods:

• ScalorOne$new()

• ScalorOne$clone()

Method new(): Initialize the ScalorOne object.

Usage:
ScalorOne$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ScalorOne$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other scalors: Scalor, dict_scalors_aggregate, dict_scalors_domcount, dict_scalors_fixedprojection,
dict_scalors_hypervolume, dict_scalors_nondom, dict_scalors_proxy, dict_scalors_single

Examples

so = scl("one")
p = ps(x = p_dbl(-5, 5))
dummy data; note that ScalorOne does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2)

so$prime(p)

so$operate(data, fitnesses)

so$param_set$values$objective = 2

so$operate(data, fitnesses)

dict_scalors_proxy Proxy-Scalor that Scales According to its Configuration parameter

Description

Scalor that performs the operation in its operation configuration parameter. This is useful, e.g.,
to make SelectorBest’s operation fully parametrizable.

dict_scalors_proxy 71

Configuration Parameters

• operation :: Scalor
Operation to perform. Initialized to ScalorSingleObjective. This is primed when $prime()
of ScalorProxy is called, and also when $operate() is called, to make changing the opera-
tion as part of self-adaption possible. However, if the same operation gets used inside multiple
ScalorProxy objects, then it is recommended to $clone(deep = TRUE) the object before as-
signing them to operation to avoid frequent re-priming.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Scalor can be created with the short access form scl() (scls() to get a list), or through the
the dictionary dict_scalors in the following way:

preferred:
scl("proxy")
scls("proxy") # takes vector IDs, returns list of Scalors

long form:
dict_scalors$get("proxy")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Scalor -> ScalorProxy

Methods

Public methods:
• ScalorProxy$new()

• ScalorProxy$prime()

• ScalorProxy$clone()

Method new(): Initialize the ScalorProxy object.

Usage:
ScalorProxy$new()

Method prime(): See MiesOperator method. Primes both this operator, as well as the operator
given to the operation configuration parameter. Note that this modifies the $param_set$values$operation
object.

Usage:
ScalorProxy$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

72 dict_scalors_single

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ScalorProxy$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other scalors: Scalor, dict_scalors_aggregate, dict_scalors_domcount, dict_scalors_fixedprojection,
dict_scalors_hypervolume, dict_scalors_nondom, dict_scalors_one, dict_scalors_single

Other scalor wrappers: dict_scalors_aggregate, dict_scalors_fixedprojection

Examples

set.seed(1)
sp = scl("proxy")
p = ps(x = p_dbl(-5, 5))
dummy data; note that ScalorOne does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses = c(1, 5, 2, 3, 0)

sp$param_set$values$operation = scl("one")
sp$prime(p)
sp$operate(data, fitnesses)

dict_scalors_single Single Objective Scalor

Description

Scalor that uses a single given objective, throwing an error in case it is used in a multi-objective
problem.

In contrast to ScalorOne, this Scalor throws an error when more than one objective is present.
When this Scalor gets used as the default value, e.g. for a Selector, then it forces the user to
make an explicit decision about what Scalor to use in a multi-objective setting.

Configuration Parameters

No configuration parameters.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

dict_scalors_single 73

Dictionary

This Scalor can be created with the short access form scl() (scls() to get a list), or through the
the dictionary dict_scalors in the following way:

preferred:
scl("single")
scls("single") # takes vector IDs, returns list of Scalors

long form:
dict_scalors$get("single")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Scalor -> ScalorSingleObjective

Methods

Public methods:
• ScalorSingleObjective$new()

• ScalorSingleObjective$clone()

Method new(): Initialize the ScalorSingleObjective object.

Usage:
ScalorSingleObjective$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ScalorSingleObjective$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other scalors: Scalor, dict_scalors_aggregate, dict_scalors_domcount, dict_scalors_fixedprojection,
dict_scalors_hypervolume, dict_scalors_nondom, dict_scalors_one, dict_scalors_proxy

Examples

ss = scl("single")
p = ps(x = p_dbl(-5, 5))
dummy data; note that ScalorOne does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses_so = c(1, 5, 2, 3, 0)
fitnesses_mo = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2)

ss$prime(p)

ss$operate(data, fitnesses_so)

74 dict_selectors_best

try(ss$operate(data, fitnesses_mo))

dict_selectors Dictionary of Selectors

Description

Dictionary of Selectors

Usage

dict_selectors

Format

An object of class DictionarySelector (inherits from DictionaryEx, Dictionary, R6) of length
15.

Methods

Methods inherited from Dictionary, as well as:

• help(key, help_type)
(character(1), character(1))
Displays help for the dictionary entry key. help_type is one of "text", "html", "pdf" and
given as the help_type argument of R’s help().

See Also

Other dictionaries: dict_filtors, dict_mutators, dict_recombinators, dict_scalors, mut()

dict_selectors_best Best Value Selector

Description

Selector that selects the top n_select individuals based on the fitness value, breaking ties ran-
domly. When n_select is larger than the number of individuals, the selection wraps around: All
nrow(values) individuals are selected at least floor(nrow(values) / n_select) times, with the
top nrow(values) %% n_select individuals being selected one more time.

dict_selectors_best 75

Configuration Parameters

• shuffle_selection :: logical(1)
Whether to shuffle the selected output. When this is TRUE, selected individuals are returned
in random order, so when this operator is e.g. used in mies_generate_offspring(), then
subsequent recombination operators effectively operate on pairs (or larger groups) of random
individuals. Otherwise they are returned in order, and recombination operates on the first batch
of n_indivs_in returned individuals first, then the second batch etc. in order. Initialized to
TRUE (recommended).

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Selector can be created with the short access form sel() (sels() to get a list), or through
the the dictionary dict_selectors in the following way:

preferred:
sel("best")
sels("best") # takes vector IDs, returns list of Selectors

long form:
dict_selectors$get("best")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Selector -> miesmuschel::SelectorScalar
-> SelectorBest

Methods

Public methods:

• SelectorBest$new()

• SelectorBest$clone()

Method new(): Initialize the SelectorBest object.

Usage:
SelectorBest$new(scalor = ScalorSingleObjective$new())

Arguments:

scalor (Scalor)
Scalor to use to generate scalar values from multiple objectives, if multi-objective op-
timization is performed. Initialized to ScalorSingleObjective: Doing single-objective
optimization normally, throwing an error if used in multi-objective setting: In that case, a
Scalor needs to be explicitly chosen.

Method clone(): The objects of this class are cloneable with this method.

76 dict_selectors_maybe

Usage:
SelectorBest$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other selectors: SelectorScalar, Selector, dict_selectors_maybe, dict_selectors_null,
dict_selectors_proxy, dict_selectors_random, dict_selectors_sequential, dict_selectors_tournament

Examples

sb = sel("best")
p = ps(x = p_dbl(-5, 5))
dummy data; note that SelectorBest does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses = c(1, 5, 2, 3, 0)

sb$prime(p)

sb$operate(data, fitnesses, 2)

sb$param_set$values$shuffle_selection = FALSE

sb$operate(data, fitnesses, 4)

dict_selectors_maybe Selector-Combination that Selects According to Two Selectors

Description

Selector that wraps two other Selectors given during construction and uses both for selection
proportionally. Each of the resulting n_select individuals is chosen either from $selector, or
from $selector_not.

This makes it possible to implement selection methods such as random interleaving, where only a
fraction of p individuals were selected by a criterion, while the others are taken randomly.

Algorithm

To perform selection, n_selector_in rows of values are given to $selector, and the remaining
nrow(values) - n_selector_in rows are given to $selector_not. Both selectors are used to
generate a subset of selected individuals: $selector generates n_selector_out individuals, and
$selector_not generates n_select - n_selector_out individuals.

n_selector_in is either set to round(nrow(values) * p_in) when proportion_in is "exact",
or to rbinom(1, nrow(values), p_in) when proportion_in is "random".

n_selector_out is set to round(n_select * p_out) when proportion_out is "exact", or to
rbinom(1, n_select, p_out) when proportion_out is "random".

dict_selectors_maybe 77

When odds_correction is TRUE, then p_out is adjusted depending on the used n_selector_in
value before being applied. Let odds(p) = p/(1-p). Then the effective p_out is set such that
odds(effective p_out) = odds(p_out) * n_selector_in / (nrow(values) - n_selector_in) / odds(p_in).
This corrects for the discrepancy between the chosen p_in and the effective proportion of n_selector_in
/ nrow(values) caused either by rounding errors or when proportion_in is "random".

When p_in is exactly 1 or exactly 0, and p_out is not equal to p_in, then an error is given.

If nrow(values) is 1, then this individuum is returned and $selector / $selector_not are not
called.

If try_unique is TRUE, then n_selector_out is set to at most n_selector_in and at least n_select
- nrow(values) + n_selector_in, and an error is generated when nrow(values) is less than
n_select.

If try_unique is FALSE and odds_correction is TRUE and n_selector_in is either 0 or nrow(values),
then $p_out is set to either 0 or 1, respectively.

If try_unique is FALSE and odds_correction is FALSE and n_selector_in is either 0 or nrow(values),
and n_selector_out is not equal to 0 or n_select, respectively, then n_selector_in is increased
/ decreased by 1 to give $selector_not / $selector at least one individuum to choose from.
While this behaviour may seem pathological, it is to ensure continuity with sampled values of
n_selector_in that are close to 0 or n_select.

If n_selector_out is n_select or 0, or if n_selector_in is nrows(values) - 1 or 1, then
only $selector / $selector_not is executed, respectively; possibly with a subset of values if
n_selector_in differs from nrow(values) / 0.

Configuration Parameters

This operator has the configuration parameters of the Selectors that it wraps: The configuration pa-
rameters of the operator given to the selector construction argument are prefixed with "maybe.",
the configuration parameters of the operator given to the selector_not construction argument are
prefixed with "maybe_not.".

Additional configuration parameters:

• p_in :: numeric(1)
Probability per individual (when random_choise is TRUE), or fraction of individuals (when
random_choice is FALSE), that are given to $selector instead of $selector_not. This may
be overriden when try_unique is TRUE, in which case at least as many rows are given to
$selector and $selector_not as they are generating output values respectively. When this
is exactly 1 or exactly 0, then p_out must be equal to p_in. Must be set by the user.

• p_out :: numeric(1)
Probability per output value (when random_choise is TRUE), or fraction of output values
(when random_choice is FALSE), that are generated by $selector instead of $selector_not.
When this values is not given, it defaults to p_in.

• shuffle_input :: logical(1)
Whether to distribute input values randomly to $selector / $selector_not. If FALSE, then
the first part of values is given to $selector. This only randomizes which lines of values are
given to $selector / $selector_not, but it does not necessarily reorder the lines of values
given to each. In particular, if p_out is 0 or 1, then no shuffling takes place. Initialized to
TRUE.

78 dict_selectors_maybe

• proportion_in :: character(1)
When set to "random", sample the number of individuals given to $selector according to
rbinom(1, nrow(values), p_in). When set to "exact", give $selector round(nrow(values)
* p_in) individuals. Initialized to "exact".

• proportion_out :: character(1)
When set to "random", sample the number of individuals generated by $selector according
to rbinom(1, n_select, p_out). When set to "exact", have $selector generate round(n_select
* p_out) individuals.

• odds_correction :: logical(1)
When set, the effectively used value of p_out is set to 1 / (1 + ((nrow(values) - n_selector_in)
* p_in * (1 - p_out)) / (n_selector_in * p_out * (1 - p_in))), see the Algorithm sec-
tion. Initialized to FALSE.

• try_unique :: logical(1)
Whether to give at least as many rows of values to each of $selector and $selector_not
as they are generating output values. This should be set to TRUE whenever SelectorMaybe
is used to select unique values, and can be set to FALSE when selecting values multiple times
is acceptable. When this is TRUE, then having n_select > nrow(values) generates an error.
Initialized to TRUE.

Supported Operand Types

Supported Param classes are the set intersection of supported classes of selector and selector_not.

Dictionary

This Filtor can be created with the short access form ftr() (ftrs() to get a list), or through the
the dictionary dict_filtors in the following way:

preferred:
ftr("maybe", <selector> [, <selector_not>])
ftrs("maybe", <selector> [, <selector_not>]) # takes vector IDs, returns list of Filtors

long form:
dict_filtors$get("maybe", <selector> [, <selector_not>])

Super classes

miesmuschel::MiesOperator -> miesmuschel::Selector -> SelectorMaybe

Active bindings

selector (Selector)
Selector being wrapped. This operator gets run with probability / proportion p_in and gen-
erates output with probability / proportion p_out (configuration parameters).

selector_not (Selector)
Alternative Selector being wrapped. This operator gets run with probability / proportion 1 -
p_in and generates output with probability / proportion 1 - p_out (configuration parameters).

dict_selectors_maybe 79

Methods

Public methods:

• SelectorMaybe$new()

• SelectorMaybe$prime()

• SelectorMaybe$clone()

Method new(): Initialize the SelectorMaybe object.

Usage:
SelectorMaybe$new(selector, selector_not = SelectorRandom$new())

Arguments:

selector (Selector)
Selector to wrap. This operator gets run with probability / fraction p_in (Configuration
parameter).
The constructed object gets a clone of this argument. The $selector field will reflect this
value.

selector_not (Selector)
Another Selector to wrap. This operator runs when selector is not chosen. By default,
this is SelectorRandom, i.e. selecting randomly.
The constructed object gets a clone of this argument. The $selector_not field will reflect
this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to selector and selector_not during construction.

Usage:
SelectorMaybe$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SelectorMaybe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other selectors: SelectorScalar, Selector, dict_selectors_best, dict_selectors_null,
dict_selectors_proxy, dict_selectors_random, dict_selectors_sequential, dict_selectors_tournament

Other selector wrappers: dict_selectors_proxy, dict_selectors_sequential

80 dict_selectors_null

dict_selectors_null Null Selector

Description

Selector that disregards fitness and individual values and selects individuals by order in which
they are given.

Configuration Parameters

• shuffle_selection :: logical(1)
Whether to shuffle the selected output. When this is TRUE, selected individuals are returned
in random order, so when this operator is e.g. used in mies_generate_offspring(), then
subsequent recombination operators effectively operate on pairs (or larger groups) of random
individuals. Otherwise they are returned in order, and recombination operates on the first batch
of n_indivs_in returned individuals first, then the second batch etc. in order. Initialized to
TRUE (recommended).

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Selector can be created with the short access form sel() (sels() to get a list), or through
the the dictionary dict_selectors in the following way:

preferred:
sel("null")
sels("null") # takes vector IDs, returns list of Selectors

long form:
dict_selectors$get("null")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Selector -> SelectorNull

Methods

Public methods:
• SelectorNull$new()

• SelectorNull$clone()

Method new(): Initialize the SelectorNull object.

Usage:
SelectorNull$new()

dict_selectors_proxy 81

Method clone(): The objects of this class are cloneable with this method.

Usage:
SelectorNull$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other selectors: SelectorScalar, Selector, dict_selectors_best, dict_selectors_maybe,
dict_selectors_proxy, dict_selectors_random, dict_selectors_sequential, dict_selectors_tournament

Examples

sn = sel("null")
p = ps(x = p_dbl(-5, 5))
dummy data; note that SelectorNull does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses = c(1, 5, 2, 3, 0)

sn$prime(p)

sn$operate(data, fitnesses, 2)
sn$operate(data, fitnesses, 4)
sn$operate(data, fitnesses, 6)

dict_selectors_proxy Proxy-Selector that Selects According to its Configuration Parameter

Description

Selector that performs the operation in its operation configuration parameter. This is useful, e.g.,
to make OptimizerMies’s selection operations fully parametrizable.

Configuration Parameters

• operation :: Selector
Operation to perform. Initialized to SelectorBest. This is primed when $prime() of SelectorProxy
is called, and also when $operate() is called, to make changing the operation as part of self-
adaption possible. However, if the same operation gets used inside multiple SelectorProxy
objects, then it is recommended to $clone(deep = TRUE) the object before assigning them
to operation to avoid frequent re-priming.

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

82 dict_selectors_proxy

Dictionary

This Selector can be created with the short access form sel() (sels() to get a list), or through
the the dictionary dict_selectors in the following way:

preferred:
sel("proxy")
sels("proxy") # takes vector IDs, returns list of Selectors

long form:
dict_selectors$get("proxy")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Selector -> SelectorProxy

Methods

Public methods:
• SelectorProxy$new()

• SelectorProxy$prime()

• SelectorProxy$clone()

Method new(): Initialize the SelectorProxy object.
Usage:
SelectorProxy$new()

Method prime(): See MiesOperator method. Primes both this operator, as well as the operator
given to the operation configuration parameter. Note that this modifies the $param_set$values$operation
object.

Usage:
SelectorProxy$prime(param_set)

Arguments:
param_set (ParamSet)

Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.
Usage:
SelectorProxy$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other selectors: SelectorScalar, Selector, dict_selectors_best, dict_selectors_maybe,
dict_selectors_null, dict_selectors_random, dict_selectors_sequential, dict_selectors_tournament

Other selector wrappers: dict_selectors_maybe, dict_selectors_sequential

dict_selectors_random 83

Examples

set.seed(1)
sp = sel("proxy")
p = ps(x = p_dbl(-5, 5))
dummy data; note that SelectorBest does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses = c(1, 5, 2, 3, 0)

sp$param_set$values$operation = sel("random")
sp$prime(p)
sp$operate(data, fitnesses, 2)

sp$param_set$values$operation = sel("best")
sp$operate(data, fitnesses, 2)

dict_selectors_random Random Selector

Description

Random selector that disregards fitness and individual values and selects individuals randomly.
Depending on the configuration parameter replace, it samples with or without replacement.

Configuration Parameters

• sample_unique :: character(1)
Whether to sample individuals globally unique ("global"), unique within groups ("groups"),
or not unique at all ("no", sample with replacement). This is done with best effort; if group_size
(when sample_unique is "groups") or n_select (when sample_unique is "global") is
greater than nrow(values), then individuals are selected with as few repeats as possible. Ini-
tialized to "groups".

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Selector can be created with the short access form sel() (sels() to get a list), or through
the the dictionary dict_selectors in the following way:

preferred:
sel("random")
sels("random") # takes vector IDs, returns list of Selectors

long form:
dict_selectors$get("random")

84 dict_selectors_random

Super classes

miesmuschel::MiesOperator -> miesmuschel::Selector -> SelectorRandom

Methods

Public methods:

• SelectorRandom$new()

• SelectorRandom$clone()

Method new(): Initialize the SelectorRandom object.

Usage:

SelectorRandom$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:

SelectorRandom$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other selectors: SelectorScalar, Selector, dict_selectors_best, dict_selectors_maybe,
dict_selectors_null, dict_selectors_proxy, dict_selectors_sequential, dict_selectors_tournament

Examples

set.seed(1)
sr = sel("random")
p = ps(x = p_dbl(-5, 5))
dummy data; note that SelectorRandom does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses = c(1, 5, 2, 3, 0)

sr$prime(p)

sr$operate(data, fitnesses, 2)
sr$operate(data, fitnesses, 2)
sr$operate(data, fitnesses, 2)

sr$operate(data, fitnesses, 4)
sr$operate(data, fitnesses, 4)
sr$operate(data, fitnesses, 4)

dict_selectors_sequential 85

dict_selectors_sequential

Run Multiple Selection Operations in Sequence

Description

Selector that wraps multiple other Selectors given during construction and uses them for selec-
tion in sequence. This makes it possible for one Selector to discard a few individuals, followed
by a second Selector to discard more, etc., until n_select individuals are remaining.

Algorithm

Given that there are nrow(values) input individuals in an operation, and n_select individuals
requested to be selected, the operation calls selector_i for i in 1 ... length(selectors) to
reduce the number of individuals in this pipeline. The relative quantity by which the number of
individuals is reduced in each step is determined by the configuration parameters reduction_1,
reduction_2, etc., and also dependent on the sum of these values, in the following denoted, with a
slight abuse of notation, by sum[reduction_#].

Let the number of individuals passed to step i be denoted by n_values[i], and the number
of individuals requested to be selected by that step be denoted as n_select_[i]. In particular,
n_values[1] == nrow(values), and n_select_[length(selectors)] == n_select.

When reduction_by_factor is TRUE, then the reduction at step i is done by a factor, meaning that
n_values[i] / n_select_[i] is set (up to rounding). This factor is (nrow(values) / n_select) ^ (reduction_i / sum[reduction_#]).

When reduction_by_factor is FALSE, then the reduction at step i is done by absolute differ-
ences, meaning that n_values[i] - n_select_[i] is set (up to rounding). This difference is
(nrow(values) - n_select) * (reduction_i / sum[reduction_#]), with sum[reduction_#]
as above.

In particular, this means that when all reduction_# values are the same and reduction_by_factor
is TRUE, then each operation reduces the number of individuals in the pipeline by the same factor.
When reduction_by_factor is FALSE, then each operation removes the same absolute number of
individuals.

While the illustrations are done with the assumption that nrow(values) >= n_select, they hold
equivalently with nrow(values) < n_select.

All except the last Selectors are called with group_size set to their n_select value; the last
Selector is called with the group_size value given as input.

Configuration Parameters

This operator has the configuration parameters of the Selectors that it wraps: The configura-
tion parameters of the operator given to the selectors construction argument are prefixed with
"selector_1", "selector_2", ... up to "selector_#", where # is length(selectors).

Additional configuration parameters:

86 dict_selectors_sequential

• reduction_1, reduction_2, ... :: numeric(1)
Relative reduction done by selector_1, selector_2, ..., as described in the section Algo-
rithm. The values are all initialized to 1, meaning the same factor (when reduction_by_factor
is TRUE) or absolute number (otherwise) of reduction by each operation.

• reduction_by_factor :: logical(1)
Whether to do reduction by factor (TRUE) or absolute number (FALSE), as described in Algo-
rithm. Initialized to TRUE.

Supported Operand Types

Supported Param classes are the set intersection of supported classes of the Selectors given in
selectors.

Dictionary

This Selector can be created with the short access form sel() (sels() to get a list), or through
the the dictionary dict_selectors in the following way:

preferred:
sel("sequential", <selectors>)
sels("sequential", <selectors>) # takes vector IDs, returns list of Selectors

long form:
dict_selectors$get("sequential", <selectors>)

Super classes

miesmuschel::MiesOperator -> miesmuschel::Selector -> SelectorSequential

Active bindings

selectors (list of Selector)
Selectors being wrapped. These operators get run sequentially in order.

Methods

Public methods:
• SelectorSequential$new()

• SelectorSequential$prime()

• SelectorSequential$clone()

Method new(): Initialize the SelectorSequential object.

Usage:
SelectorSequential$new(selectors)

Arguments:
selectors (list of Selector)

Selectors to wrap. The operations are run in order given to selectors. The constructed
object gets a clone of this argument. The $selectors field will reflect this value.

dict_selectors_tournament 87

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to selectors during construction.

Usage:
SelectorSequential$prime(param_set)

Arguments:
param_set (ParamSet)

Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SelectorSequential$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other selectors: SelectorScalar, Selector, dict_selectors_best, dict_selectors_maybe,
dict_selectors_null, dict_selectors_proxy, dict_selectors_random, dict_selectors_tournament

Other selector wrappers: dict_selectors_maybe, dict_selectors_proxy

dict_selectors_tournament

Tournament Selector

Description

Selector that repeatedly samples k individuals and selects the best ouf of these.

Configuration Parameters

• k :: integer(1)
Tournament size. Must be set by the user.

• choose_per_tournament :: Number of individuals to choose in each tournament. Must be
smaller than k. The special value 0 sets this to the group_size hint given to the $operate()-
call (but at most k). This is equal to n_select when used as survival-selector in mies_survival_plus()/mies_survival_comma(),
and equal to n_indivs_in of a Recombinator used in mies_generate_offspring().
Initialized to 1.

• sample_unique :: character(1)
Whether to sample individuals globally unique ("global", selected individuals are removed
from the population after each tournament), unique within groups ("groups", individuals are
replaced when group_size individuals were sampled), unique per tournament ("tournament",
individuals are replaced after each tournament), or not unique at all ("no", individuals are
sampled with replacement within tournaments). This is done with best effort; if group_size

88 dict_selectors_tournament

(when sample_unique is "groups") or n_select (when sample_unique is "global") is
greater than nrow(values), then the first nrow(values) * floor(group_size / nrow(values))
or nrow(values) * floor(n_select / nrow(values)) individuals are chosen deterministi-
cally by selecting every individual with the same frequency, followed by tournament selection
for the remaining required individuals. Initialized to "groups".

