Package 'minimalRSD'

October 13, 2022
Type PackageTitle Minimally Changed CCD and BBD
Version 1.0.0
Maintainer Shwetank Lall shwetanklall@gmail.com
Description Generate central composite designs (CCD)with full as wellas fractional factorial points (half replicate) and Box Behnkendesigns (BBD) with minimally changed run sequence.
Imports utils, stats
License GPL (>= 2)
LazyData TRUE
RoxygenNote 5.0.1
NeedsCompilation no
Author Shwetank Lall [aut, cre],
Eldho Varghese [aut],
Seema Jaggi [ctb],
Cini Varghese [ctb],
Arpan Bhowmik [ctb]
Repository CRAN
Date/Publication 2017-01-04 11:21:29
R topics documented:
fact.pts 2
fact.pts_2 2
minimalRSD 3
min_bbd 4
min_ccd 4
min_ccd_2 5
num.ch 5
Index 7
fact.pts Generate Factorial Points

Description

For a given number of factors, say k, it generates $2^{\wedge} \mathrm{k}$ factorial points such that the number of changes in the run sequence is minimum.

Usage

fact.pts(k)

Arguments

$\mathrm{k} \quad$ an integer greater than or equal to 2.

Value

For K number of factors, generate factorial points with minimum level changes.

Examples

\# For generating a full factorial for $\mathrm{k}=4$ factors
\# in 2 levels with minimum level changes
fact.pts(4)
fact.pts_2 Generate Half Replicate of Full Factorial Points.

Description

For a given number of factors, say k, it generates $2^{\wedge}(k-1)$ factorial points such that the number of changes in levels in the half replicate is minimum.

Usage

fact.pts_2(k)

Arguments

k an integer greter than or equal to 3 .

Value

For K number of factors, generate factorial points in half replication with minimum level changes.

Examples

\# For generating a minimally changed half
\# replicate of full factorial with 4 factors
\# in 2 levels fact.pts_2(4)

```
minimalRSD minimalRSD: A package for constructing CCD and BBD with mini-
    mum level changes in the run sequence
```


Description

The minimalRSD package can be used to construct Central Composite Designs (CCD) with full as well as fractional factorial points(half replicate) and Box Behnken designs (BBD) with minimum number of changes in the levels of input factors. These designs help in providing reducing costeffective Response Surface Designs (RSDs). This package provides three categories of important functions: $\min -b b d$, min_ccd and min_ccd_2.

Details

The package minimalRSD is an implementation of the concepts and theory discussed by Varghese et al. (2017). For detailed information and concepts users are advised to see the following reference.

minimalRSD functions

min_bbd: Generate minimally changed BBD for a given number of input factors.
min_ccd: Generate minimally changed CCD for a given number of input factors.
min_ccd_2: Generate minimally changed CCD with fractinalfactorial points (half replicate) for a given number of factors.

Author(s)

Shwetank Lall shwetanklall@gmail.com

References

Eldho Varghese, Arpan Bhowmik,Seema Jaggi, Cini Varghese and Shwetank Lall (2017). On the construction of response surface designs with minimum level changes. Utilitas Mathematica, (under print).
Eldho Varghese, Arpan Bhowmik,Seema Jaggi, Cini Varghese and Charanjit Kaur (2017). On the generation of cost effective response surface designs. Computers and Electronics in Agriculture, 133,37-45.

```
min_bbd Minimally Changed BBD
```


Description

Generate Box Behnken design (BBD) with minimum level changes in the run sequence.

Usage

min_bbd(k)

Arguments

$\mathrm{k} \quad$ An integer greter than or equal to 3.

Value

returns a minimally changed BBD for the number of input factors as v.

Examples

```
    # To generate minimmaly changed BBD for k=4 factors
    min_bbd(4)
```

 min_ccd Minimally Changed CCD

Description

Generate minimally changed run sequence for central composite designs (CCD).

Usage

min_ccd(k)

Arguments

$\mathrm{k} \quad$ an integer greater than or equal to 2.

Value

returns a minimally changed CCD for K number of factors with full factorial points.

Examples

\# Generate minimally changed CCD with full factorial points
\# for $\mathrm{k}=4$ factors
min_ccd(4)

min_ccd_2	Generate Minimally Changed Central Composite designs (CCD) with Fractional Factorial Points (Half Replicate)

Description

Generate Minimally Changed Central Composite designs (CCD) with Fractional Factorial Points (Half Replicate)

Usage

min_ccd_2(k)

Arguments

$\mathrm{k} \quad$ An integer greter than or equal to 3.

Value

returns a minimally changed CCD for K number of factors with half replicated factorial points.

Examples

\# Generate minimally changed CCD with fractional
\# factorial points (half replicate) for $k=4$ factors
min_ccd_2(4)
num.ch
Number of Changes in Factor Levels of the Design

Description

For a given design in matrix form, it counts the number of changes in levels of each factor as well as overall number of changes in the design.

Usage

num.ch(M)

Arguments

M a design matrix.

Value

returns the number of changes in levels of each factor and total number of such changes in the design

Examples

\# For generating a minimally changed CCD with 4 factors des<-min_ccd(4)
\# To count the number of level changes in the generated design num.ch(des\$CCD_design)

Index

fact.pts, 2
fact.pts_2,2
min_bbd, 4
min_ccd, 4
min_ccd_2, 5
minimalRSD, 3
minimalRSD-package (minimalRSD), 3
num.ch, 5