Supported Operand Types

Supported Param classes are: ParamLgl, ParamInt, ParamDbl, ParamFct

Dictionary

This Selector can be created with the short access form sel() (sels() to get a list), or through
the the dictionary dict_selectors in the following way:

preferred:
sel("tournament")
sels("tournament") # takes vector IDs, returns list of Selectors

long form:
dict_selectors$get("tournament")

Super classes

miesmuschel::MiesOperator -> miesmuschel::Selector -> miesmuschel::SelectorScalar
-> SelectorTournament

Methods

Public methods:
• SelectorTournament$new()

• SelectorTournament$clone()

Method new(): Initialize the SelectorTournament object.

Usage:
SelectorTournament$new(scalor = ScalorSingleObjective$new())

Arguments:
scalor (Scalor)

Scalor to use to generate scalar values from multiple objectives, if multi-objective op-
timization is performed. Initialized to ScalorSingleObjective: Doing single-objective
optimization normally, throwing an error if used in multi-objective setting: In that case, a
Scalor needs to be explicitly chosen.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SelectorTournament$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

dist_crowding 89

See Also

Other selectors: SelectorScalar, Selector, dict_selectors_best, dict_selectors_maybe,
dict_selectors_null, dict_selectors_proxy, dict_selectors_random, dict_selectors_sequential

Examples

sb = sel("tournament", k = 4)
p = ps(x = p_dbl(-5, 5))
dummy data; note that SelectorBest does not depend on data content
data = data.frame(x = rep(0, 7))
fitnesses = c(1, 5, 2, 3, 0, 4, 6)

sb$prime(p)

sb$operate(data, fitnesses, 2)

sb$operate(data, fitnesses, 4, group_size = 2)

dist_crowding Calculate Crowding Distance

Description

Takes a matrix of fitness values and calculates the crowding distance for individuals in that matrix.

Individuals that are minimal or maximal with respect to at least one dimension are assigned infinite
crowding distance.

Individuals are assumed to be in a (epsilon-) nondominated front.

Usage

dist_crowding(fitnesses)

Arguments

fitnesses (numeric matrix)
fitness matrix, with one row per individual and one column per objective

Value

numeric: Vector of crowding distances.

90 domhv

domhv Calculate Dominated Hypervolume

Description

Use Chan’s algorithm (Chan, M T (2013). “Klee’s measure problem made easy.” In 2013 IEEE 54th
annual symposium on foundations of computer science, 410–419. IEEE.) to calculate dominated
hypervolume.

Usage

domhv(fitnesses, nadir = 0, prefilter = TRUE, on_worse_than_nadir = "warn")

Arguments

fitnesses (numeric matrix)
fitness matrix, with one row per individual and one column per objective

nadir (numeric)
Lowest fitness point up to which to calculate dominated hypervolume. May be
a scalar, in which case it is used for all dimensions, or a vector, in which case its
length must match the number of dimensions. Default 0.

prefilter (logical(1))
Whether to make a first pass that filters out dominated individuals. If it can
be guaranteed that all individuals are non-dominated, setting this to FALSE im-
proves performance a bit. Otherwise the recommended value is the default
FALSE.

on_worse_than_nadir

(character(1)) Action when individuals that do not dominate the nadir are
found. One of "quiet" (ignore), "warn" (give warning, default), or "stop"
(throw error).

Value

numeric(1): The dominated hypervolume of individuals in fitnesses.

Examples

(fitnesses = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2))

to see the fitness matrix, use:
plot(fitnesses, pch = as.character(1:5))

domhv(fitnesses)

domhv_contribution 91

domhv_contribution Calculate Hypervolume Contribution

Description

Takes a matrix of fitness values and calculates the hypervolume contributions of individuals in that
matrix.

Hypervolume contribution of an individual I is the difference between the dominated hypervolume
of a set of individuals including I, where the fitness of I is increased by epsilon, and the dominated
hypervolume of the same set but excluding I.

Individuals that are less than another individual more than epsilon in any dimension have hyper-
volume contribution of 0.

Usage

domhv_contribution(fitnesses, nadir = 0, epsilon = 0)

Arguments

fitnesses (numeric matrix)
fitness matrix, with one row per individual and one column per objective

nadir (numeric)
Lowest fitness point up to which to calculate dominated hypervolume. May be
a scalar, in which case it is used for all dimensions, or a vector, in which case its
length must match the number of dimensions. Default 0.

epsilon (numeric)
Added to each individual before calculating its particular hypervolume contri-
bution. epsilon may be a scalar, in which case it is used for all dimensions, or
a vector, in which case its length must match the number of dimensions. Default
0.

Value

numeric: The vector of dominated hypervolume contributions for each individual in fitnesses.

Examples

(fitnesses = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2))

to see the fitness matrix, use:
plot(fitnesses, pch = as.character(1:5))

domhv_contribution(fitnesses)

92 domhv_improvement

domhv_improvement Calculate Hypervolume Improvement

Description

Takes a matrix of fitness values and calculates the hypervolume improvement of individuals in that
matrix, one by one, over the baseline individuals.

The hypervolume improvement for each point is the measure of all points that have fitnesses that
are

• greater than the respective value in nadir in all dimensions, and
• smaller than the respective value in the given point in all dimensions, and
• greater than all points in baseline in at least one dimension.

Individuals in fitnesses are considered independently of each other. A possible speedup is
achieved because baseline individuals only need to be pre-filtered once.

Usage

domhv_improvement(fitnesses, baseline = NULL, nadir = 0)

Arguments

fitnesses (numeric matrix)
fitness matrix, with one row per individual and one column per objective

baseline (matrix | NULL)
Fitness-matrix with one column per objective, giving a population over which
the hypervolume improvement should be calculated. If NULL, the hypervolume
of each individual in fitnesses is calculated.

nadir (numeric)
Lowest fitness point up to which to calculate dominated hypervolume. May be
a scalar, in which case it is used for all dimensions, or a vector, in which case its
length must match the number of dimensions. Default 0.

Value

numeric: The vector of dominated hypervolume contributions for each individual in fitnesses.

Examples

(fitnesses = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2))

to see the fitness matrix, use:
plot(fitnesses, pch = as.character(1:5))

domhv_improvement(fitnesses)

domhv_improvement(fitnesses, fitnesses[1, , drop = FALSE])

Filtor 93

Filtor Filtor Base Class

Description

Base class representing filter operations, inheriting from MiesOperator.

A Filtor gets a table of individuals that are to be filtered, as well as a table of individuals that were
already evaluated, along with information on the latter individuals’ performance values. Further-
more, the number of individuals to return is given. The Filtor returns a vector of unique integers
indicating which individuals were selected.

Filter operations are performed in ES algorithms to facilitate concentration towards individuals that
likely perform well with regard to the fitness measure, without evaluating the fitness measure, for
example through a surrogate model.

Fitness values are always maximized, both in single- and multi-criterion optimization.

Unlike most other operator types inheriting from MiesOperator, the $operate() function has four
arguments, which are passed on to $.filter()

• values :: data.frame
Individuals to filter. Must pass the check of the Param given in the last $prime() call and may
not have any missing components.

• known_values :: data.frame
Individuals to use for filtering. Must pass the check of the Param given in the last $prime()
call and may not have any missing components. Note that known_values may be empty.

• fitnesses :: numeric | matrix
Fitnesses for each individual given in known_values. If this is a numeric, then its length
must be equal to the number of rows in values. If this is a matrix, if number of rows must be
equal to the number of rows in values, and it must have one column when doing single-crit
optimization and one column each for each "criterion" when doing multi-crit optimization.

• n_filter :: integer(1)
Number of individuals to select. Some Filtors select individuals with replacement, for which
this value may be greater than the number of rows in values.

The return value for an operation will be a numeric vector of integer values of ength n_filter
indexing the individuals that were selected. Filtor must always return unique integers, i.e. select
every individual at most once.

Inheriting

Filtor is an abstract base class and should be inherited from. Inheriting classes should implement
the private $.filter() function. The user of the object calls $operate(), and the arguments are
passed on to private $.filter() after checking that the operator is primed, that the values and
known_values arguments conforms to the primed domain and that other values match.

The private$.needed_input() function should also be overloaded, it is called by the public
$needed_input() function after initial checks; see the documentation there.

Typically, the $initialize() function should also be overloaded, and optionally the $prime()
function; they should call their super equivalents.

94 Filtor

Super class

miesmuschel::MiesOperator -> Filtor

Active bindings

supported (character)
Optimization supported by this Filtor, can be "single-crit", "multi-crit", or both.

Methods

Public methods:

• Filtor$new()

• Filtor$needed_input()

• Filtor$clone()

Method new(): Initialize base class components of the Filtor.

Usage:
Filtor$new(
param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"),
param_set = ps(),
supported = c("single-crit", "multi-crit"),
packages = character(0),
dict_entry = NULL,
own_param_set = quote(self$param_set)

)

Arguments:

param_classes (character)
Classes of parameters that the operator can handle. May contain any of "ParamLgl",
"ParamInt", "ParamDbl", "ParamFct". Default is all of them.
The $param_classes field will reflect this value.

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to
super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate
to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

supported (character)
Subset of "single-crit" and "multi-crit", indicating wether single and / or multi-
criterion optimization is supported. Default both of them.
The $supported field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

FiltorSurrogate 95

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

own_param_set (language)
An expression that evaluates to a ParamSet indicating the configuration parameters that are
entirely owned by this operator class (and not proxied from a construction argument object).
This should be quote(self$param_set) (the default) when the param_set argument is not
a list of expressions.

Method needed_input(): Calculate the number of values that are required to filter down to
output_size, given the current configuraiton parameter settings.

Usage:
Filtor$needed_input(output_size)

Arguments:
output_size (integer(1))

A positive integer indicating the number of individuals for which the needed input size
should be calculated.

Returns: integer(1): The minimum number of rows required to filter down to output_size.
At least output_size.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Filtor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other base classes: FiltorSurrogate, MiesOperator, MutatorDiscrete, MutatorNumeric, Mutator,
OperatorCombination, RecombinatorPair, Recombinator, Scalor, SelectorScalar, Selector

Other filtors: FiltorSurrogate, dict_filtors_maybe, dict_filtors_null, dict_filtors_proxy,
dict_filtors_surprog, dict_filtors_surtour

FiltorSurrogate Abstract Surrogate Model Filtering Base Class

Description

Abstract base class for surrogate model filtering.

A surrogate model is a regression model, based on an mlr3::Learner, which predicts the approx-
imate performance of newly sampled configurations given the empirical performance of already
evaluated configurations. The surrogate model can be used to propose points that have, according
to the surrogate model, a relatively high chance of performing well.

The FiltorSurrogate base class can be inherited from to create different Filtors that filter based
on a surrogate model, for example tournament filtering or progresive filtering.

96 FiltorSurrogate

Configuration Parameters

FiltorSurrogateProgressive’s configuration parameters are the hyperparameters of the surrogate_learner
Learner, as well as the configuration parameters of the surrogate_selector Selector.

Supported Operand Types

Supported Param classes depend on the supported feature types of the surrogate_learner, as
reported by surrogate_learner$feature_types: "ParamInt" requires "integer", "ParamDbl"
requires "numeric", "ParamLgl" requires "logical", and "ParamFct" requires "factor".

Super classes

miesmuschel::MiesOperator -> miesmuschel::Filtor -> FiltorSurrogate

Active bindings

surrogate_learner (mlr3::LearnerRegr)
Regression learner for the surrogate model filtering algorithm.

surrogate_selector (Selector)
Selector with which to select using surrogate-predicted performance

Methods

Public methods:

• FiltorSurrogate$new()

• FiltorSurrogate$prime()

• FiltorSurrogate$clone()

Method new(): Initialize the base class components of the FiltorSurrogate.

Usage:
FiltorSurrogate$new(
surrogate_learner,
surrogate_selector = SelectorBest$new(),
param_set = ps(),
packages = character(0),
dict_entry = NULL

)

Arguments:

surrogate_learner (mlr3::LearnerRegr)
Regression learner for the surrogate model filtering algorithm.
The $surrogate_learner field will reflect this value.

surrogate_learner (mlr3::LearnerRegr)
Regression learner for the surrogate model filtering algorithm.
The $surrogate_learner field will reflect this value.

surrogate_selector (Selector) Selector for the surrogate model filtering algorithm.
The $surrogate_selector field will reflect this value.

FiltorSurrogate 97

surrogate_selector (Selector) Selector for the surrogate model filtering algorithm.
The $surrogate_selector field will reflect this value.

param_set (ParamSet)
ParamSet of the method implemented in the inheriting class with configuration parameters
that go beyond the parameters of the surrogate_learner and surrogate_selector.

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to
super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate
to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operator given to surrogate_selector during construction.

Usage:
FiltorSurrogate$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FiltorSurrogate$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

98 MiesOperator

See Also

Other base classes: Filtor, MiesOperator, MutatorDiscrete, MutatorNumeric, Mutator, OperatorCombination,
RecombinatorPair, Recombinator, Scalor, SelectorScalar, Selector

Other filtors: Filtor, dict_filtors_maybe, dict_filtors_null, dict_filtors_proxy, dict_filtors_surprog,
dict_filtors_surtour

MiesOperator Operator Base Class

Description

Base class representing MIES-operators: Recombinator, Mutator, and Selector.

Operators perform a specific function within ES algorithms, and by exchanging them, the charac-
ter of ES algorithms can be modified. Operators operate on collections of individuals and return
modified individuals (mutated or recombined) or indices of selected individuals. Operators can
be combined using MutatorCombination / RecombinatorCombination and other operators wrap-
pers.

Before applying operators, they have to be primed for the domain of the individuals which they are
operating on; this is done using the $prime() function. Afterwards, the $operate() function may
be called with a data.frame of individuals that fall into this domain. $operate() may be called
multiple times after priming, and a once primed operator can be primed again for a different domain
by calling $prime() agian (which forgets the old priming).

Inheriting

MiesOperator is an abstract base class and should be inherited from. Inheriting classes should
implement the private $.operate() function. The user of the object calls $operate(), and the
arguments are passed on to private $.operate() after checking that the operator is primed, and
that the values argument conforms to the primed domain. Typically, the $initialize() and
$prime() functions are also overloaded, but should call their super equivalents.

In most cases, the MiesOperator class should not be inherited from, directly; instead, the operator
classes (Recombinator, Mutator, Selector) or their subclasses should be inherited.

Active bindings

param_set (ParamSet)
Configuration parameters of the MiesOperator object. Read-only.

param_classes (character)
Classes of parameters that the operator can handle, contains any of "ParamLgl", "ParamInt",
"ParamDbl", "ParamFct". Read-only.

packages (character)
Packages needed for the operator. Read-only.

dict_entry (character(1) | NULL)
Key of this class in its respective Dictionary. Is NULL if this class it not (known to be) in a
Dictionary. Read-only.

MiesOperator 99

dict_shortaccess (character(1) | NULL)
Name of Dictionary short-access function where an object of this class can be retrieved. Is
NULL if this class is not (known to be) in a Dictionary with a short-access function. Read-
only.

endomorphism (logical(1))
Whether the output of $operate() is a data.frame / data.table in the same domain as its
input. Read-only.

primed_ps (ParamSet | NULL)
ParamSet on which the MiesOperator is primed. Is NULL if it has not been primed. Writing
to this acrive binding calls $prime().

is_primed (logical(1))
Whether the MiesOperator was primed before. Is FALSE exactly when $primed_ps is NULL.
Read-only.

man (character(1))
Name of this class, in the form <package>::<classname>. Used by the $help() method.

Methods

Public methods:
• MiesOperator$new()

• MiesOperator$repr()

• MiesOperator$print()

• MiesOperator$prime()

• MiesOperator$operate()

• MiesOperator$help()

• MiesOperator$clone()

Method new(): Initialize base class components of the MiesOperator.

Usage:
MiesOperator$new(
param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"),
param_set = ps(),
packages = character(0),
dict_entry = NULL,
dict_shortaccess = NULL,
own_param_set = quote(self$param_set),
endomorphism = TRUE

)

Arguments:

param_classes (character)
Classes of parameters that the operator can handle. May contain any of "ParamLgl",
"ParamInt", "ParamDbl", "ParamFct". Default is all of them.
The $param_classes field will reflect this value.

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to

100 MiesOperator

super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate
to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

dict_shortaccess (character(1) | NULL)
Name of the Dictionary short access function in which the operator is registered. This is
used to inform the user about how to construct a given object. Should ordinarily be one of
"mut", "rec", "sel".
The $dict_shortaccess field will reflect this value.

own_param_set (language)
An expression that evaluates to a ParamSet indicating the configuration parameters that are
entirely owned by this operator class (and not proxied from a construction argument object).
This should be quote(self$param_set) (the default) when the param_set argument is not
a list of expressions.

endomorphism (logical(1))
Whether the private $.operate() operation creates a data.table with the same columns
as the input (i.e. conforming to the primed ParamSet). If this is TRUE (default), then the
return value of $.operate() is checked for this and columns are put in the correct order.
The $endomorphsim field will reflect this value.

Method repr(): Create a call object representing this operator.

Usage:
MiesOperator$repr(
skip_defaults = TRUE,
show_params = TRUE,
show_constructor_args = TRUE,
...

)

Arguments:
skip_defaults (logical(1))

Whether to skip construction arguments that have their default value. Default TRUE.
show_params (logical(1))

Whether to show ParamSet values. Default TRUE.
show_constructor_args (logical(1))

Whether to show construction args that are not ParamSet values. Default TRUE.
... (any)

Ignored.

MiesOperator 101

Method print(): Print this operator.

Usage:
MiesOperator$print(verbose = FALSE, ...)

Arguments:

verbose (logical(1))
Whether to show all construction arguments, even the ones at default values. Default FALSE.

... (any)
Ignored.

Method prime(): Prepare the MiesOperator to function on the given ParamSet. This must be
called before $operate(). It may be called multiple times in the lifecycle of the MiesOperator
object, and prior primings are forgotten when priming on a new ParamSet. The ParamSet on
which the MiesOperator was last primed can be read from $primed_ps.

Usage:
MiesOperator$prime(param_set)

Arguments:

param_set (ParamSet)
The ParamSet to which all values tables passed to $operate() will need to conform to.
May only contiain Param objects that conform to the classes listed in $param_classes.

Returns: invisible self.

Method operate(): Operate on the given individuals. This calls private $.operate(), which
must be overloaded by an inheriting class, passing through all function arguments after performing
some checks.

Usage:
MiesOperator$operate(values, ...)

Arguments:

values (data.frame)
Individuals to operate on. Must pass the check of the Param given in the last $prime() call
and may not have any missing components.

... (any)
Depending on the concrete class, passed on to $.operate().

Returns: data.frame: the result of the operation. If the input was a data.table instead of a
data.frame, the output is also data.table.

Method help(): Run utils::help() for this object.

Usage:
MiesOperator$help(help_type = getOption("help_type"))

Arguments:

help_type (character(1))
One of "text", "html", or "pdf": The type of help page to open. Defaults to the "help_type"
option.

Returns: help_files_with_dopic object, which opens the help page.

102 mies_aggregate_generations

Method clone(): The objects of this class are cloneable with this method.

Usage:
MiesOperator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other base classes: FiltorSurrogate, Filtor, MutatorDiscrete, MutatorNumeric, Mutator,
OperatorCombination, RecombinatorPair, Recombinator, Scalor, SelectorScalar, Selector

mies_aggregate_generations

Get Aggregated Performance Values by Generation

Description

Get evaluated performance values from an OptimInstance aggregated for each generation. This
may either concern all individuals that were alive at the end of a given generation (survivors_only
TRUE) or at any point during a generation (survivors_only FALSE).

The result is a single data.table object with a dob column indicating the generation, as well as
one column for each aggregations entry crossed with each objective of inst.

See mies_generation_apply() on how to apply functions to entire fitness-matrices, not only in-
dividual objectives.

Usage

mies_aggregate_generations(
inst,
objectives = inst$archive$codomain$ids(),
aggregations = list(min = min, mean = mean, max = max, median = stats::median, size =

length),
as_fitnesses = TRUE,
survivors_only = TRUE,
condition_on_budget_id = NULL

)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

objectives (character)
Objectives for which to calculate aggregates. Must be a subset of the codomain
elements of inst, but when as_fitnesses is TRUE, elements that are neither
being minimized nor maximized are ignored.

mies_aggregate_generations 103

aggregations (named list of function)
List containing aggregation functions to be evaluated on a vector of objective
falues for each generation. These functions should take a single argument and
return a scalar value.

as_fitnesses (logical(1))
Whether to transform performance values into "fitness" values that are always to
be maximized. This means that values that objectives that should originally be
minimized are multiplied with -1, and that parts of the objective codomain that
are neither being minimized nor maximized are dropped. Default TRUE.

survivors_only (logical(1))
Whether to ignore configurations that have "eol" set to the given generation, i.e.
individuals that were killed during that generation. When this is TRUE (default),
then only individuals that are alive at the end of a generation are considered;
otherwise all individuals alive at any point of a generation are considered. If it
is TRUE, this leads to individuals that have "dob" == "eol" being ignored.

condition_on_budget_id

(character(1) | NULL)
Budget component when doing multi-fidelity optimization. When this is given,
then for each generation, only individuals with the highest value for this compo-
nent are considered. If survivors_only is TRUE, this means the highest value
of all survivors of a given generation, if it is FALSE, then it is the highest value
of all individuals alive at any point of a generation. To ignore possible budget-
parameters, set this to NULL (default). This is inparticular necessary when fi-
delity is not monotonically increasing (e.g. if it is categorical).

Value

a data.table with the column "dob", indicating the generation, as well as further columns named
by the items in aggregations. There is more on element in objectives (or more than one el-
ement not being minimized/maximized when as_fitnesses is TRUE), then columns are named
<aggregations element name>.<objective name>. Otherwise, they are named by <aggregations element name>
only. To get a guarantee that elements are only named after elements in aggregations, set objectives
to a length 1 character.

See Also

Other aggregation methods: mies_aggregate_single_generation(), mies_get_generation_results()

Examples

library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- 10 - exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},

104 mies_aggregate_single_generation

domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "minimize"))

)

oi <- OptimInstanceSingleCrit$new(objective,
terminator = trm("evals", n_evals = 6)

)

op <- opt("mies",
lambda = 2, mu = 2,
mutator = mut("gauss", sdev = 0.1),
recombinator = rec("xounif"),
parent_selector = sel("best")

)
set.seed(1)
op$optimize(oi)

negates objectives that are minimized:
mies_aggregate_generations(oi)

silly aggregation: first element
mies_aggregate_generations(oi, aggregations = list(first = function(x) x[1]))

real objective values:
mies_aggregate_generations(oi, as_fitnesses = FALSE)

Individuals that died are included:
mies_aggregate_generations(oi, survivors_only = FALSE)

mies_aggregate_single_generation

Aggregate a Value for a given Generation

Description

Applies a fitness_aggregator function to the values that were alive in the archive at a given gen-
eration. The function is supplied with the fitness values, and optionally other data, of all individuals
that are alive at that point.

Usage

mies_aggregate_single_generation(
archive,
fitness_aggregator,
generation = NA,
include_previous_generations = FALSE

)

mies_aggregate_single_generation 105

Arguments

archive (Archive)
The archive over which to aggregate.

fitness_aggregator

(function)
Aggregation function, called with information about alive individuals of each
generation. See details.

generation (numeric(1))
Generation for which to aggregate the value. If include_previous_generations
is FALSE, then an individual is considered to be alive at generation i if its
dob is smaller or equal to i, and if its eol is either NA or greater than i. If
include_previous_generations is TRUE, then all individuals with dob smaller
or equal to i are considered. If this is NA, the currently alive (include_previous_generations
FALSE) or all (include_previous_generations TRUE) individuals are aggre-
gated. If multiple individuals considered "alive" with the same x_id are found,
then only the last individual is used. This excludes previous individuals that
were re-evaluated with a different fidelity.

include_previous_generations

(logical(1))
Aggregate all individuals that were alive at generation or at any point before
that. Duplicates with the same x_id are removed, meaning that if an individual
was re-evaluated with different fidelity, only the last re-evaluation is counted.
However, note that individuals from different generations may still have been
evaluated with different fidelity, so if Default FALSE.

Details

The fitness_aggregator function may have any of the following arguments, which will be given
the following information when fitness_aggregator is called:

• fitnesses :: matrix
Will contain fitnesses for each alive individual. This value has one column when doing single-
crit optimization and one column for each "criterion" when doing multi-crit optimization. Fit-
nesses are always being maximized, so if an objective is being minimized, the fitness_aggregator
function is given the objective values * -1.

• objectives_unscaled :: matrix
The objective values as given to fitnesses, but not multiplied by -1 if they are being mini-
mized. It is recommended that the codomain argument is queried for "maximize" or "minimize"
tags when objectives_unscaled is used.

• budget :: scalar
If multi-fidelity evaluation is being performed, then this is the "budget" value of each individ-
ual. Otherwise it is a vector containing the value 1 for each individual.

• xdt :: data.table
The configurations that were evaluated for the alive individuals. Rows are in the same order
as the values given to fitnesses or objectives_unscaled.

• search_space :: ParamSet
The search space of the Archive under evaluation.

106 mies_aggregate_single_generation

• codomain :: ParamSet
The codomain of the Archive under evaluation. This is particularly useful when using objectives_unscaled
to determine minimization or maximization.

Not all of these arguments need to present, but at least one of fitnesses, objectives_unscaled,
or xdt must be.

fitness_aggregator will never be called for an empty generation.

Value

The value returned by fitness_aggregator when applied to individuals alive at generation generation.
If no individuals of the requested generation are present, fitness_aggregator is not called and
mies_aggregate_single_generation() returns NULL instead.

See Also

Other aggregation methods: mies_aggregate_generations(), mies_get_generation_results()

Examples

library("bbotk")
lgr::threshold("warn")

objective <- ObjectiveRFun$new(
fun = function(xs) {
list(y1 = xs$x1, y2 = xs$x2)

},
domain = ps(x1 = p_dbl(0, 1), x2 = p_dbl(-1, 0)),
codomain = ps(y1 = p_dbl(0, 1, tags = "maximize"),

y2 = p_dbl(-1, 0, tags = "minimize"))
)

oi <- OptimInstanceMultiCrit$new(objective, terminator = trm("none"))

try(mies_aggregate_single_generation(oi$archive, identity), silent = TRUE)

mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses)

mies_init_population(oi, 2, budget_id = "x1", fidelity = .5)

oi$archive$data

mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses)

Notice how fitnesses are positive, since x2 is scaled with -1.
To get the original objective-values, use objectives_unscaled:
mies_aggregate_single_generation(oi$archive,

function(objectives_unscaled) objectives_unscaled)

When `...` is used, all information is passed:
mies_aggregate_single_generation(oi$archive, function(...) names(list(...)))

mies_evaluate_offspring 107

Generation 10 is not present, but individuals with eol `NA` are still
considered alive:
mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses,

generation = 10)

Re-evaluating points with higher "fidelity" (x1)
mies_step_fidelity(oi, budget_id = "x1", fidelity = 0.7)

oi$archive$data
Lower-fidelity values are considered dead now, even for generation 1:
mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses,

generation = 1)

This adds two new alive individuals at generation 2.
Also the individuals from gen 1 are reevaluated with fidelity 0.8
mies_evaluate_offspring(oi, offspring = data.frame(x2 = c(-0.1, -0.2)),

budget_id = "x1", fidelity = 0.9, reevaluate_fidelity = 0.8)

oi$archive$data

mies_aggregate_single_generation(oi$archive, function(budget, ...) budget)

mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses,
generation = 1)

mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses,
generation = 2)

No individuals were killed, but some were fidelity-reevaluated.
These are not present with include_previous_generations:
mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses,

generation = 2, include_previous_generations = TRUE)

Typical use-case: get dominated hypervolume
mies_aggregate_single_generation(oi$archive, function(fitnesses) domhv(fitnesses))

Get generation-wise mean fitness values
mies_aggregate_single_generation(oi$archive, function(fitnesses) {

apply(fitnesses, 2, mean)
})

mies_evaluate_offspring

Evaluate Proposed Configurations Generated in a MIES Iteration

Description

Calls $eval_batch of a given OptimInstance on a set of configurations as part of a MIES opera-
tion. The dob extra-info in the archive is also set properly to indicate a progressed generation.

108 mies_evaluate_offspring

This function can be used directly, but it is easier to use it within the OptimizerMies Optimizer if
standard GA operation is desired.

Multifidelity evaluation is supported as described in vignette("mies-multifid"). For this, an
extra component named after budget_id is appended to each individual, chosen from the fidelity
argument and depending on the value of survivor_budget. budget_id should have the same
values as given to the other mies_* functions.

Usage

mies_evaluate_offspring(
inst,
offspring,
budget_id = NULL,
fidelity = NULL,
reevaluate_fidelity = NULL,
fidelity_monotonic = TRUE

)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

offspring (data.frame)
Proposed configurations to be evaluated, must have columns named after the
inst’s search space, minus budget_id if not NULL.

budget_id (character(1) | NULL)
Budget component when doing multi-fidelity optimization. This component of
the search space is added to individuals according to fidelity. Should be
NULL when no multi-fidelity optimization is performed (default).

fidelity (atomic(1) | NULL)
Atomic scalar indicating the value to be assigned to the budget_id component
of offspring. This value must be NULL if no multi-fidelity optimization is per-
formed (the default).

reevaluate_fidelity

(atomic(1))
Fidelity with which to evaluate alive individuals from previous generations that
have a budget value below (if fidelity_monotonic is TRUE) or different from
the current fidelity value. Default NULL: Do not re-evaluate. Must be NULL
when budget_id and fidelity are NULL. See also mies_step_fidelity.

fidelity_monotonic

(logical(1))
When reevaluate_fidelity is non-NULL, then this indicates whether individ-
uals should only ever be re-evaluated when fidelity would be increased. Default
TRUE. Ignored when reevaluate_fidelity is NULL

mies_evaluate_offspring 109

Value

invisible data.table: the performance values returned when evaluating the offspring values
through eval_batch.

See Also

Other mies building blocks: mies_generate_offspring(), mies_get_fitnesses(), mies_init_population(),
mies_select_from_archive(), mies_step_fidelity(), mies_survival_comma(), mies_survival_plus()

Examples

library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))

)

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

mies_init_population(inst = oi, mu = 3)
Initial state:
oi$archive

'offspring' is just a data.frame of values to evaluate.
In general it should be created using 'mies_generate_offspring()'.
offspring = data.frame(x = 1:2, y = 2:1)

mies_evaluate_offspring(oi, offspring = offspring)

This evaluated the given points and assigned them 'dob' 2.
oi$archive

Note that at this point one would ordinarily call a 'mies_survival_*()'
function.

###
Advanced demo, making use of additional components and doing multi-fidelity
##

declare 'y' the budget parameter. It will not be in the 'offspring'
table any more.
budget_id = "y"

110 mies_filter_offspring

but: offspring may contain any other value that is appended to 'oi'. These
are ignored by the objective.
offspring = data.frame(x = 0:1, z = 3)

mies_evaluate_offspring(oi, offspring = offspring, budget_id = budget_id,
fidelity = 1)

This now has the additional column 'z'. Values of y for the new evaluations
are 1.
oi$archive

offspring = data.frame(x = 2, z = 3)
Increasing the fidelity will not cause re-evaluation of existing individuals
when `reevaluate_fidelity` is not given.
mies_evaluate_offspring(oi, offspring = offspring, budget_id = budget_id,

fidelity = 2)
oi$archive

offspring = data.frame(x = 3, z = 3)
Depending on the effect of fidelity, this may however have a biasing effect,
so it may be desirable to re-evaluate surviving individuals from previous
generations. The 'reevaluate_fidelity' may even be different from 'fidelity'
mies_evaluate_offspring(oi, offspring = offspring, budget_id = budget_id,

fidelity = 3, reevaluate_fidelity = 2)

In this example, only individuals with 'y = 1' were re-evaluated, since
'fidelity_monotonic' is TRUE.
oi$archive

mies_filter_offspring Filter Offspring

Description

Uses a Filtor to extract a subset of individuals from a given set. The individuals are either re-
turned directly (when get_indivs is TRUE) or in form of an index into the given individuals (when
get_indivs is FALSE).

Filtors must always select individuals without replacement, so selected individual indices are
unique.

Usage

mies_filter_offspring(
inst,
individuals,
lambda,
filtor = NULL,
budget_id = NULL,

mies_generate_offspring 111

fidelity = NULL,
get_indivs = TRUE

)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

individuals (data.frame | data.table)
Individuals to filter. Must have columns according to filtor$primed_ps, and
must have at least filtor$needed_input(lambda) rows.

lambda (integer(1))
Number of individuals to filter down to.

filtor (Filtor | NULL)
Filtor operator that filters. When NULL is given, then the FiltorNull operation
is performed and the first lambda individuals are taken from individuals.

budget_id (character(1) | NULL)
Budget component when doing multi-fidelity optimization. This component of
the search space is added to individuals according to fidelity. Should be
NULL when no multi-fidelity optimization is performed (default).

fidelity (atomic | NULL)
scalar indicating the value of the budget_id component with which to evaluate
individuals to be filtered.
This value must be NULL when no multi-fidelity optimization is performed, but
it may also be NULL when the maximum value of the budget_id found in
inst$archive should be used (the default).

get_indivs (logical(1))
Whether to return the data.frame or data.table of selected individuals, or an
index into individuals.

Value

If get_indivs is TRUE: a data.frame or data.table (depending on the input type of individuals)
of filtered configurations. If get_indivs is FALSE: an integer vector indexing the filtered individ-
uals.

mies_generate_offspring

Generate Offspring Through Mutation and Recombination

Description

Generate new proposal individuals to be evaluated using mies_evaluate_offspring().

Parent individuals are selected using parent_selector, then mutated using mutator, and thend
recombined using recombinator. If only a subset of these operations is desired, then it is possible
to set mutator or recombinator to the respective "null"-operators.

112 mies_generate_offspring

Usage

mies_generate_offspring(
inst,
lambda,
parent_selector = NULL,
mutator = NULL,
recombinator = NULL,
budget_id = NULL

)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

lambda (integer(1))
Number of new individuals to generate. This is not necessarily the number with
which parent_selector gets called, because recombinator could in principle
need more than lambda input individuals to generate lambda output individuals.

parent_selector

(Selector | NULL)
Selector operator that selects parent individuals depending on configuration
values and objective results. When parent_selector$operate() is called,
then objectives that are being minimized are multiplied with -1 (through mies_get_fitnesses()),
since Selectors always try to maximize fitness. When this is NULL (default),
then a SelectorBest us used.
The Selector must be primed on a superset of inst$search_space; this in-
cludes the "budget" component when performing multi-fidelity optimization.
All components on which selector is primed on must occur in the archive.
The given Selector may return duplicates.

mutator (Mutator | NULL)
Mutator operation to apply to individuals selected out of inst using parent_selector.
The Mutator must be primed on a ParamSet similar to inst$search_space,
but without the "budget" component when budget_id is given (multi-fidelity
optimization). Such a ParamSet can be generated for example using mies_prime_operators.
When this is NULL (default), then a MutatorNull is used, effectively disabling
mutation.

recombinator (Recombinator | NULL)
Recombinator operation to apply to individuals selected out of int using parent_selector
after mutation using mutator. The Recombinator must be primed on a ParamSet
similar to inst$search_space, but without the "budget" component when budget_id
is given (multi-fidelity optimization). Such a ParamSet can be generated for ex-
ample using mies_prime_operators.
When this is NULL (default), then a RecombinatorNull is used, effectively dis-
abling recombination.

budget_id (character(1) | NULL)
Budget compnent when doing multi-fidelity optimization. This component of
the search space is removed from individuals sampled from the archive in inst

mies_generate_offspring 113

before giving it to mutator and recombinator. Should be NULL when not doing
multi-fidelity.

Value

data.table: A table of configurations proposed as offspring to be evaluated using mies_evaluate_offspring().

See Also

Other mies building blocks: mies_evaluate_offspring(), mies_get_fitnesses(), mies_init_population(),
mies_select_from_archive(), mies_step_fidelity(), mies_survival_comma(), mies_survival_plus()

Examples

set.seed(1)

library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))

)

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

Demo operators
m = mut("gauss", sdev = 0.1)
r = rec("xounif")
s = sel("random")
Operators must be primed
mies_prime_operators(objective$domain, list(m), list(r), list(s))

We would normally call mies_init_population, but for reproducibility
we are going to evaluate three given points

oi$eval_batch(data.table::data.table(x = 0:2, y = 2:0, dob = 1, eol = NA_real_))

Evaluated points:
oi$archive

Use default operators: no mutation, no recombination, parent_selctor is
sel("best") --> get one individual, the one with highest performance in the
archive (x = 1, y = 1).

114 mies_generation

(Note 'mies_generate_offspring()' does not modify 'oi')
mies_generate_offspring(oi, lambda = 1)

Mutate the selected individual after selection. 'm' has 'sdev' set to 0.1,
so the (x = 1, y = 1) is slightly permuted.
mies_generate_offspring(oi, lambda = 1, mutator = m)

Recombination, then mutation.
Even though lambda is 1, there will be two individuals selected with
sel("best") and recombined, because rec("xounif") needs two parents. One
of the crossover results is discarded (respecting that 'lambda' is 1),
the other is mutated and returned.
mies_generate_offspring(oi, lambda = 1, mutator = m, recombinator = r)

General application: select, recombine, then mutate.
mies_generate_offspring(oi, lambda = 5, parent_selector = s, mutator = m, recombinator = r)

mies_generation Get the Last Generation that was Evaluated

Description

Gets the last generation that was evaluated as counted by the "dob" column in the OptimInstance’s
Archive.

This accepts OptimInstances that were not evaluated with miesmuschel and are therefore missing
the "dob" column, returning a value of 0. However, if the "dob" column is invalid (the inferred
generation is not integer numeric or not non-negative), an error is thrown.

Usage

mies_generation(inst)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

Value

a scalar integer value indicating the last generation that was evaluated in inst. It is 0 when inst is
empty, and also typically 0 if all evaluations in inst so far were performed outside of miesmuschel.
Every call of mies_init_population that actually performs evaluations, as well as each call to
mies_evaluate_offspring with non-empty offspring, increases the generation by 1.

mies_generation_apply 115

Examples

library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- 10 - exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "minimize"))

)

oi <- OptimInstanceSingleCrit$new(objective,
terminator = trm("evals", n_evals = 6)

)

op <- opt("mies",
lambda = 2, mu = 2,
mutator = mut("gauss", sdev = 0.1),
recombinator = rec("xounif"),
parent_selector = sel("best")

)
set.seed(1)

mies_generation(oi)

op$optimize(oi)
mies_generation(oi)

oi$terminator = trm("evals", n_evals = 10)

op$optimize(oi)
mies_generation(oi)

mies_generation_apply Aggregate Values for All Generations Present

Description

Applies a fitness_aggregator function to the values that were alive in the archive at at any
generation. mies_aggregate_single_generation() is used, see there for more information about
fitness_aggregator.

Generations for which fitness_aggregator returns NULL, or which are not present in any dob in
the archive, or which contain no alive individuals (e.g. because eol is smaller or equal dob for all
of them) are ignored.

116 mies_generation_apply

as.list() is applied to the values returned by fitness_aggregator, and data.table::rbindlist()
is called on the list of resulting values. If the first non-NULL-value returned by fitness_aggregator,
then data.table::rbindlist() is called with fill = TRUE and use.names = TRUE.

If no non-empty generations are present, or fitness_aggregator returns NULL on every call, then
the return value is data.table(dob = numeric(0)).

In contrast with mies_aggregate_generations(), mies_generate_apply() can construct ag-
gregated values for entire fitness matrices, not only individual objectives (see examples). However,
mies_aggregate_generations() is simpler if per-objective aggregates are desired.

Usage

mies_generation_apply(
archive,
fitness_aggregator,
include_previous_generations = FALSE

)

Arguments

archive (Archive)
The archive over which to aggregate.

fitness_aggregator

(function)
Aggregation function, called with information about alive individuals of each
generation. See mies_aggregate_single_generation().

include_previous_generations

(logical(1))
Aggregate all individuals that were alive at generation or at any point before
that. Duplicates with the same x_id are removed, meaning that if an individual
was re-evaluated with different fidelity, only the last re-evaluation is counted.
However, note that individuals from different generations may still have been
evaluated with different fidelity, so if Default FALSE.

Value

data.table with columns dob, next to the columns constructed from the return values of fitness_aggregator.

Examples

set.seed(1)
library("bbotk")
lgr::threshold("warn")

objective <- ObjectiveRFun$new(
fun = function(xs) {
list(y1 = xs$x1, y2 = xs$x2)

},
domain = ps(x1 = p_dbl(0, 1), x2 = p_dbl(-1, 0)),
codomain = ps(y1 = p_dbl(0, 1, tags = "maximize"),

mies_get_fitnesses 117

y2 = p_dbl(-1, 0, tags = "minimize"))
)
oi <- OptimInstanceMultiCrit$new(objective,

terminator = trm("evals", n_evals = 40))

op <- opt("mies",
lambda = 4, mu = 4,
mutator = mut("gauss", sdev = 0.1),
recombinator = rec("xounif"),
parent_selector = sel("random"),
survival_selector = sel("best", scl("hypervolume"))

)

op$optimize(oi)

Aggregated hypervolume of individuals alive in each gen:
mies_generation_apply(oi$archive, function(fitnesses) {

domhv(fitnesses)
})

Aggregated hypervolume of all points evaluated up to each gen
(may be slightly more, since the domhv of more points is evaluated).
This would be the dominated hypervolume of the result set at each
generation:
mies_generation_apply(oi$archive, function(fitnesses) {

domhv(fitnesses)
}, include_previous_generations = TRUE)

The following are simpler with mies_aggregate_single_generations():
mies_generation_apply(oi$archive, function(fitnesses) {

apply(fitnesses, 2, mean)
})
Compare:
mies_aggregate_generations(oi, aggregations = list(mean = mean))

mies_generation_apply(oi$archive, function(objectives_unscaled) {
apply(objectives_unscaled, 2, mean)

})
Compare:
mies_aggregate_generations(oi, aggregations = list(mean = mean),

as_fitnesses = FALSE)

mies_get_fitnesses Get Fitness Values from OptimInstance

Description

Get fitness values in the correct form as used by Selector operators from an OptimInstance. This
works for both single-criterion and multi-criterion optimization, and entails multiplying objectives
with -1 if they are being minimized, since Selector tries to maximize fitness.

118 mies_get_fitnesses

Usage

mies_get_fitnesses(inst, rows)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

rows optional (integer)
Indices of rows within inst to consider. If this is not given, then the entire
archive is used.

Value

numeric matrix with length(rows) (if rows is given, otherwise nrow(inst$archive$data))
rows and one column for each objective: fitnesses to be maximized.

See Also

Other mies building blocks: mies_evaluate_offspring(), mies_generate_offspring(), mies_init_population(),
mies_select_from_archive(), mies_step_fidelity(), mies_survival_comma(), mies_survival_plus()

Examples

set.seed(1)
library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))

)

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

mies_init_population(inst = oi, mu = 3)

oi$archive

mies_get_fitnesses(oi, c(2, 3))

###
Multi-objective, and automatic maximization:
objective2 <- ObjectiveRFun$new(

mies_get_generation_results 119

fun = function(xs) list(Obj1 = xs$x^2, Obj2 = -xs$y^2),
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(

Obj1 = p_dbl(tags = "minimize"),
Obj2 = p_dbl(tags = "maximize")

)
)
Using MultiCrit!
oi <- OptimInstanceMultiCrit$new(objective2,

terminator = trm("evals", n_evals = 100)
)

mies_init_population(inst = oi, mu = 3)

oi$archive

Note Obj1 has a different sign than in the archive.
mies_get_fitnesses(oi, c(2, 3))

mies_get_generation_results

Get Performance Values by Generation

Description

Get evaluated performance values from an OptimInstance for all individuals that were alive at a
given generation. Depending on survivors_only, all individuals alive at the end of a generation
are returned, or all individuals alive at any point during a generation.

The resulting data.table object is formatted for easy manipulation to get relevant information
about optimization progress. To get aggregated values per generation, use by = "dob".

Usage

mies_get_generation_results(
inst,
as_fitnesses = TRUE,
survivors_only = TRUE,
condition_on_budget_id = NULL

)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

as_fitnesses (logical(1))
Whether to transform performance values into "fitness" values that are always to
be maximized. This means that values that objectives that should originally be

120 mies_get_generation_results

minimized are multiplied with -1, and that parts of the objective codomain that
are neither being minimized nor maximized are dropped. Default TRUE.

survivors_only (logical(1))
Whether to ignore configurations that have "eol" set to the given generation, i.e.
individuals that were killed during that generation. When this is TRUE (default),
then only individuals that are alive at the end of a generation are considered;
otherwise all individuals alive at any point of a generation are considered. If it
is TRUE, this leads to individuals that have "dob" == "eol" being ignored.

condition_on_budget_id

(character(1) | NULL)
Budget component when doing multi-fidelity optimization. When this is given,
then for each generation, only individuals with the highest value for this compo-
nent are considered. If survivors_only is TRUE, this means the highest value
of all survivors of a given generation, if it is FALSE, then it is the highest value
of all individuals alive at any point of a generation. To ignore possible budget-
parameters, set this to NULL (default). This is inparticular necessary when fi-
delity is not monotonically increasing (e.g. if it is categorical).

Value

a data.table with the column "dob", indicating the generation, as well as further columns named
by the OptimInstance’s objectives.

See Also

Other aggregation methods: mies_aggregate_generations(), mies_aggregate_single_generation()

Examples

library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- 10 - exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "minimize"))

)

oi <- OptimInstanceSingleCrit$new(objective,
terminator = trm("evals", n_evals = 6)

)

op <- opt("mies",
lambda = 2, mu = 2,
mutator = mut("gauss", sdev = 0.1),
recombinator = rec("xounif"),

mies_init_population 121

parent_selector = sel("best")
)
set.seed(1)
op$optimize(oi)

negates objectives that are minimized:
mies_get_generation_results(oi)

real objective values:
mies_get_generation_results(oi, as_fitnesses = FALSE)

Individuals that died are included:
mies_get_generation_results(oi, survivors_only = FALSE)

mies_init_population Initialize MIES Optimization

Description

Set up an OptimInstance for MIES optimization. This adds the dob and eol columns to the
instance’s archive, and makes sure there are at least mu survivors (i.e. entries with eol set to NA)
present. If there are already >= mu prior evaluations present, then the last mu of these remain alive
(the other’s eol set to 0); otherwise, up to mu new randomly sampled configurations are evaluated
and added to the archive and have eol set to NA.

Usage

mies_init_population(
inst,
mu,
initializer = generate_design_random,
survival_selector = SelectorBest$new()$prime(inst$search_space),
budget_id = NULL,
fidelity = NULL,
fidelity_new_individuals_only = FALSE,
fidelity_monotonic = TRUE,
additional_component_sampler = NULL

)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

mu (integer(1))
Population target size, non-negative integer.

initializer (function)
Function that generates a Design object, with arguments param_set and n,

122 mies_init_population

functioning like paradox::generate_design_random or paradox::generate_design_lhs.
Note that paradox::generate_design_grid can not be used and must be wrapped
with a custom function that ensures that only n individuals are produced. The
generated design must correspond to the inst’s $search_space; for compo-
nents that are not in the objective’s search space, the additional_component_sampler
is used.

survival_selector

(Selector)
Used when the given OptimInstance already contains more individuals than
mu.
Selector operator that selects surviving individuals depending on configuration
values and objective results, When survival_selector$operate() is called,
then objectives that are being minimized are multiplied with -1 (through mies_get_fitnesses),
since Selectors always try to maximize fitness.
The Selector must be primed on inst$search_space; this includes the "bud-
get" component when performing multi-fidelity optimization. Default is SelectorBest.
The given Selector may not return duplicates.

budget_id (character(1) | NULL)
Budget component when doing multi-fidelity optimization. This component of
the search space is added to individuals according to fidelity. Should be
NULL when no multi-fidelity optimization is performed (default).

fidelity (atomic(1) | NULL)
Atomic scalar indicating the value to be assigned to the budget_id component
of offspring. This value must be NULL if no multi-fidelity optimization is per-
formed (the default).

fidelity_new_individuals_only

(logical(1))
When fidelity is not NULL: Whether to re-evaluate individuals that are already
present in inst should they have a smaller (if fidelity_monotonic is TRUE)
or different (if fidelity_monotonic is FALSE) value from the one given to
fidelity. Default FALSE. Ignored when fidelity is NULL.

fidelity_monotonic

(logical(1))
Whether to only re-evaluate configurations for which the fidelity would increase.
Default TRUE. Ignored when fidelity is NULL or when fidelity_new_individuals_only
is TRUE.

additional_component_sampler

(Sampler | NULL)
Sampler for components of individuals that are not part of inst’s $search_space.
These components are never used for performance evaluation, but they may be
useful for self-adaptive OperatorCombinations. See the description of mies_prime_operators()
on how operators need to be primed to respect additional components.
It is possible that additional_component_sampler is used for more rows than
initializer, which happens when the inst’s $archive contains prior eval-
uations that are alive, but does not contain columns pertaining to additional
columns, or contains all these columns but there are rows that are NA valued.
If only some of the columns are present, or if all these columns are present but

mies_init_population 123

there are rows that are only NA valued for some columns, then an error is thrown.
Default is NULL: no additional components.

Value

invisible OptimInstance: the input instance, modified by-reference.

See Also

Other mies building blocks: mies_evaluate_offspring(), mies_generate_offspring(), mies_get_fitnesses(),
mies_select_from_archive(), mies_step_fidelity(), mies_survival_comma(), mies_survival_plus()

Examples

library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))

)

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

mies_init_population(inst = oi, mu = 3)

3 evaluations, archive contains 'dob' and 'eol'
oi$archive

###
Advanced demo, making use of additional components and fidelity
##

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

mies_init_population(inst = oi, mu = 3, budget_id = "y", fidelity = 2,
additional_component_sampler = Sampler1DRfun$new(
param = ParamDbl$new("additional", -1, 1), rfun = function(n) rep(-1, n)

)
)

124 mies_prime_operators

3 evaluations. We also have 'additional', sampled from rfun (always -1),
which is ignored by the objective. Besides, we have "y", which is 2,
according to 'fidelity'.
oi$archive

mies_prime_operators Prime MIES Operators

Description

Prime the given MiesOperators for an optimization run with the given search space.

In its simplest form, MIES optimization only optimizes the search space of the Objective to be
optimized. However, more advanced optimization may handle a "budget" parameter for multi-
fidelity optimization differently: It is still selected by Selectors, but not mutated or recombined
and instead handled separately. It is also possible to add additional components to the search space
that are not evaluated by the objective function, but that are used for self-adaption by other operators.

The mies_prime_operators() function uses the information that the user usually has readily at
hand – the Objectives search space, the budget parameter, and additional components -- and primes [Mutator], [Recombinator], and [Selector‘]
objects in the right way:

• Selectors are primed on a union of search_space and additional_components

• Mutators and Recombinators are primed on the Selector’s space with the budget_id Param
removed.

mies_prime_operators() is called with an arbitrary number of MiesOperator arguments; typi-
cally one Mutator, one Recombinator and at least two Selector: one for survival selection, and
one parent selection. Supplied MiesOperators are primed by-reference, but they are also returned
as invisible list.

If neither additional components nor multi-fidelity optimization is used, it is also possible to use
the $prime() function of hte MiesOperators directly, although using mies_prime_operators()
gives flexibility for future extension.

Usage

mies_prime_operators(
search_space,
mutators = list(),
recombinators = list(),
selectors = list(),
filtors = list(),
...,
additional_components = NULL,
budget_id = NULL

)

mies_prime_operators 125

Arguments

search_space (ParamSet)
Search space of the Objective or OptimInstance to be optimized.

mutators (list of Mutator)
Mutator objects to prime. May be empty (default).

recombinators (list of Recombinator)
Recombinator objects to prime. May be empty (default).

selectors (list of Selector)
Selector objects to prime. May be empty (default).

filtors (list of Filtor)
Filtor objects to prime. May be empty (default).

... (any)
Must not be given. Other operators may be added in the future, so the following
arguments should be passed by name.

additional_components

(ParamSet | NULL)
Additional components to optimize over, not included in search_space, but
possibly used for self-adaption. This must be the ParamSet of mies_init_population()’s
additional_component_sampler argument.

budget_id (character(1) | NULL)
Budget component used for multi-fidelity optimization.

Value

invisible named list with entries $mutators (list of Mutator, primed mutators), $recombinators
(list of Recombinator, primed recombinators), and $selectors (list of Selector, primed
selectors).

Examples

Search space of a potential TuningInstance for optimization:
search_space = ps(x = p_dbl(), y = p_dbl())
Additoinal search space components that are not part of the TuningInstance
additional_components = ps(z = p_dbl())
Budget parameter not subject to mutation or recombination
budget_id = "y"

m = mut("gauss")
r = rec("xounif")
s1 = sel("best")
s2 = sel("random")
f = ftr("null")

mies_prime_operators(search_space, mutators = list(m),
recombinators = list(r), selectors = list(s1, s2), filtors = list(f),
additional_components = additional_components, budget_id = budget_id

)

126 mies_select_from_archive

contain search_space without budget parameter, with additional_components
m$primed_ps
r$primed_ps

contain also the budget parameter
s1$primed_ps
s2$primed_ps
f$primed_ps

mies_select_from_archive

Select Individuals from an OptimInstance

Description

Apply a Selector operator to a subset of configurations inside an OptimInstance and return
the index within the archive (when get_indivs FALSE) or the configurations themselves (when
get_indivs is TRUE).

It is not strictly necessary for the selector to select unique individuals / individuals without replace-
ment.

Individuals are selected independently of whether they are "alive" or not. To select only from alive
individuals, set rows to inst$archive$data[, which(is.na(eol))].

Usage

mies_select_from_archive(
inst,
n_select,
rows,
selector = SelectorBest$new()$prime(inst$search_space),
group_size = 1,
get_indivs = TRUE

)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

n_select (integer(1))
Number of individuals to select.

rows optional (integer)
Indices of rows within inst to consider. If this is not given, then the entire
archive is used.

selector (Selector)
Selector operator that selects individuals depending on configuration values
and objective results. When selector$operate() is called, then objectives that

mies_select_from_archive 127

are being minimized are multiplied with -1 (through mies_get_fitnesses()),
since Selectors always try to maximize fitness. Defaults to SelectorBest.
The Selector must be primed on a superset of inst$search_space; this in-
cludes the "budget" component when performing multi-fidelity optimization.
All components on which selector is primed on must occur in the archive.
The given Selector may return duplicates.

group_size (integer)
Sampling group size hint, indicating that the caller would prefer there to not be
any duplicates within this group size. The Selector may or may not ignore
this value, however. This may possibly happen because of certain configuration
parameters, or because the input size is too small.
Must either be a scalar value or sum up to n_select. Must be non-negative. A
scalar value of 0 is interpreted the same as 1.
Default is 1.

get_indivs (logical(1))
Whether to return configuration values from within the archive (TRUE) or just
the indices within the archive (FALSE). Default is TRUE.

Value

integer | data.table: Selected individuals, either index into inst or subset of archive table,
depending on get_indivs.

See Also

Other mies building blocks: mies_evaluate_offspring(), mies_generate_offspring(), mies_get_fitnesses(),
mies_init_population(), mies_step_fidelity(), mies_survival_comma(), mies_survival_plus()

Examples

set.seed(1)
library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))

)

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

s = sel("best")

128 mies_step_fidelity

s$prime(oi$search_space)

mies_init_population(inst = oi, mu = 6)

oi$archive

Default: get individuals
mies_select_from_archive(oi, n_select = 2, rows = 1:6, selector = s)

Alternatively: get rows within archive
mies_select_from_archive(oi, n_select = 2, rows = 1:6, selector = s,

get_indivs = FALSE)

Rows gotten from archive are relative from *all* rows, not from archive[rows]:
mies_select_from_archive(oi, n_select = 2, rows = 3:6, selector = s,

get_indivs = FALSE)

##
When using additional components: mies_select_from_archive learns about
additional components from primed selector.

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

mies_init_population(inst = oi, mu = 6,
additional_component_sampler = Sampler1DRfun$new(
param = ParamDbl$new("additional", -1, 1), rfun = function(n) -1

)
)

oi$archive

Wrong: using selector primed only on search space. The resulting
individuals do not have the additional component.
mies_select_from_archive(oi, n_select = 2, rows = 1:6, selector = s)

Correct: selector must be primed on search space + additional component
mies_prime_operators(oi$search_space, selectors = list(s),

additional_components = ps(additional = p_dbl(-1, 1)))

mies_select_from_archive(oi, n_select = 2, rows = 1:6, selector = s)

mies_step_fidelity Re-Evaluate Existing Configurations with Higher Fidelity

Description

As part of the "rolling-tide" multifidelity-setup, do reevaluation of configurations with higher fi-
delity that have survived lower-fidelity selection. The evaluations are done as part of the current

mies_step_fidelity 129

generation, so the dob value is not increased.

This function should only be called when doing rolling-tide multifidelity, and should not be part of
the MIES cycle otherwise.

Usage

mies_step_fidelity(
inst,
budget_id,
fidelity,
current_gen_only = FALSE,
fidelity_monotonic = TRUE,
additional_components = NULL

)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

budget_id (character(1))
Budget component that is set to the fidelity value.

fidelity (atomic(1))
Atomic scalar indicating the value to be assigned to the budget_id component
of offspring.

current_gen_only

(logical(1))
Whether to only re-evaluate survivors individuals generated in the latest gener-
ation (TRUE), or re-evaluate all currently alive individuals (FALSE). In any case,
only individuals that were not already evaluated with the chosen fidelity are
evaluated, so this will usually only have an effect when the fidelity of surviving
individuals changed between generations.

fidelity_monotonic

(logical(1))
Whether to only re-evaluate configurations for which the fidelity would increase.
Default TRUE.

additional_components

(ParamSet | NULL)
Additional components to optimize over, not included in search_space, but
possibly used for self-adaption. This must be the ParamSet of mies_init_population()’s
additional_component_sampler argument.

Value

invisible data.table: the performance values returned when evaluating the offspring values
through eval_batch.

130 mies_step_fidelity

See Also

Other mies building blocks: mies_evaluate_offspring(), mies_generate_offspring(), mies_get_fitnesses(),
mies_init_population(), mies_select_from_archive(), mies_survival_comma(), mies_survival_plus()

Examples

library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))

)

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

budget_id = "y"

Create an initial population with fidelity ("y") value 1
mies_init_population(oi, mu = 2, budget_id = budget_id, fidelity = 1)

oi$archive

Re-evaluate these individuals with higher fidelity
mies_step_fidelity(oi, budget_id = budget_id, fidelity = 2)

oi$archive

The following creates a new generation without killing the initial
generation
offspring = data.frame(x = 0:1)
mies_evaluate_offspring(oi, offspring = offspring, budget_id = budget_id,

fidelity = 3)

oi$archive

Re-evaluate only individuals from last generation by setting current_gen_only
mies_step_fidelity(oi, budget_id = budget_id, fidelity = 4,

current_gen_only = TRUE)

oi$archive

Default: Re-evaluate all that *increase* fidelity: Only the initial
population is re-evaluated here.

mies_survival_comma 131

mies_step_fidelity(oi, budget_id = budget_id, fidelity = 3)

oi$archive

To also re-evaluate individuals with *higher* fidelity, use
'fidelity_monotonic = FALSE'. This does not re-evaluate the points that already have
the requested fidelity, however.
mies_step_fidelity(oi, budget_id = budget_id, fidelity = 3, fidelity_monotonic = FALSE)

oi$archive

mies_survival_comma Choose Survivors According to the "Mu , Lambda" ("Comma") Strat-
egy

Description

Choose survivors during a MIES iteration using the "Comma" survival strategy, i.e. selecting sur-
vivors from the latest generation only, using a Selector operator, and choosing "elites" from sur-
vivors from previous generations using a different Selector operator.

When n_elite is greater than the number of alive individuals from previous generations, then all
these individuals from previous generations survive. In this case, it is possible that more than mu
- n_elite individuals from the current generation survive. Similarly, when mu is greater than the
number of alive individuals from the last generation, then all these individuals survive.

Usage

mies_survival_comma(inst, mu, survival_selector, n_elite, elite_selector, ...)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

mu (integer(1))
Population target size, non-negative integer.

survival_selector

(Selector)
Selector operator that selects surviving individuals depending on configura-
tion values and objective results. When survival_selector$operate() is
called, then objectives that are being minimized are multiplied with -1 (through
mies_get_fitnesses), since Selectors always try to maximize fitness.
The Selector must be primed on inst$search_space; this includes the "bud-
get" component when performing multi-fidelity optimization.
The given Selector may not return duplicates.

132 mies_survival_comma

n_elite (integer(1))
Number of individuals to carry over from previous generations. n_elite indi-
viduals will be selected by elite_selector, while mu - n_elite will be se-
lected by survival_selector from the most recent generation. n_elite may
be 0 (no elitism), in which case only individuals from the newest generation
survive. n_elite must be strictly smaller than mu to permit any optimization
progress.

elite_selector (Selector)
Selector operator that selects "elites", i.e. surviving individuals from previ-
ous generations, depending on configuration values and objective results. When
elite_selector$operate() is called, then objectives that are being minimized
are multiplied with -1 (through mies_get_fitnesses()), since Selectors al-
ways try to maximize fitness.
The Selector must be primed on inst$search_space; this includes the "bud-
get" component when performing multi-fidelity optimization.
The given Selector may not return duplicates.

... (any)
Ignored, for compatibility with other mies_survival_* functions.

Value

invisible data.table: The value of inst$archive$data, changed in-place with eol set to the
current generation for non-survivors.

See Also

Other mies building blocks: mies_evaluate_offspring(), mies_generate_offspring(), mies_get_fitnesses(),
mies_init_population(), mies_select_from_archive(), mies_step_fidelity(), mies_survival_plus()

Examples

set.seed(1)
library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))

)

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

mies_survival_plus 133

mies_init_population(inst = oi, mu = 3)
Usually the offspring is generated using mies_generate_offspring()
Here shorter for demonstration purposes.
offspring = generate_design_random(oi$search_space, 3)$data
mies_evaluate_offspring(oi, offspring = offspring)

State before: different generations of individuals. Alive individuals have
'eol' set to 'NA'.
oi$archive

s = sel("best")
s$prime(oi$search_space)
mies_survival_comma(oi, mu = 3, survival_selector = s,

n_elite = 2, elite_selector = s)

sel("best") lets only the best individuals survive.
mies_survival_comma selects from new individuals (generation 2 in this case)
and old individuals (all others) separately: n_elite = 2 from old,
mu - n_elite = 1 from new.
The surviving individuals have 'eol' set to 'NA'
oi$archive

mies_survival_plus Choose Survivors According to the "Mu + Lambda" ("Plus") Strategy

Description

Choose survivors during a MIES iteration using the "Plus" survival strategy, i.e. combining all alive
individuals from the latest and from prior generations indiscriminately and choosing survivors using
a survival Selector operator.

When mu is greater than the number of alive individuals, then all individuals survive.

Usage

mies_survival_plus(inst, mu, survival_selector, ...)

Arguments

inst (OptimInstance)
Optimization instance to evaluate.

mu (integer(1))
Population target size, non-negative integer.

survival_selector

(Selector)
Selector operator that selects surviving individuals depending on configura-
tion values and objective results. When survival_selector$operate() is
called, then objectives that are being minimized are multiplied with -1 (through
mies_get_fitnesses), since Selectors always try to maximize fitness.

134 mies_survival_plus

The Selector must be primed on inst$search_space; this includes the "bud-
get" component when performing multi-fidelity optimization.
The given Selector may not return duplicates.

... (any)
Ignored, for compatibility with other mies_survival_* functions.

Value

invisible data.table: The value of inst$archive$data, changed in-place with eol set to the
current generation for non-survivors.

See Also

Other mies building blocks: mies_evaluate_offspring(), mies_generate_offspring(), mies_get_fitnesses(),
mies_init_population(), mies_select_from_archive(), mies_step_fidelity(), mies_survival_comma()

Examples

set.seed(1)
library("bbotk")
lgr::threshold("warn")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))

)

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

mies_init_population(inst = oi, mu = 3)
offspring = generate_design_random(oi$search_space, 2)$data
mies_evaluate_offspring(oi, offspring = offspring)

State before: different generations of individuals. Alive individuals have
'eol' set to 'NA'.
oi$archive

s = sel("best")
s$prime(oi$search_space)
mies_survival_plus(oi, mu = 3, survival_selector = s)

sel("best") lets only the three best individuals survive.
The others have 'eol = 2' (the current generation).
oi$archive

mlr_terminators_budget 135

mlr_terminators_budget

Terminator that Limits Total Budget Component Evaluation

Description

Terminator that terminates after the sum (or similar aggregate) of a given "budget" search space
component croses a threshold.

Dictionary

This Terminator can be created with the short access form trm() (trms() to get a list), or through
the dictionary mlr_terminators in the following way:

preferred
trm("budget")
trms("budget") # takes vector IDs, returns list of Terminators

long form
mlr_terminators$get("budget")

Configuration Parameters

• budget :: numeric(1)
Total budget available, after which to stop. Not initialized and should be set to the desired
value during construction.

• aggregate :: function
Function taking a vector of values of the budget search space component, returning a scalar
value to be compared to the budget configuration parameter. If this function returns a value
greater or equal to budget the termination criterion is matched. Calling this function with
NULL must return the lower bound of the budget value; percentage progress is reported as the
progress from this lower bound to the value of budget. Initialized to sum().

Super class

bbotk::Terminator -> TerminatorBudget

Methods

Public methods:
• TerminatorBudget$new()

• TerminatorBudget$is_terminated()

• TerminatorBudget$clone()

Method new(): Initialize the TerminatorBudget object.

Usage:

136 mlr_terminators_genperfreached

TerminatorBudget$new()

Method is_terminated(): Is TRUE if when the termination criterion is matched, FALSE other-
wise.

Usage:
TerminatorBudget$is_terminated(archive)

Arguments:

archive Archive Archive to check.

Returns: logical(1): Whether to terminate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorBudget$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

library("bbotk")
Evaluate until sum of budget component of evaluated configs is >= 100
trm("budget", budget = 100)

Evaluate until sum of two to the power of budget component is >= 100
trm("budget", budget = 1024, aggregate = function(x) sum(2 ^ x))

mlr_terminators_genperfreached

Terminator That Stops When a Generation-Wise Aggregated Value
Reaches a Target

Description

Terminator that terminates when a value, aggregated over generations, reaches a target value.

The user-supplied fitness_aggregator function is called whenever the archive of evaluated con-
figurations contains a new generation. The function is supplied with the fitness values, and op-
tionally other data, of all individuals that are alive at that point (include_previous_generations
= FALSE) or at any point (include_previous_generations = TRUE). Its result is saved inside the
$data_extra field of the Archive object. Termination is then signaled when the aggregated value
meets or exceeds level.

The mies_aggregate_single_generation() function is used, see the documentation there for
the functioning of fitness_aggregator. The fitness_aggregator functions used for termina-
tion must return a scalar value or NULL, if a generation should be ignored. The value returned by
fitness_aggregator should be increasing for better performance, even if the underlying objective
is being minimized.

mlr_terminators_genperfreached 137

Multi-Fidelity Optimization

Multi-fidelity optimization can introduce a few edge-cases because the individuals inside the gen-
eration(s) being aggregated may have been evaluated with different fidelity values, which can give
biased results.

When OptimizerMies is constructed with multi_fidelity set to TRUE, it typically evaluates some
configurations multiple times, at first with a lower fidelity, followed by an evaluation at "full" fi-
delity. fitness_aggregator will only be called for generations containing entirely full-fidelity-
evaluations will be aggregated.

This is achieved by caching aggregated fitness values in the $data_extra field of the Archive and
only ever calling fitness_aggregator for a generation that does not have a cached value. Since
mies_step_fidelity() will count low-fidelity evaluations as part of the "previous" generation,
fitness_aggregator will not see them. Note, however that if fitness_aggregator returns NULL,
it will be called again should a second evaluation occur in the same generation, since NULL is not
cached and instead treated as absent.

It is possible for fitness_aggregator to see fitness values that were evaluated with different fi-
delities when using OptimizerMies, and

1. fidelity_monotonic is set to TRUE and fidelity decreases (unlikely setup), or

2. if fidelity_current_gen_only is set to FALSE (advanced usage), or

3. The value returned by the fidelity configuration parameter (not fidelity_offspring)
changes over the course of optimization and include_previous_generations of TerminatorGenerationStagnation
is set to TRUE.

(1) and (2) only need consideration in advanced scenarios, but (3) may be a common, e.g. when do-
ing multi-fidelity optimization and stopping on reaching an overall dominated hypervolume target.
In this case, it may be necessary to inspect the budget value given to fitness_aggregator and to
remove all individuals evaluated with a different than the current fidelity.

When using a custom-written optimization loop, case (1) relates to fidelity_monotonic argument
of mies_step_fidelity() and mies_init_population(), and case (2) relates to the current_gen_only
argument of mies_step_fidelity() and the fidelity_new_individuals_only argument of mies_init_population().
Case (3) relates to changing the fidelity given to mies_step_fidelity() if that function is used, or
to changing the fidelity given to mies_evaluate_offspring() if mies_step_fidelity() is not
used.

Dictionary

This Terminator can be created with the short access form trm() (trms() to get a list), or through
the dictionary mlr_terminators in the following way:

preferred
trm("genperfreached")
trms("genperfreached") # takes vector IDs, returns list of Terminators

long form
mlr_terminators$get("genperfreached")

138 mlr_terminators_genperfreached

Configuration Parameters

• fitness_aggregator :: function
Aggregation function, called with information about alive individuals of each generation. This
argument is passed to mies_aggregate_single_generation(), see there for more details.
The aggregated values returned by fitness_aggregator should be maximized, so a larger
value must be returned to indicate improvement in a generation, even if an underlying objec-
tive is being minimized. The return value must be a scalar numeric(1).

• include_previous_generations :: logical(1)
Whether to aggregate over all individuals that were evaluated (TRUE), or only the individuals
alive in the current generation (FALSE). If multi-fidelity optimization is being performed and
individuals were re-evaluated with a different fidelity, their x_id will be the same and only the
last fidelity-reevaluation will be given to fitness_aggregator. However, individuals from
different generations may still have been evaluated with different fidelity and it may be neces-
sary to inspect the budget value given to fitness_aggregator if include_previous_generations
is TRUE in a multi-fidelity-setting. See the "Multi-Fidelity Optimization" section for more.

• level :: numeric(1)
Minimum aggregated value for which to terminate.

Super class

bbotk::Terminator -> TerminatorGenerationPerfReached

Methods

Public methods:
• TerminatorGenerationPerfReached$new()

• TerminatorGenerationPerfReached$is_terminated()

• TerminatorGenerationPerfReached$clone()

Method new(): Initialize the TerminatorGenerationPerfReached object.

Usage:
TerminatorGenerationPerfReached$new()

Method is_terminated(): Is TRUE if when the termination criterion is matched, FALSE other-
wise.

Usage:
TerminatorGenerationPerfReached$is_terminated(archive)

Arguments:
archive Archive Archive to check.

Returns: logical(1): Whether to terminate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorGenerationPerfReached$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

mlr_terminators_gens 139

Examples

set.seed(1)
library("bbotk")
lgr::threshold("warn")

Terminate when hypervolume with nadir `c(0, 0, ...)`
does not improve for 3 generations by at least 0.1:
tg <- trm("genperfreached",

fitness_aggregator = function(fitnesses) domhv(fitnesses),
include_previous_generations = TRUE,
level = 1

)

set.seed(1)
objective <- ObjectiveRFun$new(

fun = function(xs) {
list(y1 = xs$x1, y2 = xs$x2)

},
domain = ps(x1 = p_dbl(0, 1), x2 = p_dbl(-1, 0)),
codomain = ps(y1 = p_dbl(0, 1, tags = "maximize"),

y2 = p_dbl(-1, 0, tags = "minimize"))
)

oi <- OptimInstanceMultiCrit$new(objective, terminator = tg)

op <- opt("mies",
lambda = 4, mu = 4,
mutator = mut("gauss", sdev = 0.1),
recombinator = rec("xounif"),
parent_selector = sel("random"),
survival_selector = sel("best", scl("hypervolume"))

)

op$optimize(oi)

the observed aggregated values:
oi$archive$data_extra$TerminatorGenerationPerfReached

... or as calculated by mies_generation_apply
mies_generation_apply(oi$archive, function(fitnesses) {

domhv(fitnesses)
}, include_previous_generations = TRUE)
#' @export

mlr_terminators_gens Terminator that Counts OptimizerMies Generations

Description

Terminator that terminates after a given number of generations have passed in OptimizerMies.

140 mlr_terminators_gens

If OptimizerMies is started on an archive that already has evaluated configurations, these evalua-
tions count as generation 0. If an initial, randomly sampled generation is generated by OptimizerMies,
it has generation number 1. Setting generation to 1 therefore terminates after the evaluation of
the initial sample, unless no initial sample is generated by OptimizerMies and instead found in the
archive. generation set to 0 avoids any evaluation within OptimizerMies (but is ignored if no dob
column is in the archive).

When doing multi-fidelity optimization, and fidelity of a configuration is increased because of a
step in the fidelity schedule, or because they were sampled new and survived, then this fidelity
refinement happens as part of an already started generation. This means termination at this fidelity
refinement step is avoided.

Dictionary

This Terminator can be created with the short access form trm() (trms() to get a list), or through
the dictionary mlr_terminators in the following way:

preferred
trm("gens")
trms("gens") # takes vector IDs, returns list of Terminators

long form
mlr_terminators$get("gens")

Configuration Parameters

• generations :: integer(1)
Number of generations to evaluate, after which to stop. Not initialized and should be set to
the desired value during construction.

Super class

bbotk::Terminator -> TerminatorGenerations

Methods

Public methods:
• TerminatorGenerations$new()

• TerminatorGenerations$is_terminated()

• TerminatorGenerations$clone()

Method new(): Initialize the TerminatorGenerations object.

Usage:
TerminatorGenerations$new()

Method is_terminated(): Is TRUE if when the termination criterion is matched, FALSE other-
wise.

Usage:
TerminatorGenerations$is_terminated(archive)

mlr_terminators_genstag 141

Arguments:

archive Archive Archive to check.

Returns: logical(1): Whether to terminate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorGenerations$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

library("bbotk")
trm("gens", generations = 10)

mlr_terminators_genstag

Terminator That Stops When a Generation-Wise Aggregated Value
Stagnates

Description

Terminator that terminates when a value, aggregated over generations, stagnates.

The user-supplied fitness_aggregator function is called whenever the archive of evaluated con-
figurations contains a new generation. The function is supplied with the fitness values, and op-
tionally other data, of all individuals that are alive at that point (include_previous_generations
= FALSE) or at any point (include_previous_generations = TRUE). Its result is saved inside the
$data_extra field of the Archive object. Termination is then signaled when the aggregated value
has stagnated, or not improved enough, for a given number of generations.

The mies_aggregate_single_generation() function is used, see the documentation there for
the functioning of fitness_aggregator. The fitness_aggregator functions used for termina-
tion must return a scalar value or NULL, if a generation should be ignored. The value returned by
fitness_aggregator should be increasing for better performance, even if the underlying objective
is being minimized.

Termination is triggered in generation i when the aggregated value, returned by fitness_aggregator,
of generation i - patience is not greater than the maximum of all later generations (i - patience
+ 1 .. i) by at least min_delta.

If the aggregated value for generation i - patience is not known, for example because fewer than
patience + 1 generations have been evaluated so far, because fitness_aggregator returned NULL,
or because previous generations were evaluated when TerminatorGenerationStagnation was
not used, then termination is not triggered, regardless of whether values are known for generations
before generation i - patience.

142 mlr_terminators_genstag

Multi-Fidelity Optimization

Multi-fidelity optimization can introduce a few edge-cases, for one because the individuals inside
the generation(s) being aggregated may have been evaluated with different fidelity values, which
can give biased results. Besides that, it may also be problematic that increase of fidelity could
lead to "worse" aggregated results (e.g. because of reduced noise making max-aggregation worse),
triggering an undesired termination.

Termination from fidelity changes:
Higher fidelity values can sometimes lead to worse aggregated fitness values, which can trigger
undesired termination. However, in many multi-fidelity-setups, terminating before the last fidelity
increase, controlled e.g. by the fidelity configuration parameter of OptimizerMies, may be
undesirable to begin with.
If the fidelity increase follows a fixed schedule based on evaluations or generations, one solution
may be to use a TerminatorCombo together with a TerminatorEvals or TerminatorGenerations
that prevents premature termination. Termination should happen at least patience generations
after the last switch to the highest fidelity if termination from biased values because of fidelity
changes should be avoided.
Otherwise it may be necessary to check whether the budget value given to fitness_aggregator
reached the desired level, and to prevent comparisons by letting fitness_aggregator return
NULL if not.
In both cases one may still have a problem with biased aggregations within an aggregated set of
individuals if include_previous_generations is TRUE.

Biases within aggregated generation(s):
When OptimizerMies is constructed with multi_fidelity set to TRUE, it typically evaluates
some configurations multiple times, at first with a lower fidelity, followed by an evaluation at
"full" fidelity. fitness_aggregator will only be called for generations containing entirely full-
fidelity-evaluations will be aggregated.
This is achieved by caching aggregated fitness values in the $data_extra field of the Archive and
only ever calling fitness_aggregator for a generation that does not have a cached value. Since
mies_step_fidelity() will count low-fidelity evaluations as part of the "previous" generation,
fitness_aggregator will not see them. Note, however that if fitness_aggregator returns
NULL, it will be called again should a second evaluation occur in the same generation, since NULL
is not cached and instead treated as absent.
It is possible for fitness_aggregator to see fitness values that were evaluated with different
fidelities when using OptimizerMies, and

1. fidelity_monotonic is set to TRUE and fidelity decreases (unlikely setup), or
2. if fidelity_current_gen_only is set to FALSE (advanced usage), or
3. The value returned by the fidelity configuration parameter (not fidelity_offspring)

changes over the course of optimization and include_previous_generations of TerminatorGenerationStagnation
is set to TRUE.

(1) and (2) only need consideration in advanced scenarios, but (3) may be a common, e.g. when
doing multi-fidelity optimization and stopping on overall dominated hypervolume stagnation. In
this case, it may be necessary to inspect the budget value given to fitness_aggregator and to
remove all individuals evaluated with a different than the current fidelity.
When using a custom-written optimization loop, case (1) relates to fidelity_monotonic ar-
gument of mies_step_fidelity() and mies_init_population(), and case (2) relates to the

mlr_terminators_genstag 143

current_gen_only argument of mies_step_fidelity() and the fidelity_new_individuals_only
argument of mies_init_population(). Case (3) relates to changing the fidelity given to mies_step_fidelity()
if that function is used, or to changing the fidelity given to mies_evaluate_offspring() if
mies_step_fidelity() is not used.

Dictionary

This Terminator can be created with the short access form trm() (trms() to get a list), or through
the dictionary mlr_terminators in the following way:

preferred
trm("genstag")
trms("genstag") # takes vector IDs, returns list of Terminators

long form
mlr_terminators$get("genstag")

Configuration Parameters

• fitness_aggregator :: function
Aggregation function, called with information about alive individuals of each generation. This
argument is passed to mies_aggregate_single_generation(), see there for more details.
The aggregated values returned by fitness_aggregator should be maximized, so a larger
value must be returned to indicate improvement in a generation, even if an underlying objec-
tive is being minimized. The return value must be a scalar numeric(1).

• include_previous_generations :: logical(1)
Whether to aggregate over all individuals that were evaluated (TRUE), or only the individuals
alive in the current generation (FALSE). If multi-fidelity optimization is being performed and
individuals were re-evaluated with a different fidelity, their x_id will be the same and only the
last fidelity-reevaluation will be given to fitness_aggregator. However, individuals from
different generations may still have been evaluated with different fidelity and it may be neces-
sary to inspect the budget value given to fitness_aggregator if include_previous_generations
is TRUE in a multi-fidelity-setting. See the "Multi-Fidelity Optimization" section for more.

• min_delta :: numeric(1)
Minimum positive change of aggregated value to count as improvement. This value may
also be negative, resulting in termination only when aggregated value decreases by at least the
given amount. However, depending on the survival setup, or on include_previous_generations,
it is possible that aggregate values never decrease; in this case, setting min_delta to a negative
value may never trigger termination. Initialized to 0.

• patience :: integer(1)
Number of generations with no improvement better than min_delta after which to terminate.
Initialized to 1.

Super class

bbotk::Terminator -> TerminatorGenerationStagnation

144 mlr_terminators_genstag

Methods

Public methods:
• TerminatorGenerationStagnation$new()

• TerminatorGenerationStagnation$is_terminated()

• TerminatorGenerationStagnation$clone()

Method new(): Initialize the TerminatorGenerationStagnation object.

Usage:
TerminatorGenerationStagnation$new()

Method is_terminated(): Is TRUE if when the termination criterion is matched, FALSE other-
wise.

Usage:
TerminatorGenerationStagnation$is_terminated(archive)

Arguments:
archive Archive Archive to check.

Returns: logical(1): Whether to terminate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorGenerationStagnation$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

set.seed(1)
library("bbotk")
lgr::threshold("warn")

Terminate when hypervolume with nadir `c(0, 0, ...)`
does not improve for 3 generations by at least 0.1:
tg <- trm("genstag",

fitness_aggregator = function(fitnesses) domhv(fitnesses),
include_previous_generations = TRUE,
min_delta = 0.1,
patience = 3

)

set.seed(1)
objective <- ObjectiveRFun$new(

fun = function(xs) {
list(y1 = xs$x1, y2 = xs$x2)

},
domain = ps(x1 = p_dbl(0, 1), x2 = p_dbl(-1, 0)),
codomain = ps(y1 = p_dbl(0, 1, tags = "maximize"),

y2 = p_dbl(-1, 0, tags = "minimize"))

mut 145

)

oi <- OptimInstanceMultiCrit$new(objective, terminator = tg)

op <- opt("mies",
lambda = 4, mu = 4,
mutator = mut("gauss", sdev = 0.1),
recombinator = rec("xounif"),
parent_selector = sel("random"),
survival_selector = sel("best", scl("hypervolume"))

)

op$optimize(oi)

the observed aggregated values:
oi$archive$data_extra$TerminatorGenerationStagnation

... or as calculated by mies_generation_apply
mies_generation_apply(oi$archive, function(fitnesses) {

domhv(fitnesses)
}, include_previous_generations = TRUE)
#' @export

mut Short Access Forms for Operators

Description

These functions complement dict_mutators, dict_recombinators, dict_selectors with functions in
the spirit of mlr3::mlr_sugar.

Usage

mut(.key, ...)

muts(.keys, ...)

rec(.key, ...)

recs(.key, ...)

sel(.key, ...)

sels(.key, ...)

scl(.key, ...)

scls(.key, ...)

146 mut

ftr(.key, ...)

ftrs(.key, ...)

Arguments

.key (character(1))
Key passed to the respective dictionary to retrieve the object.

... (named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. See mlr3misc::dictionary_sugar_get()
for more details.

.keys (character())
Keys passed to the respective dictionary to retrieve multiple objects.

Value

• Mutator for mut()

• list of Mutator for muts()

• Recombinator for rec().

• list of Recombinator for recs().

• Selector for sel().

• list of Selector for sels().

• Scalor for scl().

• list of Scalor for scls().

See Also

Other dictionaries: dict_filtors, dict_mutators, dict_recombinators, dict_scalors, dict_selectors

Examples

mut("gauss", sdev = 0.5)
rec("xounif")
sel("random")
scl("nondom")

Mutator 147

Mutator Mutator Base Class

Description

Base class representing mutation operations, inheriting from MiesOperator.

Mutations get a table of individuals as input and return a table of modified individuals as output.
Individuals are acted on as individuals: every line of output corresponds to the same line of input,
and presence or absence of other input lines does not affect the result.

Mutation operations are performed in ES algorithms to facilitate exploration of the search space
around individuals.

Inheriting

Mutator is an abstract base class and should be inherited from. Inheriting classes should implement
the private $.mutate() function. The user of the object calls $operate(), and the arguments are
passed on to private $.mutate() after checking that the operator is primed, and that the values
argument conforms to the primed domain. Typically, the $initialize() function should also be
overloaded, and optionally the $prime() function; they should call their super equivalents.

In many cases, it is advisable to inherit from one of the abstract subclasses, such as MutatorNumeric,
or MutatorDiscrete.

Super class

miesmuschel::MiesOperator -> Mutator

Methods

Public methods:
• Mutator$new()

• Mutator$clone()

Method new(): Initialize base class components of the Mutator.

Usage:
Mutator$new(
param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"),
param_set = ps(),
packages = character(0),
dict_entry = NULL,
own_param_set = quote(self$param_set)

)

Arguments:
param_classes (character)

Classes of parameters that the operator can handle. May contain any of "ParamLgl",
"ParamInt", "ParamDbl", "ParamFct". Default is all of them.
The $param_classes field will reflect this value.

148 MutatorDiscrete

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to
super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate
to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

own_param_set (language)
An expression that evaluates to a ParamSet indicating the configuration parameters that are
entirely owned by this operator class (and not proxied from a construction argument object).
This should be quote(self$param_set) (the default) when the param_set argument is not
a list of expressions.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Mutator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other base classes: FiltorSurrogate, Filtor, MiesOperator, MutatorDiscrete, MutatorNumeric,
OperatorCombination, RecombinatorPair, Recombinator, Scalor, SelectorScalar, Selector

Other mutators: MutatorDiscrete, MutatorNumeric, OperatorCombination, dict_mutators_cmpmaybe,
dict_mutators_erase, dict_mutators_gauss, dict_mutators_maybe, dict_mutators_null,
dict_mutators_proxy, dict_mutators_sequential, dict_mutators_unif

MutatorDiscrete Discrete Mutator Base Class

Description

Base class for mutation operations on discrete individuals, inheriting from Mutator.

MutatorDiscrete operators perform mutation on discrete (logical and factor valued) individuals.
Inheriting operators implement the private $.mutate_discrete() function that is called once for
each individual and is given a character vector.

MutatorDiscrete 149

Inheriting

MutatorDiscrete is an abstract base class and should be inherited from. Inheriting classes should
implement the private $.mutate_discrete() function. During $operate(), the $.mutate_discrete()
function is called once for each individual, with the parameters values (the individual as a single
character vector), and levels (a list of character containing the possible values for each element
of values). Typically, $initialize() should also be overloaded.

Super classes

miesmuschel::MiesOperator -> miesmuschel::Mutator -> MutatorDiscrete

Methods

Public methods:
• MutatorDiscrete$new()

• MutatorDiscrete$clone()

Method new(): Initialize base class components of the MutatorNumeric.

Usage:
MutatorDiscrete$new(
param_classes = c("ParamLgl", "ParamFct"),
param_set = ps(),
packages = character(0),
dict_entry = NULL,
own_param_set = quote(self$param_set)

)

Arguments:
param_classes (character)

Classes of parameters that the operator can handle. May contain any of "ParamLgl",
"ParamFct". Default is both of them.
The $param_classes field will reflect this value.

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to
super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate
to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

150 MutatorNumeric

own_param_set (language)
An expression that evaluates to a ParamSet indicating the configuration parameters that are
entirely owned by this operator class (and not proxied from a construction argument object).
This should be quote(self$param_set) (the default) when the param_set argument is not
a list of expressions.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MutatorDiscrete$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other base classes: FiltorSurrogate, Filtor, MiesOperator, MutatorNumeric, Mutator, OperatorCombination,
RecombinatorPair, Recombinator, Scalor, SelectorScalar, Selector

Other mutators: MutatorNumeric, Mutator, OperatorCombination, dict_mutators_cmpmaybe,
dict_mutators_erase, dict_mutators_gauss, dict_mutators_maybe, dict_mutators_null,
dict_mutators_proxy, dict_mutators_sequential, dict_mutators_unif

MutatorNumeric Numeric Mutator Base Class

Description

Base class for mutation operations on numeric and integer valued individuals, inheriting from
Mutator.

MutatorNumeric operators perform mutation on numeric (integer and real valued) individuals. In-
heriting operators implement the private $.mutate_numeric() function that is called once for each
individual and is given a numeric vector.

Inheriting

MutatorNumeric is an abstract base class and should be inherited from. Inheriting classes should
implement the private $.mutate_numeric() function. During $operate(), the $.mutate_numeric()
function is called once for each individual, with the parameters values (the individual as a single
numeric vector), lowers and uppers (numeric vectors, the lower and upper bounds for each com-
ponent of values). Typically, $initialize() should also be overloaded.

MutatorNumerics that perform real-valued operations, such as e.g. MutatorGauss, operate on
integers by widening the lower and upper bounds of integer components by 0.5, applying their
operation, and rounding resulting values to the nearest integer (while always staying inside bounds).

Super classes

miesmuschel::MiesOperator -> miesmuschel::Mutator -> MutatorNumeric

MutatorNumeric 151

Methods

Public methods:
• MutatorNumeric$new()

• MutatorNumeric$clone()

Method new(): Initialize base class components of the MutatorNumeric.

Usage:
MutatorNumeric$new(
param_classes = c("ParamInt", "ParamDbl"),
param_set = ps(),
packages = character(0),
dict_entry = NULL,
own_param_set = quote(self$param_set)

)

Arguments:
param_classes (character)

Classes of parameters that the operator can handle. May contain any of "ParamInt",
"ParamDbl". Default is both of them.
The $param_classes field will reflect this value.

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to
super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate
to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

own_param_set (language)
An expression that evaluates to a ParamSet indicating the configuration parameters that are
entirely owned by this operator class (and not proxied from a construction argument object).
This should be quote(self$param_set) (the default) when the param_set argument is not
a list of expressions.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MutatorNumeric$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

152 OperatorCombination

See Also

Other base classes: FiltorSurrogate, Filtor, MiesOperator, MutatorDiscrete, Mutator, OperatorCombination,
RecombinatorPair, Recombinator, Scalor, SelectorScalar, Selector

Other mutators: MutatorDiscrete, Mutator, OperatorCombination, dict_mutators_cmpmaybe,
dict_mutators_erase, dict_mutators_gauss, dict_mutators_maybe, dict_mutators_null,
dict_mutators_proxy, dict_mutators_sequential, dict_mutators_unif

OperatorCombination Self-Adaptive Operator Combinations

Description

Combines multiple operators and makes operator-configuration parameters self-adaptive.

The OperatorCombination operators combine operators for different subspaces of individuals by
wraping other MiesOperators given during construction. Different MiesOperators are assigned to
different components or sets of components and operate on them independently of the rest of the
components or the other operators. An operator can be assigned to a single component by giving it
in operators with the name of the component, or to multiple components by giving it in operators
with the name of a group. Groups are created by the groups argument, but several default groups
that catch components by type exist.

Details

Operators can be made self-adaptive by coupling their configuration parameter values to values in
individuals. This is done by giving functions in adaptions; these functions are executed for each
individual before an operator is applied, and the result given to a named operator configuration
parameter.

OperatorCombination is the base class from which MutatorCombination and RecombinatorCombination
inherit. The latter two are to be used for Mutator and Recombinator objects, respectively.

Besides groups created with the groups construction argument, there are special groups that all
unnamed operators fall into based on their Param class: "ParamInt", "ParamDbl", "ParamFct",
and "ParamLgl". A component of an individual that is not named directly in operators or made
part of a group in groups is automatically in one of these special groups. There is furthermore a
special catch-all group "ParamAny", which catches all components that are are not operated directly,
not in a group, and not in another special group that is itself named directly or in a group. I.e., all
components that would otherwise have no assigned operation.

RecombinatorCombination can only combine operators where $n_indivs_in and $n_indivs_out
can be combined. This is currently supported either when $n_indivs_in and $n_indivs_out
for each operator are the same (but $n_indivs_in may be unequal $n_indivs_out in eacho of
them); or when $n_indivs_in is equal to $n_indivs_out for each operator and the set of all
$n_indivs_in that occur contains 1 and one more integer. $n_indivs_in and $n_indivs_out for
the resulting RecombinatorCombination operator will be set the maximum of occuring $n_indivs_in
and $n_indivs_out, respectively.

OperatorCombination 153

Supported Operand Types

Supported Param classes are calculated based on the supported classes of the wrapped operators.
They are frequently just the set union of supported classes, unless inference can be drawn from
type-specific groups that an operator is assigned to. If e.g. an operator that supports ParamDbl and
ParamInt is assigned to group "ParamInt", and an operator that supports ParamLgl is assigned to
component "a", then the result will support ParamLgl and ParamInt only.

Configuration Parameters

The OperatorCombination has the configuration parameters of all encapsulated MiesOperators,
minus the configuration parameters that are named in the adaptions. Configuration parameter
names are prefixed with the name of the MiesOperator in the operators list.

Dictionary

This Mutator can be created with the short access form mut() (muts() to get a list), or through the
the dictionary dict_mutators in the following way:

preferred:
mut("combine", <operators>, ...)
muts("combine", <operators>, ...) # takes vector IDs, returns list of Mutators

long form:
dict_mutators$get("combine", <operators>, ...)

This Recombinator can be created with the short access form rec() (recs() to get a list), or
through the the dictionary dict_recombinators in the following way:

preferred:
rec("combine", <operators>, ...)
recs("combine", <operators>, ...) # takes vector IDs, returns list of Recombinators

long form:
dict_recombinators$get("combine", <operators>, ...)

Super class

miesmuschel::MiesOperator -> OperatorCombination

Active bindings

operators (named list of MiesOperator)
List of operators to apply to components of individuals, as set during construction. Read-only.

groups (named list of character)
List of groups that operators can act on, as set during construction. Read-only.

adaptions (named list of function)
List of functions used for self-adaption of operators, as set during construction. Read-only.

154 OperatorCombination

binary_fct_as_logical (logical(1))
Whether to treat binary ParamFct components of ParamSets as ParamLgl with respect to the
special groups "ParamLgl" and "ParamFct", as set during construction. Read-only.

on_type_not_present (character(1))
Action to perform during $prime() when an operator is assigned to a type special group but
there is no component available that falls in this group. See the construction argument. Can
be changed during the object’s lifetime.

on_name_not_present (character(1))
Action to perform during $prime() when an operator is assigned to a specifically named
component, but the component is not present. See the construction argument. Can be changed
during the object’s lifetime.

Methods

Public methods:

• OperatorCombination$new()

• OperatorCombination$prime()

• OperatorCombination$clone()

Method new(): Initialize the OperatorCombination object.

Usage:
OperatorCombination$new(
operators,
groups = list(),
adaptions = list(),
binary_fct_as_logical = FALSE,
on_type_not_present = "warn",
on_name_not_present = "stop",
granularity = 1,
dict_entry = NULL,
dict_shortaccess = NULL

)

Arguments:

operators (named list of MiesOperator)
List of operators to apply to components of individuals. Names are either names of indi-
vidual components, or group names which are either as defined through groups or special
groups. Individual components can only be member of either a (non-special) group or
named in operators, so a name that occurs in operators may not be a member of a group
as defined in groups.
The $operators field will reflect this value.

groups (named list of character)
List of groups that operators can act on. Names of this list define new groups. The content
of each list element contains the names of components or special groups (a Param subclass
name or "ParamAny") to subsume under the group. Individual components can only be
member of either a (non-special) group or named in operators, so a name that occurs in
operators may not be a member of a group as defined in groups. The default is the empty

OperatorCombination 155

list.
The $groups field will reflect this value.

adaptions (named list of function)
List of functions used for self-adaption of operators. The names of the list must be names of
configuration parameters of wrapped operators, prefixed with the corresponding name in the
operators list. This is the same name as the configuration parameter would otherwise have
if exposed by the OperatorCombination object. The values in the list must be functions
that receive a single input, the individual or individuals being operated on, as a data.table.
It must return a value that is then assigned to the configuration parameter of the operator
to which it pertains. Note that MutatorCombination adaption functions are always called
with a data.table containing a single row, while RecombinatorCombination adaption
functions are called with data.tables with multiple rows according to $n_indivs_in. In
both cases, the return value must be a scalar. The default is the empty list.
The $adaption field will reflect this value.

binary_fct_as_logical (logical(1))
Whether to treat binary ParamFct components of ParamSets as ParamLgl with respect to
the special groups "ParamLgl" and "ParamFct". This does not perform any conversion, so
a MiesOperator assigned to the "ParamLgl" special group when binary_fct_as_logical
is TRUE and there are binary ParamFcts present will receive a factorial value and must also
support ParamFct in this case. This is checked during $prime(), but not during construc-
tion. Default is FALSE.
The $binary_fct_as_logical field will reflect this value.

on_type_not_present (character(1))
Action to perform during $prime() when an operator is assigned to a type special group
but there is no component available that falls in this group, either because no components
of the respective type are present, or because all these components are also directly named
in operators or in groups. One of "quiet" (do nothing), "warn" (give warning, default),
or "stop" (generate an error).
The writable $on_type_not_present field will reflect this value.

on_name_not_present (character(1))
Action to perform during $prime() when an operator is assigned to a specifically named
component, but the component is not present. One of "quiet" (do nothing), "warn" (give
warning), or "stop" (generate an error, default).
The writable $on_name_not_present field will reflect this value.

granularity (integer(1))
At what granularity to query adaptions for sets of individuals. Functions in adaptions are
always called once per granularity individuals in input values, and the function argument
in these calls will then have granularity number of rows. This is used internally, it is set
to 1 for MutatorCombination, and to $n_indivs_in for RecombinatorCombination.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

dict_shortaccess (character(1) | NULL)
Name of the Dictionary short access function in which the operator is registered. This is
used to inform the user about how to construct a given object. Should ordinarily be one of

156 OperatorCombination

"mut", "rec", "sel".
The $dict_shortaccess field will reflect this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operators given to operators during construction. Priming of wrapped operators happens ac-
cording to component assignments to wrapped operators.

Usage:
OperatorCombination$prime(param_set)

Arguments:
param_set (ParamSet)

Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
OperatorCombination$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Super classes

miesmuschel::MiesOperator -> miesmuschel::OperatorCombination -> MutatorCombination

Methods

Public methods:
• MutatorCombination$new()

• MutatorCombination$clone()

Method new(): Initialize the MutatorCombination object.

Usage:
MutatorCombination$new(
operators = list(),
groups = list(),
adaptions = list(),
binary_fct_as_logical = FALSE,
on_type_not_present = "warn",
on_name_not_present = "stop"

)

Arguments:
operators see above.
groups see above.
adaptions see above.
binary_fct_as_logical see above.
on_type_not_present see above.

OperatorCombination 157

on_name_not_present see above.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MutatorCombination$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Super classes

miesmuschel::MiesOperator -> miesmuschel::OperatorCombination -> RecombinatorCombination

Active bindings

n_indivs_in (integer(1))
Number of individuals to consider at the same time. When operating, the number of input
individuals must be divisible by this number.

n_indivs_out (integer(1))
Number of individuals produced for each group of $n_indivs_in individuals.

Methods

Public methods:
• RecombinatorCombination$new()

• RecombinatorCombination$clone()

Method new(): Initialize the RecombinatorCombination object.

Usage:
RecombinatorCombination$new(
operators = list(),
groups = list(),
adaptions = list(),
binary_fct_as_logical = FALSE,
on_type_not_present = "warn",
on_name_not_present = "stop"

)

Arguments:
operators see above.
groups see above.
adaptions see above.
binary_fct_as_logical see above.
on_type_not_present see above.
on_name_not_present see above.

Method clone(): The objects of this class are cloneable with this method.

Usage:

158 OperatorCombination

RecombinatorCombination$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other base classes: FiltorSurrogate, Filtor, MiesOperator, MutatorDiscrete, MutatorNumeric,
Mutator, RecombinatorPair, Recombinator, Scalor, SelectorScalar, Selector

Other mutators: MutatorDiscrete, MutatorNumeric, Mutator, dict_mutators_cmpmaybe, dict_mutators_erase,
dict_mutators_gauss, dict_mutators_maybe, dict_mutators_null, dict_mutators_proxy,
dict_mutators_sequential, dict_mutators_unif

Other mutator wrappers: dict_mutators_cmpmaybe, dict_mutators_maybe, dict_mutators_proxy,
dict_mutators_sequential

Other recombinators: RecombinatorPair, Recombinator, dict_recombinators_cmpmaybe, dict_recombinators_convex,
dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null, dict_recombinators_proxy,
dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap, dict_recombinators_xonary,
dict_recombinators_xounif

Other recombinator wrappers: dict_recombinators_cmpmaybe, dict_recombinators_maybe,
dict_recombinators_proxy, dict_recombinators_sequential

Examples

set.seed(1)
data = data.frame(x = 0, y = 0, a = TRUE, b = "a",

stringsAsFactors = FALSE) # necessary for R <= 3.6
p = ps(x = p_dbl(-1, 1), y = p_dbl(-1, 1), a = p_lgl(), b = p_fct(c("a", "b")))

Demo operators:
m0 = mut("null") # no mutation
msmall = mut("gauss", sdev = 0.1) # mutates to small value around 0
mbig = mut("gauss", sdev = 100) # likely mutates to +1 or -1
mflip = mut("unif", can_mutate_to_same = FALSE) # flips TRUE/"a" to FALSE/"b"

original:
data

operators by name
op = mut("combine", operators = list(x = msmall, y = mbig, a = m0, b = mflip))
op$prime(p)
op$operate(data)

operators by type
op = mut("combine",

operators = list(ParamDbl = msmall, ParamLgl = m0, ParamFct = mflip)
)
op$prime(p)
op$operate(data)

the binary ParamFct 'b' counts as 'ParamLgl' when

OperatorCombination 159

'binary_fct_as_logical' is set to 'TRUE'.
op = mut("combine",

operators = list(ParamDbl = msmall, ParamLgl = m0),
binary_fct_as_logical = TRUE

)
op$prime(p)
op$operate(data)

operators by type; groups can be mixed types
op = mut("combine",

operators = list(group1 = m0, group2 = msmall, group3 = mflip),
groups = list(group1 = c("a", "x"), group2 = "y", group3 = "b")

)
op$prime(p)
op$operate(data)

Special type-groups can be used inside groups.
op = mut("combine",

operators = list(group1 = m0, b = mflip),
groups = list(group1 = c("ParamDbl", "a"))

)
op$prime(p)
op$operate(data)

Type-groups only capture all parameters that were not caught by name.
The special 'ParamAny' group captures all that is left.
op = mut("combine",

operators = list(ParamAny = m0, ParamDbl = msmall, x = mbig)
)
op$prime(p)
op$operate(data)

Configuration parameters are named by names in the 'operators' list.
op$param_set

###
Self-adaption:
In this example, the 'ParamDbl''s operation is changed depending on the
value of 'b'.
op = mut("combine",

operators = list(ParamAny = m0, ParamLgl = mflip, ParamDbl = msmall),
adaptions = list(ParamDbl.sdev = function(x) if (x$a) 100 else 0.1)

)
op$prime(p)

data2 = data[c(1, 1, 1, 1),]
data2$a = c(TRUE, TRUE, FALSE, FALSE)

data2
Note the value of x$a gets used line-wise, and that it is used *before*
being flipped here. So the first two lines get large mutations, even though
they have 'a' 'FALSE' after the operation.
op$operate(data2)

160 OptimizerMies

OptimizerMies Mixed Integer Evolution Strategies Optimizer

Description

Perform optimization using evolution strategies. OptimizerMies and TunerMies implement a stan-
dard ES optimization algorithm, performing initialization first, followed by a loop of performance
evaluation, survival selection, parent selection, mutation, and recombination to generate new in-
dividuals to be evaluated. Currently, two different survival modes ("comma" and "plus") are sup-
ported. Multi-fidelity optimization, similar to the "rolling-tide" algorithm described in Fieldsend
(2014), is supported. The modular design and reliance on MiesOperator objects to perform cen-
tral parts of the optimization algorithm makes this Optimizer highly flexible and configurable. In
combination with OperatorCombination mutators and recombinators, an algorithm as presented
in Li (2013) can easily be implemented.

OptimizerMies implements a standard evolution strategies loop:

1. Prime operators, using mies_prime_operators()

2. Initialize and evaluate population, using mies_init_population()

3. Generate offspring by selecting parents, recombining and mutating them, using mies_generate_offspring()

4. Evaluate performance, using mies_evaluate_offspring()

5. Select survivors, using either mies_survival_plus() or mies_survival_comma(), depend-
ing on the survival_strategy configuration parameter

6. Optionally, evaluate survivors with higher fidelity if the multi-fidelity functionality is being
used

7. Jump to 3.

Terminating

As with all optimizers, Terminators are used to end optimization after a specific number of eval-
uations were performed, time elapsed, or other conditions are satisfied. Of particular interest
is TerminatorGenerations, which terminates after a number of generations were evaluated in
OptimizerMies. The initial population counts as generation 1, its offspring as generation 2 etc.;
fidelity refinements (step 6. in the algorithm description above) are always included in their gener-
ation, TerminatorGenerations avoids terminating right before they are evaluated. Other termina-
tors may, however, end the optimization process at any time.

Multi-Fidelity

miesmuschel provides a simple multi-fidelity optimization mechanism that allows both the refine-
ment of fidelity as the optimization progresses, as well as fidelity refinement within each generation.
When multi_fidelity is TRUE, then one search space component of the OptimInstance must have
the "budget" tag, which is then optimized as the "budget" component. This means that the value of
this component is determined by the fidelity/fidelity_offspring parameters, which are func-
tions that get called whenever individuals get evaluated. The fidelity function is evaluated before
step 2 and before every occurrence of step 6 in the algorithm, it returns the value of the budget

OptimizerMies 161

search space component that all individuals that survive the current generation should be evaluated
with. fidelity_offspring is called before step 4 and determines the fidelity that newly sampled
offspring individuals should be evaluated with; it may be desirable to set this to a lower value than
fidelity to save budget when preliminarily evaluating newly sampled individuals that may or may
not perform well compared to already sampled individuals. Individuals that survive the generation
and are not removed in step 5 will be re-evaluated with the fidelity-value in step 6 before the next
loop iteration.

fidelity and fidelity_offspring must have arguments inst, budget_id, last_fidelity and
last_fidelity_offspring. inst is the OptimInstance bein optimized, the functions can use it to
determine the progress of the optimization, e.g. query the current generation with mies_generation.
budget_id identifies the search space component being used as budget parameter. last_fidelity
and last_fidelity_offspring contain the last values given by fidelity / fidelity_offspring.
Should the offspring-fidelity (as returned by fidelity_offspring always be the same as the parent
generation fidelity (as returned by fidelity), for example, then fidelity_offspring can be set to
a function that just returns last_fidelity; this is actually the behaviour that fidelity_offspring
is initialized with.

OptimizerMies avoids re-evaluating individuals if the fidelity parameter does not change. This
means that setting fidelity and fidelity_offspring to the same value avoids re-evaluating
individuals in step 6. When fidelity_monotonic is TRUE, re-evaluation is also avoided should the
desired fidelity parameter value decrease. When fidelity_current_gen_only is TRUE, then step
6 only re-evaluates individuals that were created in the current generation (in the previous step 4)
and sets the fidelity for individuals that are created in step 6, but it does not re-evaluate individuals
that survived from earlier generations or were already in the OptimInstance when optimization
started; it is recommended to leave this value at TRUE which it is initialized with.

Additional Components

The search space over which the optimization is performed is fundamentally tied to the Objective,
and therefore to the OptimInstance given to OptimizerMies$optimize(). However, some ad-
vanced Evolution Strategy based algorithms may need to make use of additional search space com-
ponents that are independent of the particular objective. An example is self-adaption as imple-
mented in OperatorCombination, where one or several components can be used to adjust operator
behaviour. These additional components are supplied to the optimizer through the additional_component_sampler
configuration parameter, which takes a Sampler object. This object both has an associated ParamSet
which represents the additional components that are present, and it provides a method for generat-
ing the initial values of these components. The search space that is seen by the MiesOperators is
then the union of the OptimInstance’s ParamSet, and the Sampler’s ParamSet.

Configuration Parameters

OptimizerMies has the configuration parameters of the mutator, recombinator, parent_selector,
survival_selector, init_selector, and, if given, elite_selector operator given during con-
struction, and prefixed according to the name of the argument (mutator’s configuration parameters
are prefixed "mutator." etc.). When using the construction arguments’ default values, they are
all "proxy" operators: MutatorProxy, RecombinatorProxy and SelectorProxy. This means that
the respective configuration parameters become mutator.operation, recombinator.operation
etc., so the operators themselves can be set via configuration parameters in this case.

Further configuration parameters are:

162 OptimizerMies

• lambda :: integer(1)
Offspring size: Number of individuals that are created and evaluated anew for each generation.
This is equivalent to the lambda parameter of mies_generate_offspring(), see there for
more information. Must be set by the user.

• mu :: integer(1)
Population size: Number of individuals that are sampled in the beginning, and which are se-
lected with each survival step. This is equivalent to the mu parameter of mies_init_population(),
see there for more information. Must be set by the user.

• survival_strategy :: character(1)
May be "plus", or, if the elite_selector construction argument is not NULL, "comma":
Choose whether mies_survival_plus() or mies_survival_comma() is used for survival
selection. Initialized to "plus".

• n_elite :: integer(1)
Only if the elite_selector construction argument is not NULL, and only valid when survival_strategy
is "comma": Number of elites, i.e. individuals from the parent generation, to keep during
"Comma" survival. This is equivalent to the n_elite parameter of mies_survival_comma(),
see there for more information.

• initializer :: function
Function that generates the initial population as a Design object, with arguments param_set
and n, functioning like paradox::generate_design_random or paradox::generate_design_lhs.
This is equivalent to the initializer parameter of mies_init_population(), see there for
more information. Initialized to generate_design_random().

• additional_component_sampler :: Sampler | NULL
Additional components that may be part of individuals as seen by mutation, recombination,
and selection MiesOperators, but that are not part of the search space of the OptimInstance
being optimized. This is equivalent to the additional_component_sampler parameter of
mies_init_population(), see there for more information. Initialized to NULL (no additional
components).

• fidelity :: function
Only if the multi_fidelity construction argument is TRUE: Function that determines the
value of the "budget" component of surviving individuals being evaluated when doing multi-
fidelity optimization. It must have arguments named inst, budget_id, last_fidelity
and last_fidelity_offspring, see the "Multi-Fidelity"-section for more details. Its re-
turn value is given to mies_init_population() and mies_step_fidelity(). When this
configuration parameter is present (i.e. multi_fidelity is TRUE), then it is initialized to a
function returning the value 1.

• fidelity_offspring :: function
Only if the multi_fidelity construction argument is TRUE: Function that determines the
value of the "budget" component of newly sampled offspring individuals being evaluated
when doing multi-fidelity optimization. It must have arguments named inst, budget_id,
last_fidelity and last_fidelity_offspring, see the "Multi-Fidelity"-section for more
details. Its return value is given to mies_evaluate_offspring(). When this configuration
parameter is present (i.e. multi_fidelity is TRUE), then it is initialized to a function re-
turning the value of last_fidelity, i.e. the value returned by the last call to the fidelity
configuration parameter. This is the recommended value when fidelity should not change
within a generation, since this means that survivor selection is performed with individuals that

OptimizerMies 163

were evaluated with the same fidelity (at least if fidelity_current_gen_only is also set to
FALSE) .

• fidelity_current_gen_only :: logical(1)
Only if the multi_fidelity construction argument is TRUE: When doing fidelity refinement in
mies_step_fidelity(), whether to refine all individuals with different budget component, or
only individuals created in the current generation. This is equivalent to the current_gen_only
parameter of mies_step_fidelity(), see there for more information.
When this configuration parameter is present (i.e. multi_fidelity is TRUE), then it is initial-
ized to FALSE, the recommended value.

• fidelity_monotonic :: logical(1)
Only if the multi_fidelity construction argument is TRUE: Whether to only do fidelity re-
finement in mies_step_fidelity() for individuals for which the budget component value
would increase. This is equivalent to the monotonic parameter of mies_step_fidelity(),
see there for more information.
When this configuration parameter is present (i.e. multi_fidelity is TRUE), then it is initial-
ized to TRUE. When optimization is performed on problems that have a categorical "budget"
parameter, then this value should be set to FALSE.

Super class

bbotk::Optimizer -> OptimizerMies

Active bindings

mutator (Mutator)
Mutation operation to perform during mies_generate_offspring().

recombinator (Recombinator)
Recombination operation to perform during mies_generate_offspring().

parent_selector (Selector)
Parent selection operation to perform during mies_generate_offspring().

survival_selector (Selector)
Survival selection operation to use in mies_survival_plus() or mies_survival_comma().

elite_selector (Selector | NULL)
Elite selector used in mies_survival_comma().

init_selector (Selector)
Selection operation to use when there are more than mu individuals present at the beginning of
the optimization.

param_set (ParamSet)
Configuration parameters of the optimization algorithm.

Methods

Public methods:
• OptimizerMies$new()

• OptimizerMies$clone()

Method new(): Initialize the OptimizerMies object.

164 OptimizerMies

Usage:
OptimizerMies$new(
mutator = MutatorProxy$new(),
recombinator = RecombinatorProxy$new(),
parent_selector = SelectorProxy$new(),
survival_selector = SelectorProxy$new(),
elite_selector = NULL,
init_selector = survival_selector,
multi_fidelity = FALSE

)

Arguments:

mutator (Mutator)
Mutation operation to perform during mies_generate_offspring(), see there for more
information. Default is MutatorProxy, which exposes the operation as a configuration
parameter of the optimizer itself.
The $mutator field will reflect this value.

recombinator (Recombinator)
Recombination operation to perform during mies_generate_offspring(), see there for
more information. Default is RecombinatorProxy, which exposes the operation as a con-
figuration parameter of the optimizer itself. Note: The default RecombinatorProxy has
$n_indivs_in set to 2, so to use recombination operations with more than two inputs, or to
use population size of 1, it may be necessary to construct this argument explicitly.
The $recombinator field will reflect this value.

parent_selector (Selector)
Parent selection operation to perform during mies_generate_offspring(), see there for
more information. Default is SelectorProxy, which exposes the operation as a configura-
tion parameter of the optimizer itself.
The $parent_selector field will reflect this value.

survival_selector (Selector)
Survival selection operation to use in mies_survival_plus() or mies_survival_comma()
(depending on the survival_strategy configuration parameter), see there for more infor-
mation. Default is SelectorProxy, which exposes the operation as a configuration param-
eter of the optimizer itself.
The $survival_selector field will reflect this value.

elite_selector (Selector | NULL)
Elite selector used in mies_survival_comma(), see there for more information. "Comma"
selection is only available when this argument is not NULL. Default NULL.
The $elite_selector field will reflect this value.

init_selector (Selector)
Survival selection operation to give to the survival_selector argument of mies_init_population();
it is used if the OptimInstance being optimized already contains more (alive) individuals
than mu. Default is the value given to survival_selector. The $init_selector field will
reflect this value.

multi_fidelity (logical(1))
Whether to enable multi-fidelity optimization. When this is TRUE, then the OptimInstance
being optimized must contain a Param tagged "budget", which is then used as the "budget"
search space component, determined by fidelity and fidelity_offspring instead of by

OptimizerMies 165

the MiesOperators themselves. For multi-fidelity optimization, the fidelity, fidelity_offspring,
fidelity_current_gen_only, and fidelity_monotonic configuration parameters must
be given to determine multi-fidelity behaviour. (While the initial values for most of these
are probably good for most cases in which more budget implies higher fidelity, at least the
fidelity configuration parameter should be adjusted in most cases). Default is FALSE.

Method clone(): The objects of this class are cloneable with this method.
Usage:
OptimizerMies$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerMies

Methods

Public methods:
• TunerMies$new()

• TunerMies$clone()

Method new(): Initialize the TunerMies object.
Usage:
TunerMies$new(
mutator = MutatorProxy$new(),
recombinator = RecombinatorProxy$new(),
parent_selector = SelectorProxy$new(),
survival_selector = SelectorProxy$new(),
elite_selector = NULL,
init_selector = survival_selector,
multi_fidelity = FALSE

)

Arguments:
mutator (Mutator)
recombinator (Recombinator)
parent_selector (Selector)
survival_selector (Selector)
elite_selector (Selector | NULL)
init_selector (Selector)
multi_fidelity (logical(1))

Method clone(): The objects of this class are cloneable with this method.
Usage:
TunerMies$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

166 OptimizerMies

References

Fieldsend, E J, Everson, M R (2014). “The rolling tide evolutionary algorithm: A multiobjective
optimizer for noisy optimization problems.” IEEE Transactions on Evolutionary Computation,
19(1), 103–117.

Li, Rui, Emmerich, TM M, Eggermont, Jeroen, B"ack, Thomas, Sch"utz, Martin, Dijkstra, Jouke,
Reiber, HC J (2013). “Mixed integer evolution strategies for parameter optimization.” Evolutionary
computation, 21(1), 29–64.

Examples

lgr::threshold("warn")

op.m <- mut("gauss", sdev = 0.1)
op.r <- rec("xounif", p = .3)
op.parent <- sel("random")
op.survival <- sel("best")

#####
Optimizing a Function
#####

library("bbotk")

Define the objective to optimize
objective <- ObjectiveRFun$new(

fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)

},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))

)

Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,

terminator = trm("evals", n_evals = 100)
)

Create OptimizerMies object
mies_opt <- opt("mies", mutator = op.m, recombinator = op.r,

parent_selector = op.parent, survival_selector = op.survival,
mu = 10, lambda = 5)

mies_opt$optimize performs MIES optimization and returns the optimum
mies_opt$optimize(oi)

#####
Optimizing a Machine Learning Method
#####

ParamSetShadow 167

Note that this is a short example, aiming at clarity and short runtime.
The settings are not optimal for hyperparameter tuning. The resampling
in particular should not be "holdout" for small datasets where this gives
a very noisy estimate of performance.

library("mlr3")
library("mlr3tuning")

The Learner to optimize
learner = lrn("classif.rpart")

The hyperparameters to optimize
learner$param_set$values[c("cp", "maxdepth")] = list(to_tune())

Get a TuningInstance
ti = TuningInstanceSingleCrit$new(

task = tsk("iris"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.acc"),
terminator = trm("gens", generations = 10)

)

Create TunerMies object
mies_tune <- tnr("mies", mutator = op.m, recombinator = op.r,

parent_selector = op.parent, survival_selector = op.survival,
mu = 10, lambda = 5)

mies_tune$optimize performs MIES optimization and returns the optimum
mies_tune$optimize(ti)

ParamSetShadow ParamSetShadow

Description

Wraps another ParamSet and shadows out a subset of its Params. The original ParamSet can still
be accessed through the $origin field; otherwise, the ParamSetShadow behaves like a ParamSet
where the shadowed Params are not present.

Super class

paradox::ParamSet -> ParamSetShadow

Active bindings

params (named list of Param) List of Param that are members of the wrapped ParamSet with the
shadowed Params removed.

168 ParamSetShadow

params_unid (named list of Param) List of Param that are members of the wrapped ParamSet
with the shadowed Params removed. This is a field mostly for internal usage that has the $ids
set to invalid values but avoids cloning overhead.

deps (data.table)
Table of dependencies, as in ParamSet. The dependencies that are related to shadowed pa-
rameters are not exposed. This data.table should be seen as read-only and not modified
in-place; instead, the $origin’s $deps should be modified.

values (named list)
List of values, as in ParamSet, with the shadowed values removed.

set_id (data.table)
Id of the wrapped ParamSet. Changing this value will also change the wrapped ParamSet’s
$set_id accordingly.

origin (ParamSet)
ParamSet being wrapped. This object can be modified by reference to influence the ParamSetShadow
object itself.

Methods

Public methods:

• ParamSetShadow$new()

• ParamSetShadow$add()

• ParamSetShadow$subset()

• ParamSetShadow$add_dep()

• ParamSetShadow$clone()

Method new(): Initialize the ParamSetShadow object.

Usage:
ParamSetShadow$new(set, shadowed)

Arguments:

set (ParamSet)
ParamSet to wrap.

shadowed (character)
Ids of Params to shadow from sets, must be a subset of set$ids().

Method add(): Adds a single param or another set to this set, all params are cloned.
This calls the underlying ParamSet’s $add() function.
Param with ids that also occur in the underlying ParamSet but are shadowed can not be added and
instead will result in an error.

Usage:
ParamSetShadow$add(p)

Arguments:

p (Param | ParamSet)

Returns: invisible(self).

ParamSetShadow 169

Method subset(): Reduces the parameters to the ones of passed ids.

This calls the underlying ParamSet’s $subset() function.

Usage:

ParamSetShadow$subset(ids)

Arguments:

ids (character)

Returns: invisible(self).

Method add_dep(): Adds a dependency to the unterlying ParamSet.

Usage:

ParamSetShadow$add_dep(id, on, cond)

Arguments:

id (character(1))

on (character(1))

cond (Condition)

Returns: invisible(self).

Method clone(): The objects of this class are cloneable with this method.

Usage:

ParamSetShadow$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

p1 = ps(x = p_dbl(0, 1), y = p_lgl())
p1$values = list(x = 0.5, y = TRUE)
print(p1)

p2 = ParamSetShadow$new(p1, "x")
print(p2$values)

p2$values$y = FALSE
print(p2)

print(p2$origin$values)

170 Recombinator

rank_nondominated Perform Nondominated Sorting

Description

Assign elements of fitnesses to nondominated fronts.

The first nondominated front is the set of individuals that is not dominated by any other individual
with respect to any fitness dimension, i.e. where no other individual exists that has all fitness values
greater or equal, with at least one fitness value strictly greater.

The n’th nondominated front is the set of individuals that is not dominated by any other individual
that is not in any nondominated front with smaller n.

Fitnesses are maximized, so the individuals in lower numbered nondominated fronts tend to have
higher fitness values.

Usage

rank_nondominated(fitnesses, epsilon = 0)

Arguments

fitnesses (numeric matrix)
fitness matrix, with one row per individual and one column per objective

epsilon (numeric)
Epsilon-vaue for non-dominance. A value is epsilon-dominated by another if
it is at least epsilon smaller than the other in all dimensions, and more than
epsilon smaller than the other in one dimension. epsilon may be a scalar, in
which case it is used for all dimensions or a vector, in which case its length must
match the number of dimensions. Default 0.

Value

list: $front: Vector assigning each individual in fitnesses its nondominated front. $domcount:
Length N vector counting the number of individuals that dominate the given individual.

Recombinator Recombinator Base Class

Description

Base class representing recombination operations, inheriting from MiesOperator.

Recombinators get a table of individuals as input and return a table of modified individuals as
output. Individuals are acted on by groups: every $n_indivs_out lines of output corresponds to
a group of $n_indivs_in lines of input, and presence or absence of other input groups does not
affect the result.

Recombination operations are performed in ES algorithms to facilitate exploration of the search
space that combine partial solutions.

Recombinator 171

Inheriting

Recombinator is an abstract base class and should be inherited from. Inheriting classes should im-
plement the private $.recombine() function. The user of the object calls $operate(), which calls
$.recombine() for each $n_indivs_in sized group of individuals after checking that the operator
is primed, that the values argument conforms to the primed domain. $.recombine() should then
return a table of $n_indivs_out individuals for each call. Typically, the $initialize() func-
tion should also be overloaded, and optionally the $prime() function; they should call their super
equivalents.

Super class

miesmuschel::MiesOperator -> Recombinator

Active bindings

n_indivs_in (integer(1))
Number of individuals to consider at the same time. When operating, the number of input
individuals must be divisible by this number.

n_indivs_out (integer(1))
Number of individuals produced for each group of $n_indivs_in individuals.

Methods

Public methods:
• Recombinator$new()

• Recombinator$clone()

Method new(): Initialize base class components of the Recombinator.

Usage:
Recombinator$new(
param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"),
param_set = ps(),
n_indivs_in = 2,
n_indivs_out = n_indivs_in,
packages = character(0),
dict_entry = NULL,
own_param_set = quote(self$param_set)

)

Arguments:

param_classes (character)
Classes of parameters that the operator can handle. May contain any of "ParamLgl",
"ParamInt", "ParamDbl", "ParamFct". Default is all of them.
The $param_classes field will reflect this value.

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to
super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate

172 Recombinator

to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

n_indivs_in (integer(1))
Number of individuals to consider at the same time. When operating, the number of input
individuals must be divisible by this number. Default 2.
The $n_indivs_in field will reflect this value.

n_indivs_out (integer(1))
Number of individuals that result for each n_indivs_in lines of input. The number of re-
sults from the recombinator will be nrow(values) / n_indivs_in * n_indivs_out. De-
fault equal to n_indivs_in.
The $n_indivs_out field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

own_param_set (language)
An expression that evaluates to a ParamSet indicating the configuration parameters that are
entirely owned by this operator class (and not proxied from a construction argument object).
This should be quote(self$param_set) (the default) when the param_set argument is not
a list of expressions.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Recombinator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other base classes: FiltorSurrogate, Filtor, MiesOperator, MutatorDiscrete, MutatorNumeric,
Mutator, OperatorCombination, RecombinatorPair, Scalor, SelectorScalar, Selector

Other recombinators: OperatorCombination, RecombinatorPair, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null,
dict_recombinators_proxy, dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap,
dict_recombinators_xonary, dict_recombinators_xounif

RecombinatorPair 173

RecombinatorPair Pair Recombinator Base Class

Description

Base class for recombination that covers the common case of combining two individuals, where two
(typically complementary) child individuals could be taken as the result, such as bitwise crossover
or SBX crossover.

This is a relatively lightweight class, it adds the keep_complement active binding and sets $n_indivs_in
and $n_indivs_out appropriately.

Inheriting

RecombinatorPair is an abstract base class and should be inherited from. Inheriting classes should
implement the private $.recombine_pair() function. During $operate(), the $.recombine_pair()
function is called with the same input as the $.recombine() function of the Recombinator class.
It should return a data.table of two individuals.

Constructors of inheriting classes should have a keep_complement argument.

Super classes

miesmuschel::MiesOperator -> miesmuschel::Recombinator -> RecombinatorPair

Active bindings

keep_complement (logical(1))
Whether the operation keeps both resulting individuals of the operation or discards the com-
plement.

Methods

Public methods:
• RecombinatorPair$new()

• RecombinatorPair$clone()

Method new(): Initialize base class components of the RecombinatorPair.

Usage:
RecombinatorPair$new(
keep_complement = TRUE,
param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"),
param_set = ps(),
packages = character(0),
dict_entry = NULL,
own_param_set = quote(self$param_set)

)

Arguments:

174 RecombinatorPair

keep_complement (logical(1))
Whether the operation should keep both resulting individuals (TRUE), or only the first and
discard the complement (FALSE). Default TRUE. The $keep_complement field will reflect
this value.

param_classes (character)
Classes of parameters that the operator can handle. May contain any of "ParamLgl",
"ParamInt", "ParamDbl", "ParamFct". Default is all of them.
The $param_classes field will reflect this value.

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to
super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate
to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

own_param_set (language)
An expression that evaluates to a ParamSet indicating the configuration parameters that are
entirely owned by this operator class (and not proxied from a construction argument object).
This should be quote(self$param_set) (the default) when the param_set argument is not
a list of expressions.

Method clone(): The objects of this class are cloneable with this method.

Usage:
RecombinatorPair$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other base classes: FiltorSurrogate, Filtor, MiesOperator, MutatorDiscrete, MutatorNumeric,
Mutator, OperatorCombination, Recombinator, Scalor, SelectorScalar, Selector

Other recombinators: OperatorCombination, Recombinator, dict_recombinators_cmpmaybe,
dict_recombinators_convex, dict_recombinators_cvxpair, dict_recombinators_maybe, dict_recombinators_null,
dict_recombinators_proxy, dict_recombinators_sbx, dict_recombinators_sequential, dict_recombinators_swap,
dict_recombinators_xonary, dict_recombinators_xounif

repr 175

repr Create a ’call’ Object Representation

Description

repr() creates a call object representing obj, if possible. Evaluating the call should come close
to recreating the original object.

In the most trivial cases, it should be possible to recreate objects from their representation by eval-
uating them using eval(). Important exceptions are:

• Functions are represented by their source code, if available, and by their AST if not. This
drops the context from their environments and recreated objects will not work if they contain
functions that depend on specific environments

• environments are not represented.

• R6 objects are only represented if they have a $repr() function. This function may have
arbitrary arguments, and should have a ... argument to capture ignored arguments.

Objects that can not be represented are currently mapped to the call stop("<###>"), where ### is
a short description of the non-representable object.

Usage

repr(obj, ...)

Arguments

obj (any)
Object to create a representation of.

... (any)
Further arguments to be passed to class methods. Currently in use are:

• skip_defaults (logical(1)) whether to skip construction arguments that
have their default value. Default TRUE.

• show_params (logical(1)) whether to show ParamSet values. Default
TRUE.

• show_constructor_args (logical(1)) whether to show construction args
that are not ParamSet values. Default TRUE.

Value

call: A call that, when evaluated, tries to re-create the object.

176 SamplerRandomWeights

SamplerRandomWeights Sampler for Projection Weights

Description

Sampler for a single ParamUty that samples weight-matrices as used by ScalorFixedProjection.

Super class

paradox::Sampler -> SamplerRandomWeights

Active bindings

nobjectives (numeric(1))
Number of objectives for which weights are generated.

nweights (numeric(1))
Number of weight vectors generated for each configuration.

weights_component_id (numeric(1))
search space component identifying the weights by which to scalarize.

Methods

Public methods:
• SamplerRandomWeights$new()

• SamplerRandomWeights$clone()

Method new(): Initialize the SamplerRandomWeights object.
Usage:
SamplerRandomWeights$new(
nobjectives = 2,
nweights = 1,
weights_component_id = "scalarization_weights"

)

Arguments:
nobjectives (numeric(1))

Number of objectives for which weights are generated.
nweights (numeric(1))

Number of weight vectors generated for each configuration.
weights_component_id (character(1))

Id of the ParamUty. Default is "scalarization_weights". Can be changed arbitrarily but
should match the ScalorFixedProjection’s weights_component_id.

Method clone(): The objects of this class are cloneable with this method.
Usage:
SamplerRandomWeights$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Scalarizer 177

Examples

set.seed(1)

Scalarizer Scalarizer

Description

Scalarizer objects are functions taking a fitness-matrix fitnesses (Nindivs x Nobjectives, with
higher values indicating higher desirability) and a list of weight matrices weights (Nindivs el-
ements of Nobjectives x Nweights matrices; positive weights indicate a positive contribution to
scale) and returns a matrix of scalarizations (Nindivs x Nweights, with higher values indicating
greater desirability).

Any other function conforming to these requirements can also be used in place of a Scalarizer,
but the provided Scalarizer functions cover the most common use cases.

Scalarizers are constructed from constructor-functions, such as scalarizer_linear() or scalarizer_chebyshev().

See Also

Other Scalarizers: scalarizer_chebyshev(), scalarizer_linear()

scalarizer_chebyshev Chebyshev Scalarizer

Description

Constructs a Scalarizer that does Chebyshev scalarization, as employed in ParEGO by Knowles
(2006).

The Chebyshev scalarization for a single individual with fitness values f and given weight vector w
is min(w * f) + rho * sum(w * f), where rho is a hyperparameter given during construction.

Usage

scalarizer_chebyshev(rho = 0.05)

Arguments

rho (numeric(1))
Small positive value.

Value

a Scalarizer object.

178 scalarizer_linear

References

Knowles, Joshua (2006). “ParEGO: A hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems.” IEEE Transactions on Evolutionary Computa-
tion, 10(1), 50–66.

See Also

Other Scalarizers: Scalarizer, scalarizer_linear()

Examples

fitnesses: three rows (i.e. thee indivs) with two objective values each
fitnesses <- matrix(0:5, ncol = 2)

weights: contains one matrix for each row of 'fitnesses' (i.e. each indiv)
which get multiplied with their respective row.
weights <- list(
matrix(c(1, 0, 0, 1), ncol = 2),
matrix(c(1, 2, 0, 0), ncol = 2),
matrix(c(0, 1, 0, 1), ncol = 2)

)

sc <- scalarizer_chebyshev()

The resulting row-vectors are the different scalarizations according to the
columns in the 'weights' matrices.
sc(fitnesses, weights)

sc <- scalarizer_chebyshev(rho = 0.1)
sc(fitnesses, weights)

scalarizer_linear Linear Scalarizer

Description

Constructs a linear Scalarizer, which performs linear scalarization for ScalorFixedProjection.

Usage

scalarizer_linear()

Value

a Scalarizer object.

See Also

Other Scalarizers: Scalarizer, scalarizer_chebyshev()

Scalor 179

Examples

fitnesses: three rows (i.e. thee indivs) with two objective values each
fitnesses <- matrix(0:5, ncol = 2)

weights: contains one matrix for each row of 'fitnesses' (i.e. each indiv)
which get multiplied with their respective row.
weights <- list(
matrix(c(1, 0, 0, 1), ncol = 2),
matrix(c(1, 2, 0, 0), ncol = 2),
matrix(c(0, 1, 0, 1), ncol = 2)

)

sc <- scalarizer_linear()

The resulting row-vectors are the different scalarizations according to the
columns in the 'weights' matrices.
sc(fitnesses, weights)

Scalor Scalor Base Class

Description

Base class representing ranking operations, inheriting from MiesOperator.

A Scalor gets a table of individuals as input, along with information on the individuals’ perfor-
mance values and returns a vector of a possible scalarization of individuals’ fitness (or other quali-
ties).

Scalors can be used by Selectors as a basis to select individuals by. This way it is possible to have
tournament selection (SelectorTournament) or elite selection (SelectorBest) based on different,
configurable qualities of individuals.

Unlike most other operator types inheriting from MiesOperator, the $operate() function has two
arguments, which are passed on to $.scale()

• values :: data.frame
Individuals to operate on. Must pass the check of the Param given in the last $prime() call
and may not have any missing components.

• fitnesses :: numeric | matrix
Fitnesses for each individual given in values. If this is a numeric, then its length must
be equal to the number of rows in values. If this is a matrix, if number of rows must be
equal to the number of rows in values, and it must have one column when doing single-crit
optimization and one column each for each "criterion" when doing multi-crit optimization.
Note that fitness values are always maximized, both in single- and multi-criterion optimization,
so objective output is multiplied with -1 if it is tagged as "minimize".

The return value of an operation should be a numeric vector with one finite value for each entry of
values, assigning high values to individuals in some way more "desirable" than others with low
values.

180 Scalor

Inheriting

Scalor is an abstract base class and should be inherited from. Inheriting classes should implement
the private $.scale() function. The user of the object calls $operate(), and the arguments are
passed on to private $.scale() after checking that the operator is primed, that the values argument
conforms to the primed domain and that other values match. Typically, the $initialize() function
should also be overloaded, and optionally the $prime() function; they should call their super
equivalents.

Super class

miesmuschel::MiesOperator -> Scalor

Active bindings

supported (character)
Optimization supported by this Scalor, can be "single-crit", "multi-crit", or both.

Methods

Public methods:

• Scalor$new()

• Scalor$clone()

Method new(): Initialize base class components of the Mutator.

Usage:
Scalor$new(
param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"),
param_set = ps(),
supported = c("single-crit", "multi-crit"),
packages = character(0),
dict_entry = NULL,
own_param_set = quote(self$param_set)

)

Arguments:

param_classes (character)
Classes of parameters that the operator can handle. May contain any of "ParamLgl",
"ParamInt", "ParamDbl", "ParamFct". Default is all of them.
The $param_classes field will reflect this value.

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to
super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate
to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

Selector 181

supported (character)
Subset of "single-crit" and "multi-crit", indicating wether single and / or multi-
criterion optimization is supported. Default both of them.
The $supported field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

own_param_set (language)
An expression that evaluates to a ParamSet indicating the configuration parameters that are
entirely owned by this operator class (and not proxied from a construction argument object).
This should be quote(self$param_set) (the default) when the param_set argument is not
a list of expressions.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Scalor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other base classes: FiltorSurrogate, Filtor, MiesOperator, MutatorDiscrete, MutatorNumeric,
Mutator, OperatorCombination, RecombinatorPair, Recombinator, SelectorScalar, Selector

Other scalors: dict_scalors_aggregate, dict_scalors_domcount, dict_scalors_fixedprojection,
dict_scalors_hypervolume, dict_scalors_nondom, dict_scalors_one, dict_scalors_proxy,
dict_scalors_single

Selector Selector Base Class

Description

Base class representing selection operations, inheriting from MiesOperator.

A Selector gets a table of individuals as input, along with information on the individuals’ perfor-
mance values and the number of individuals to select, and returns a vector of integers indicating
which individuals were selected.

Selection operations are performed in ES algorithms to facilitate concentration towards individuals
that perform well with regard to the fitness measure.

182 Selector

Fitness values are always maximized, both in single- and multi-criterion optimization.

Unlike most other operator types inheriting from MiesOperator, the $operate() function has three
arguments, which are passed on to $.select()

• values :: data.frame
Individuals to operate on. Must pass the check of the Param given in the last $prime() call
and may not have any missing components.

• fitnesses :: numeric | matrix
Fitnesses for each individual given in values. If this is a numeric, then its length must
be equal to the number of rows in values. If this is a matrix, if number of rows must be
equal to the number of rows in values, and it must have one column when doing single-crit
optimization and one column each for each "criterion" when doing multi-crit optimization.
The fitnesses-value passed on to $.select() is always a matrix.

• n_select :: integer(1)
Number of individuals to select. Some Selectors select individuals with replacement, for
which this value may be greater than the number of rows in values.

• group_size :: integer
Sampling group size hint, indicating that the caller would prefer there to not be any duplicates
within this group size, e.g. because the Selector is called to select individuals to be given to a
Recombinator with a certain n_indivs_in, or because it is called as a survival_selector
in mies_survival_comma() or mies_survival_plus(). The Selector may or may not
ignore this value, however. This may possibly happen because of certain configuration param-
eters, or because the input size is too small.
Must either be a scalar value or sum up to n_select. Must be non-negative. A scalar value of
0 is interpreted the same as 1.
If not given, this value defaults to 1.

The return value for an operation will be a numeric vector of integer values of length n_select
indexing the individuals that were selected. Some Selectors select individuals with replacement,
for which the return value may contain indices more than once.

Inheriting

Selector is an abstract base class and should be inherited from. Inheriting classes should imple-
ment the private $.select() function. The user of the object calls $operate(), and the arguments
are passed on to private $.select() after checking that the operator is primed, that the values ar-
gument conforms to the primed domain and that other values match. Typically, the $initialize()
function should also be overloaded, and optionally the $prime() function; they should call their
super equivalents.

Super class

miesmuschel::MiesOperator -> Selector

Active bindings

supported (character)
Optimization supported by this Selector, can be "single-crit", "multi-crit", or both.

Selector 183

Methods

Public methods:
• Selector$new()

• Selector$clone()

Method new(): Initialize base class components of the Selector.

Usage:
Selector$new(
is_deterministic = FALSE,
param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"),
param_set = ps(),
supported = c("single-crit", "multi-crit"),
packages = character(0),
dict_entry = NULL,
own_param_set = quote(self$param_set)

)

Arguments:
is_deterministic (logical(1))

Whether the Selector is deterministic. Setting this to TRUE adds a configuration parameter
shuffle_selection (initialized to TRUE) that causes the selection to be shuffled.

param_classes (character)
Classes of parameters that the operator can handle. May contain any of "ParamLgl",
"ParamInt", "ParamDbl", "ParamFct". Default is all of them.
The $param_classes field will reflect this value.

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to
super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate
to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

supported (character)
Subset of "single-crit" and "multi-crit", indicating wether single and / or multi-
criterion optimization is supported. Default both of them.
The $supported field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

own_param_set (language)
An expression that evaluates to a ParamSet indicating the configuration parameters that are

184 SelectorScalar

entirely owned by this operator class (and not proxied from a construction argument object).
This should be quote(self$param_set) (the default) when the param_set argument is not
a list of expressions.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Selector$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other base classes: FiltorSurrogate, Filtor, MiesOperator, MutatorDiscrete, MutatorNumeric,
Mutator, OperatorCombination, RecombinatorPair, Recombinator, Scalor, SelectorScalar

Other selectors: SelectorScalar, dict_selectors_best, dict_selectors_maybe, dict_selectors_null,
dict_selectors_proxy, dict_selectors_random, dict_selectors_sequential, dict_selectors_tournament

SelectorScalar Selector making use of Scalors

Description

Base class inheriting from Selector for selection operations that make use of scalar values, gener-
ated by Scalor.

Inheriting

SelectorScaling is an abstract base class and should be inherited from. Inheriting classes should
implement the private $.select_scalar() function. During $operate(), the $.select_scalar()
function is called, it should have three arguments, similar to Selector’s $.select() function.
values and n_select are as given to $.select() of the Selector. The fitnesses argument is
first scaled by the associated Scalor and then passed on as a numeric vector.

Typically, $initialize() should also be overloaded when inheriting.

Super classes

miesmuschel::MiesOperator -> miesmuschel::Selector -> SelectorScalar

Active bindings

scalor (Scalor)
Scalor used to scalarize fitnesses for selection.

SelectorScalar 185

Methods

Public methods:

• SelectorScalar$new()

• SelectorScalar$prime()

• SelectorScalar$clone()

Method new(): Initialize base class components of the SelectorScalar.

Usage:
SelectorScalar$new(
scalor = ScalorSingleObjective$new(),
is_deterministic = FALSE,
param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"),
param_set = ps(),
supported = scalor$supported,
packages = character(0),
dict_entry = NULL

)

Arguments:

scalor (Scalor)
Scalor to use to generate scalar values from multiple objectives, if multi-objective op-
timization is performed. Initialized to ScalorSingleObjective: Doing single-objective
optimization normally, throwing an error if used in multi-objective setting: In that case, a
Scalor needs to be explicitly chosen.

is_deterministic (logical(1))
Whether the Selector is deterministic. Setting this to TRUE adds a configuration parameter
shuffle_selection (initialized to TRUE) that causes the selection to be shuffled.

param_classes (character)
Classes of parameters that the operator can handle. May contain any of "ParamLgl",
"ParamInt", "ParamDbl", "ParamFct". Default is all of them.
The $param_classes field will reflect this value.

param_set (ParamSet | list of expression)
Strategy parameters of the operator. This should be created by the subclass and given to
super$initialize(). If this is a ParamSet, it is used as the MiesOperator’s ParamSet
directly. Otherwise it must be a list of expressions e.g. created by alist() that evaluate
to ParamSets, possibly referencing self and private. These ParamSet are then combined
using a ParamSetCollection. Default is the empty ParamSet.
The $param_set field will reflect this value.

supported (character)
Subset of "single-crit" and "multi-crit", indicating wether single and / or multi-
criterion optimization is supported. Default to the supported set of scalor.
The $supported field will reflect this value.

packages (character) Packages that need to be loaded for the operator to function. This
should be declared so these packages can be loaded when operators run on parallel in-
stances. Default is character(0).
The $packages field will reflect this values.

186 terminator_get_generations

dict_entry (character(1) | NULL)
Key of the class inside the Dictionary (usually one of dict_mutators, dict_recombinators,
dict_selectors), where it can be retrieved using a short access function. May be NULL if
the operator is not entered in a dictionary.
The $dict_entry field will reflect this value.

Method prime(): See MiesOperator method. Primes both this operator, as well as the wrapped
operator given to scalor during construction.

Usage:
SelectorScalar$prime(param_set)

Arguments:

param_set (ParamSet)
Passed to MiesOperator$prime().

Returns: invisible self.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SelectorScalar$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other base classes: FiltorSurrogate, Filtor, MiesOperator, MutatorDiscrete, MutatorNumeric,
Mutator, OperatorCombination, RecombinatorPair, Recombinator, Scalor, Selector

Other selectors: Selector, dict_selectors_best, dict_selectors_maybe, dict_selectors_null,
dict_selectors_proxy, dict_selectors_random, dict_selectors_sequential, dict_selectors_tournament

terminator_get_generations

Get the Numger of Generations that a Terminator Allows

Description

Get the number of generations of a TerminatorGenerations. When the TerminatorGenerations
is wrapped in a TerminatorCombo, then the minimum number of generations allowed by it are
retrieved. This is the minimum of all terminator_get_generations if $any is set to TRUE, and
the maximum if $any is set to FALSE.

The number of generations allowed by other Terminators is infinity.

Usage

terminator_get_generations(x)

terminator_get_generations 187

Arguments

x (Terminator)
Terminator to query.

Value

numeric(1): The theoretical maximum number of generations allowed by the Terminator.

Index

∗ Scalarizers
Scalarizer, 177
scalarizer_chebyshev, 177
scalarizer_linear, 178

∗ aggregation functions
mies_generation_apply, 115

∗ aggregation methods
mies_aggregate_generations, 102
mies_aggregate_single_generation,

104
mies_get_generation_results, 119

∗ base classes
Filtor, 93
FiltorSurrogate, 95
MiesOperator, 98
Mutator, 147
MutatorDiscrete, 148
MutatorNumeric, 150
OperatorCombination, 152
Recombinator, 170
RecombinatorPair, 173
Scalor, 179
Selector, 181
SelectorScalar, 184

∗ datasets
dict_filtors, 6
dict_mutators, 18
dict_recombinators, 35
dict_scalors, 59
dict_selectors, 74

∗ dictionaries
dict_filtors, 6
dict_mutators, 18
dict_recombinators, 35
dict_scalors, 59
dict_selectors, 74
mut, 145

∗ filtor wrappers
dict_filtors_maybe, 7

dict_filtors_proxy, 11
∗ filtors

dict_filtors_maybe, 7
dict_filtors_null, 10
dict_filtors_proxy, 11
dict_filtors_surprog, 13
dict_filtors_surtour, 16
Filtor, 93
FiltorSurrogate, 95

∗ mies building blocks
mies_evaluate_offspring, 107
mies_generate_offspring, 111
mies_get_fitnesses, 117
mies_init_population, 121
mies_select_from_archive, 126
mies_step_fidelity, 128
mies_survival_comma, 131
mies_survival_plus, 133

∗ mutator wrappers
dict_mutators_cmpmaybe, 19
dict_mutators_maybe, 25
dict_mutators_proxy, 29
dict_mutators_sequential, 30
OperatorCombination, 152

∗ mutators
dict_mutators_cmpmaybe, 19
dict_mutators_erase, 22
dict_mutators_gauss, 23
dict_mutators_maybe, 25
dict_mutators_null, 27
dict_mutators_proxy, 29
dict_mutators_sequential, 30
dict_mutators_unif, 33
Mutator, 147
MutatorDiscrete, 148
MutatorNumeric, 150
OperatorCombination, 152

∗ optimizers
OptimizerMies, 160

188

INDEX 189

∗ recombinator wrappers
dict_recombinators_cmpmaybe, 36
dict_recombinators_maybe, 42
dict_recombinators_proxy, 47
dict_recombinators_sequential, 51
OperatorCombination, 152

∗ recombinators
dict_recombinators_cmpmaybe, 36
dict_recombinators_convex, 38
dict_recombinators_cvxpair, 40
dict_recombinators_maybe, 42
dict_recombinators_null, 45
dict_recombinators_proxy, 47
dict_recombinators_sbx, 49
dict_recombinators_sequential, 51
dict_recombinators_swap, 54
dict_recombinators_xonary, 55
dict_recombinators_xounif, 57
OperatorCombination, 152
Recombinator, 170
RecombinatorPair, 173

∗ scalor wrappers
dict_scalors_aggregate, 59
dict_scalors_fixedprojection, 64
dict_scalors_proxy, 70

∗ scalors
dict_scalors_aggregate, 59
dict_scalors_domcount, 62
dict_scalors_fixedprojection, 64
dict_scalors_hypervolume, 66
dict_scalors_nondom, 67
dict_scalors_one, 69
dict_scalors_proxy, 70
dict_scalors_single, 72
Scalor, 179

∗ selector wrappers
dict_selectors_maybe, 76
dict_selectors_proxy, 81
dict_selectors_sequential, 85

∗ selectors
dict_selectors_best, 74
dict_selectors_maybe, 76
dict_selectors_null, 80
dict_selectors_proxy, 81
dict_selectors_random, 83
dict_selectors_sequential, 85
dict_selectors_tournament, 87
Selector, 181

SelectorScalar, 184

Archive, 66, 105, 106, 114, 116, 136–138,
141, 142, 144

bbotk::Optimizer, 163
bbotk::Terminator, 135, 138, 140, 143
bitwise crossover, 173

call, 100, 175
Condition, 169
crate_env, 5

data.table, 99–103, 109, 111, 113, 119, 120,
127, 129, 132, 134, 155, 168

data.table::rbindlist(), 116
Design, 22, 121, 162
dict_filtors, 6, 8, 10, 15, 17, 19, 35, 59, 74,

78, 146
dict_filtors_maybe, 7, 11, 13, 16, 18, 95, 98
dict_filtors_null, 9, 10, 13, 16, 18, 95, 98
dict_filtors_proxy, 9, 11, 11, 16, 18, 95, 98
dict_filtors_surprog, 9, 11, 13, 13, 18, 95,

98
dict_filtors_surtour, 9, 11, 13, 16, 16, 95,

98
dict_mutators, 7, 18, 20, 22, 24, 25, 28, 29,

31, 34, 35, 59, 74, 95, 97, 100, 145,
146, 148, 149, 151, 153, 155, 172,
174, 181, 183, 186

dict_mutators_cmpmaybe, 19, 23, 24, 27, 28,
30, 32, 34, 148, 150, 152, 158

dict_mutators_combine
(OperatorCombination), 152

dict_mutators_erase, 21, 22, 24, 27, 28, 30,
32, 34, 148, 150, 152, 158

dict_mutators_gauss, 21, 23, 23, 27, 28, 30,
32, 34, 148, 150, 152, 158

dict_mutators_maybe, 21, 23, 24, 25, 28, 30,
32, 34, 148, 150, 152, 158

dict_mutators_null, 21, 23, 24, 27, 27, 30,
32, 34, 148, 150, 152, 158

dict_mutators_proxy, 21, 23, 24, 27, 28, 29,
32, 34, 148, 150, 152, 158

dict_mutators_sequential, 21, 23, 24, 27,
28, 30, 30, 34, 148, 150, 152, 158

dict_mutators_unif, 21, 23, 24, 27, 28, 30,
32, 33, 148, 150, 152, 158

dict_recombinators, 7, 19, 35, 36, 39, 41,
43, 45, 47, 50, 52, 54, 56, 58, 59, 74,

190 INDEX

95, 97, 100, 145, 146, 148, 149, 151,
153, 155, 172, 174, 181, 183, 186

dict_recombinators_cmpmaybe, 36, 40, 42,
44, 46, 49, 50, 53, 55, 57, 58, 158,
172, 174

dict_recombinators_combine
(OperatorCombination), 152

dict_recombinators_convex, 38, 38, 42, 44,
46, 49, 50, 53, 55, 57, 58, 158, 172,
174

dict_recombinators_cvxpair, 38, 40, 40,
44, 46, 49, 50, 53, 55, 57, 58, 158,
172, 174

dict_recombinators_maybe, 38, 40, 42, 42,
46, 49, 50, 53, 55, 57, 58, 158, 172,
174

dict_recombinators_null, 38, 40, 42, 44,
45, 49, 50, 53, 55, 57, 58, 158, 172,
174

dict_recombinators_proxy, 38, 40, 42, 44,
46, 47, 50, 53, 55, 57, 58, 158, 172,
174

dict_recombinators_sbx, 38, 40, 42, 44, 46,
49, 49, 53, 55, 57, 58, 158, 172, 174

dict_recombinators_sequential, 38, 40,
42, 44, 46, 49, 50, 51, 55, 57, 58,
158, 172, 174

dict_recombinators_swap, 38, 40, 42, 44,
46, 49, 50, 53, 54, 57, 58, 158, 172,
174

dict_recombinators_xonary, 38, 40, 42, 44,
46, 49, 50, 53, 55, 55, 58, 158, 172,
174

dict_recombinators_xounif, 38, 40, 42, 44,
46, 49, 50, 53, 55, 57, 57, 158, 172,
174

dict_scalors, 7, 19, 35, 59, 60, 62, 64, 66,
68, 69, 71, 73, 74, 146

dict_scalors_aggregate, 59, 63, 65, 67, 68,
70, 72, 73, 181

dict_scalors_domcount, 61, 62, 65, 67, 68,
70, 72, 73, 181

dict_scalors_fixedprojection, 61, 63, 64,
67, 68, 70, 72, 73, 181

dict_scalors_hypervolume, 61, 63, 65, 66,
68, 70, 72, 73, 181

dict_scalors_nondom, 61, 63, 65, 67, 67, 70,
72, 73, 181

dict_scalors_one, 61, 63, 65, 67, 68, 69, 72,
73, 181

dict_scalors_proxy, 61, 63, 65, 67, 68, 70,
70, 73, 181

dict_scalors_single, 61, 63, 65, 67, 68, 70,
72, 72, 181

dict_selectors, 7, 12, 19, 35, 59, 74, 75, 80,
82, 83, 86, 88, 95, 97, 100, 145, 146,
148, 149, 151, 155, 172, 174, 181,
183, 186

dict_selectors_best, 74, 79, 81, 82, 84, 87,
89, 184, 186

dict_selectors_maybe, 76, 76, 81, 82, 84,
87, 89, 184, 186

dict_selectors_null, 76, 79, 80, 82, 84, 87,
89, 184, 186

dict_selectors_proxy, 76, 79, 81, 81, 84,
87, 89, 184, 186

dict_selectors_random, 76, 79, 81, 82, 83,
87, 89, 184, 186

dict_selectors_sequential, 76, 79, 81, 82,
84, 85, 89, 184, 186

dict_selectors_tournament, 76, 79, 81, 82,
84, 87, 87, 184, 186

Dictionary, 7, 19, 35, 59, 74, 95, 97–100,
148, 149, 151, 155, 172, 174, 181,
183, 186

dictionary, 8, 10, 12, 15, 17, 20, 22, 24, 25,
28, 29, 31, 34, 36, 39, 41, 43, 45, 47,
50, 52, 54, 56, 58, 60, 62, 64, 66, 68,
69, 71, 73, 75, 78, 80, 82, 83, 86, 88,
135, 137, 140, 143, 146, 153

dist_crowding, 89
domhv, 90
domhv_contribution, 91
domhv_improvement, 92

environment, 175
environmentName(), 5
eval(), 175

Filtor, 7–13, 15–18, 78, 93, 93, 95, 98, 102,
110, 111, 125, 148, 150, 152, 158,
172, 174, 181, 184, 186

FiltorMaybe (dict_filtors_maybe), 7
FiltorNull, 9, 111
FiltorNull (dict_filtors_null), 10
FiltorProxy, 10
FiltorProxy (dict_filtors_proxy), 11

INDEX 191

FiltorSurrogate, 9, 11, 13, 14, 16–18, 95,
95, 102, 148, 150, 152, 158, 172,
174, 181, 184, 186

FiltorSurrogateProgressive
(dict_filtors_surprog), 13

FiltorSurrogateTournament
(dict_filtors_surtour), 16

ftr (mut), 145
ftr(), 8, 10, 15, 17, 78
ftrs (mut), 145
ftrs(), 8, 10, 15, 17, 78
function, 64

generate_design_random(), 22, 162

invisible, 9, 13, 21, 26, 30, 32, 37, 44, 48,
53, 61, 65, 72, 79, 82, 87, 97, 101,
109, 123, 124, 129, 156, 186

Learner, 96
LearnerRegr, 13

mies_aggregate_generations, 102, 106,
120

mies_aggregate_generations(), 116
mies_aggregate_single_generation, 103,

104, 120
mies_aggregate_single_generation(),

115, 116, 136, 138, 141, 143
mies_evaluate_offspring, 107, 113, 114,

118, 123, 127, 130, 132, 134
mies_evaluate_offspring(), 111, 113, 137,

143, 162
mies_filter_offspring, 110
mies_generate_offspring, 38, 55, 109, 111,

118, 123, 127, 130, 132, 134
mies_generate_offspring(), 75, 80, 87,

162–164
mies_generation, 114, 161
mies_generation_apply, 115
mies_generation_apply(), 102
mies_get_fitnesses, 66, 109, 113, 117, 122,

123, 127, 130–134
mies_get_fitnesses(), 112, 127, 132
mies_get_generation_results, 103, 106,

119
mies_init_population, 109, 113, 114, 118,

121, 127, 130, 132, 134
mies_init_population(), 22, 137, 142, 143,

162, 164

mies_prime_operators, 112, 124
mies_prime_operators(), 122
mies_select_from_archive, 109, 113, 118,

123, 126, 130, 132, 134
mies_step_fidelity, 108, 109, 113, 118,

123, 127, 128, 132, 134
mies_step_fidelity(), 137, 142, 143, 162,

163
mies_survival_comma, 109, 113, 118, 123,

127, 130, 131, 134
mies_survival_comma(), 87, 162–164, 182
mies_survival_plus, 109, 113, 118, 123,

127, 130, 132, 133
mies_survival_plus(), 87, 162–164, 182
miesmuschel (miesmuschel-package), 4
miesmuschel-package, 4
miesmuschel::Filtor, 8, 10, 12, 15, 17, 96
miesmuschel::FiltorSurrogate, 15, 17
miesmuschel::MiesOperator, 8, 10, 12, 15,

17, 20, 22, 24, 26, 28, 29, 31, 34, 36,
39, 41, 43, 46, 48, 50, 52, 54, 56, 60,
63, 64, 66, 68, 69, 71, 73, 75, 78, 80,
82, 84, 86, 88, 94, 96, 147, 149, 150,
153, 156, 157, 171, 173, 180, 182,
184

miesmuschel::Mutator, 20, 22, 24, 26, 28,
29, 31, 34, 149, 150

miesmuschel::MutatorDiscrete, 34
miesmuschel::MutatorNumeric, 24
miesmuschel::OperatorCombination, 156,

157
miesmuschel::Recombinator, 36, 39, 41, 43,

46, 48, 50, 52, 54, 56, 173
miesmuschel::RecombinatorPair, 41, 50,

54
miesmuschel::Scalor, 60, 63, 64, 66, 68, 69,

71, 73
miesmuschel::Selector, 75, 78, 80, 82, 84,

86, 88, 184
miesmuschel::SelectorScalar, 75, 88
MiesOperator, 9, 12, 21, 26, 30–32, 37, 44,

48, 52, 53, 61, 65, 71, 79, 82, 87, 93,
95, 97, 98, 98, 124, 147, 148, 150,
152–156, 158, 160–162, 165, 170,
172, 174, 179, 181, 182, 184, 186

mlr3::Learner, 95
mlr3::LearnerRegr, 15, 17, 18, 96
mlr3::mlr_sugar, 145

192 INDEX

mlr3misc::dictionary_sugar_get(), 146
mlr3tuning::Tuner, 165
mlr3tuning::TunerFromOptimizer, 165
mlr_terminators, 135, 137, 140, 143
mlr_terminators_budget, 135
mlr_terminators_genperfreached, 136
mlr_terminators_gens, 139
mlr_terminators_genstag, 141
mut, 7, 19, 35, 59, 74, 145
mut(), 20, 22, 24, 25, 28, 29, 31, 34, 153
Mutator, 19–32, 34, 95, 98, 102, 112, 124,

125, 146, 147, 148, 150, 152, 153,
158, 163–165, 172, 174, 181, 184,
186

MutatorCmpMaybe, 22, 33
MutatorCmpMaybe

(dict_mutators_cmpmaybe), 19
MutatorCombination, 27, 98, 155
MutatorCombination

(OperatorCombination), 152
MutatorDiscrete, 21, 23, 24, 27, 28, 30, 32,

34, 95, 98, 102, 147, 148, 148, 152,
158, 172, 174, 181, 184, 186

MutatorDiscreteUniform
(dict_mutators_unif), 33

MutatorErase (dict_mutators_erase), 22
MutatorGauss, 150
MutatorGauss (dict_mutators_gauss), 23
MutatorMaybe, 27
MutatorMaybe (dict_mutators_maybe), 25
MutatorNull, 20, 26, 112
MutatorNull (dict_mutators_null), 27
MutatorNumeric, 21, 23, 24, 27, 28, 30, 32,

34, 95, 98, 102, 147, 148, 150, 150,
158, 172, 174, 181, 184, 186

MutatorProxy, 161, 164
MutatorProxy (dict_mutators_proxy), 29
MutatorSequential

(dict_mutators_sequential), 30
muts (mut), 145
muts(), 20, 22, 24, 25, 28, 29, 31, 34, 153

Objective, 124, 125, 161
OperatorCombination, 21, 23, 24, 27, 28, 30,

32, 34, 38, 40, 42, 44, 46, 49, 50, 53,
55, 57, 58, 95, 98, 102, 122, 148,
150, 152, 152, 160, 161, 172, 174,
181, 184, 186

OptimInstance, 102, 107, 108, 111, 112, 114,
117–123, 125, 126, 129, 131, 133,
160–162, 164

Optimizer, 4, 108, 160
OptimizerMies, 4, 29, 47, 81, 108, 137, 139,

140, 142, 160

paradox::generate_design_grid, 122
paradox::generate_design_lhs, 22, 122,

162
paradox::generate_design_random, 22,

122, 162
paradox::ParamSet, 146, 167
paradox::Sampler, 176
Param, 8, 10, 12, 19, 22, 24, 25, 27, 29, 31, 34,

36, 39, 41, 43, 45, 47, 49, 52, 54, 56,
58, 62, 64, 66, 68, 69, 71, 72, 75, 78,
80, 81, 83, 86, 88, 93, 96, 101, 124,
152–154, 164, 167, 168, 179, 182

ParamDbl, 10, 12, 22, 24, 27, 29, 39, 41, 45,
47, 49, 54, 56, 58, 62, 64, 66, 68, 69,
71, 72, 75, 80, 81, 83, 88, 153

ParamFct, 10, 12, 22, 27, 29, 34, 45, 47, 54,
58, 62, 64, 66, 68, 69, 71, 72, 75, 80,
81, 83, 88, 154, 155

ParamInt, 10, 12, 22, 24, 27, 29, 45, 47, 49,
54, 58, 62, 64, 66, 68, 69, 71, 72, 75,
80, 81, 83, 88, 153

ParamLgl, 10, 12, 22, 27, 29, 34, 45, 47, 54,
58, 62, 64, 66, 68, 69, 71, 72, 75, 80,
81, 83, 88, 153–155

ParamSet, 9, 12, 21, 23, 26, 30, 32, 37, 44, 48,
49, 53, 61, 65, 71, 79, 82, 87, 94, 95,
97–101, 105, 106, 112, 125, 129,
148–151, 154–156, 161, 163,
167–169, 171, 172, 174, 175, 180,
181, 183, 185, 186

ParamSetCollection, 94, 97, 100, 148, 149,
151, 172, 174, 180, 183, 185

ParamSetShadow, 167
ParamUty, 64, 176

R6, 175
rank_nondominated, 62, 170
rec (mut), 145
rec(), 36, 39, 41, 43, 45, 47, 50, 52, 54, 56,

58, 153
rec(cmpmaybe), 49

INDEX 193

Recombinator, 36–58, 87, 95, 98, 102, 112,
124, 125, 146, 148, 150, 152, 153,
158, 163–165, 170, 173, 174, 181,
182, 184, 186

RecombinatorCmpMaybe, 54, 57
RecombinatorCmpMaybe

(dict_recombinators_cmpmaybe),
36

RecombinatorCombination, 45, 46, 98, 152,
155

RecombinatorCombination
(OperatorCombination), 152

RecombinatorConvex
(dict_recombinators_convex), 38

RecombinatorConvexPair
(dict_recombinators_cvxpair),
40

RecombinatorCrossoverNary
(dict_recombinators_xonary), 55

RecombinatorCrossoverUniform, 54
RecombinatorCrossoverUniform

(dict_recombinators_xounif), 57
RecombinatorMaybe, 45, 46
RecombinatorMaybe

(dict_recombinators_maybe), 42
RecombinatorNull, 37, 44, 51, 112
RecombinatorNull

(dict_recombinators_null), 45
RecombinatorPair, 38, 40, 42, 44, 46, 49, 50,

53, 55, 57, 58, 95, 98, 102, 148, 150,
152, 158, 172, 173, 181, 184, 186

RecombinatorProxy, 161, 164
RecombinatorProxy

(dict_recombinators_proxy), 47
RecombinatorSequential

(dict_recombinators_sequential),
51

RecombinatorSimulatedBinaryCrossover
(dict_recombinators_sbx), 49

RecombinatorSwap, 57
RecombinatorSwap

(dict_recombinators_swap), 54
recs (mut), 145
recs(), 36, 39, 41, 43, 45, 47, 50, 52, 54, 56,

58, 153
repr, 175

Sampler, 122, 161, 162
SamplerRandomWeights, 176

SBX crossover, 173
Scalarizer, 64, 177, 177, 178
scalarizer_chebyshev, 177, 177, 178
scalarizer_chebyshev(), 64, 177
scalarizer_linear, 177, 178, 178
scalarizer_linear(), 64, 177
Scalor, 59–73, 75, 88, 95, 98, 102, 146, 148,

150, 152, 158, 172, 174, 179, 179,
184–186

ScalorAggregate
(dict_scalors_aggregate), 59

ScalorDomcount (dict_scalors_domcount),
62

ScalorFixedProjection, 176, 178
ScalorFixedProjection

(dict_scalors_fixedprojection),
64

ScalorHypervolume
(dict_scalors_hypervolume), 66

ScalorNondom (dict_scalors_nondom), 67
ScalorOne, 72
ScalorOne (dict_scalors_one), 69
ScalorProxy (dict_scalors_proxy), 70
ScalorSingleObjective, 71, 75, 88, 185
ScalorSingleObjective

(dict_scalors_single), 72
scl (mut), 145
scl(), 60, 62, 64, 66, 68, 69, 71, 73
scls (mut), 145
scls(), 60, 62, 64, 66, 68, 69, 71, 73
sel (mut), 145
sel(), 12, 75, 80, 82, 83, 86, 88
sel(best), 39, 55
sel(tournament), 39, 55
Selector, 12, 15, 18, 72, 74–89, 95–98, 102,

112, 117, 122, 124–127, 131–134,
146, 148, 150, 152, 158, 163–165,
172, 174, 179, 181, 181, 182–186

SelectorBest, 70, 81, 112, 122, 127, 179
SelectorBest (dict_selectors_best), 74
SelectorMaybe (dict_selectors_maybe), 76
SelectorNull (dict_selectors_null), 80
SelectorProxy, 161, 164
SelectorProxy (dict_selectors_proxy), 81
SelectorRandom, 79
SelectorRandom (dict_selectors_random),

83
SelectorScalar, 76, 79, 81, 82, 84, 87, 89,

194 INDEX

95, 98, 102, 148, 150, 152, 158, 172,
174, 181, 184, 184

SelectorSequential
(dict_selectors_sequential), 85

SelectorTournament, 179
SelectorTournament

(dict_selectors_tournament), 87
sels (mut), 145
sels(), 12, 75, 80, 82, 83, 86, 88
short access function, 95, 97, 100, 148,

149, 151, 155, 172, 174, 181, 183,
186

Terminator, 135–137, 139–141, 143, 160,
186, 187

terminator_get_generations, 186
TerminatorBudget

(mlr_terminators_budget), 135
TerminatorCombo, 142, 186
TerminatorEvals, 142
TerminatorGenerationPerfReached

(mlr_terminators_genperfreached),
136

TerminatorGenerations, 142, 160, 186
TerminatorGenerations

(mlr_terminators_gens), 139
TerminatorGenerationStagnation

(mlr_terminators_genstag), 141
trm(), 135, 137, 140, 143
trms(), 135, 137, 140, 143
Tuner, 4
TunerMies, 4
TunerMies (OptimizerMies), 160

utils::help(), 101

	miesmuschel-package
	crate_env
	dict_filtors
	dict_filtors_maybe
	dict_filtors_null
	dict_filtors_proxy
	dict_filtors_surprog
	dict_filtors_surtour
	dict_mutators
	dict_mutators_cmpmaybe
	dict_mutators_erase
	dict_mutators_gauss
	dict_mutators_maybe
	dict_mutators_null
	dict_mutators_proxy
	dict_mutators_sequential
	dict_mutators_unif
	dict_recombinators
	dict_recombinators_cmpmaybe
	dict_recombinators_convex
	dict_recombinators_cvxpair
	dict_recombinators_maybe
	dict_recombinators_null
	dict_recombinators_proxy
	dict_recombinators_sbx
	dict_recombinators_sequential
	dict_recombinators_swap
	dict_recombinators_xonary
	dict_recombinators_xounif
	dict_scalors
	dict_scalors_aggregate
	dict_scalors_domcount
	dict_scalors_fixedprojection
	dict_scalors_hypervolume
	dict_scalors_nondom
	dict_scalors_one
	dict_scalors_proxy
	dict_scalors_single
	dict_selectors
	dict_selectors_best
	dict_selectors_maybe
	dict_selectors_null
	dict_selectors_proxy
	dict_selectors_random
	dict_selectors_sequential
	dict_selectors_tournament
	dist_crowding
	domhv
	domhv_contribution
	domhv_improvement
	Filtor
	FiltorSurrogate
	MiesOperator
	mies_aggregate_generations
	mies_aggregate_single_generation
	mies_evaluate_offspring
	mies_filter_offspring
	mies_generate_offspring
	mies_generation
	mies_generation_apply
	mies_get_fitnesses
	mies_get_generation_results
	mies_init_population
	mies_prime_operators
	mies_select_from_archive
	mies_step_fidelity
	mies_survival_comma
	mies_survival_plus
	mlr_terminators_budget
	mlr_terminators_genperfreached
	mlr_terminators_gens
	mlr_terminators_genstag
	mut
	Mutator
	MutatorDiscrete
	MutatorNumeric
	OperatorCombination
	OptimizerMies
	ParamSetShadow
	rank_nondominated
	Recombinator
	RecombinatorPair
	repr
	SamplerRandomWeights
	Scalarizer
	scalarizer_chebyshev
	scalarizer_linear
	Scalor
	Selector
	SelectorScalar
	terminator_get_generations
	Index

