Package 'msamp'

October 17, 2022
Title Estimate Sample Size to Detect Bacterial Contamination in a Product Lot

Version 1.0.0

Description Estimates the sample size needed to detect microbial contamination in a lot with a user-specified detection probability and user-specified analytical sensitivity. Various patterns of microbial contamination are accounted for: homogeneous (Poisson), heterogeneous (Poisson-Gamma) or localized(Zero-inflated Poisson). Ida Jongenburger et al. (2010) doi:10.1016/j.foodcont.2012.02.004 "Impact of microbial distributions on food safety". Leroy Simon (1963) doi:10.1017/S0515036100001975 "Casualty Actuarial Society - The Negative Binomial and Poisson Distributions Compared".

License Unlimited

Encoding UTF-8
RoxygenNote 7.2.1
VignetteBuilder knitr
Suggests knitr, rmarkdown
Imports graphics, stats, grDevices
NeedsCompilation no
Author Martine Ferguson [aut, cre] (https://orcid.org/0000-0003-4479-3674)
Maintainer Martine Ferguson martine.ferguson@fda.hhs.gov
Repository CRAN
Date/Publication 2022-10-17 12:00:05 UTC

R topics documented:

n 2
p. 3
plotn 4
Index 6

Calculate the sample size necessary to detect contamination above target level

Description

The n() function calculates the sample size, n , necessary to detect contamination above a target level, G, in a product lot, where the probability of a single sample unit being above the target level is calculated by the msamp function $p()$. The total cost, cost_tot, associated with sample size is also output.

```
Usage
    n(
        C,
        w,
        G,
        Sens,
        D = c("homogeneous", "heterogeneous", "localized"),
        r = NULL,
        f = NULL,
        prob_det = 0.9,
        samp_dollar,
        lot_dollar
    )
```


Arguments

C
w weight of single sample unit (g)
G target value to detect ($\mathrm{CFU} / \mathrm{g}$)
Sens sensitivity of the analytical test (\%)
D distribution of the bacteria in the product lot: "homogeneous", "heterogeneous", or "localized"
r for the heterogeneous case only, the degree of heterogeneity. $r>0$
$f \quad$ for the localized case, r is further specified. $0<f<1$
prob_det desired probability of detecting bacterial contamination above the target level in the product lot. Set to 0.9 by default
samp_dollar cost per sample unit in \$
lot_dollar fixed cost (if any) of sampling the lot in \$

Details

Refer to vignette for details.

Value

A list containing:

- \mathbf{n} : The sample size
- p: The probability of a single sample unit being contaminated above the target level
- cost_tot: The total cost associated with sampling of n samples

Examples

```
#A sample of 25 grams (w=25) is collected and analyzed using an analytical
#test with sensitivity of 90% (Sens=.9), to detect at least 5 CFU's/g (G=5).
#The suspected or postulated level of contamination in the lot is 4 CFU's/g (C=4).
#The desired probability of picking at least one sample unit contaminated above the target
#level is 0.9 (prob_det=0.9), the cost of a single sampling unit is $100 (samp_dollar=100),
#and the fixed cost for sampling the entire lot is $200 (lot_dollar=200).
#homogeneous case
n(C=4,w=25,G=5,Sens=.9,D="homogeneous",r=NULL , f=NULL, prob_det=0.9, samp_dollar=100,lot_dollar=200)
# n=376, total cost=$37,722
#heterogeneous case
n(C=4,w=25,G=5,Sens=.9,D="heterogeneous",r=10,f=NULL,prob_det=0.9, samp_dollar=100,lot_dollar=200)
# n=12, total cost=$1,319
#localized case
n(C=4,w=25,G=5,Sens=.9,D="localized",r=NULL,f=.3,prob_det=0.9,samp_dollar=100,lot_dollar=200)
# n=1,254 , total cost=$125,541
```

p
Calculate the probability of a single sample being contaminated

Description

The $p()$ function calculates the probability of a single sample unit, with weight w, and postulated contamination, C , being contaminated above a target level, G .

```
Usage
    p(
        C,
        w,
        G,
        Sens,
        D = c("homogeneous", "heterogeneous", "localized"),
        r = NULL,
        f = NULL
    )
```


Arguments

C
suspected lot contamination ($\mathrm{CFU} / \mathrm{g}$)
w weight of single sample unit (g)
G target value to detect (CFU/g)
Sens sensitivity of the analytical test (\%)
D distribution of the bacteria in the product lot: "homogeneous", "heterogeneous", or "localized"
r for the heterogeneous case only, the degree of heterogeneity. $r>0$
$\mathrm{f} \quad$ for the localized case, r is further specified. $0<\mathrm{f}<1$

Details

Refer to vignette for details.

Value

A numeric value: the probability of a single sample unit being contaminated above target level.

Examples

```
#A sample of 25 grams (w=25) is collected and analyzed using an analytical
#test with sensitivity of 90% (Sens=.9), to detect at least 5 CFU's/g (G=5).
#The suspected or postulated level of contamination in the lot is 4 CFU's/g (C=4)
#homogeneous case
p(C=4,w=25,G=5,Sens=.9,D="homogeneous",r=NULL ,f=NULL)
# 0.006117884
#heterogeneous case-- dispersion, r, is postulated as 2
p(C=4,w=25,G=5, Sens=.9,D="heterogeneous",r=2,f=NULL)
# 0.2576463
#localized case -- 30% of the lot is postulated to be contaminated
p(C=4,w=25,G=5, Sens=.9,D="localized",r=NULL,f=.3)
# 0.001835365
```

plotn

Plots the relation between the probability of detection and the sample size, n

Description

The plotn() function examines the effect of increasing the probability of detection on the sample size, n, where the probability of a single sample unit being contaminated above the target limit is calculated from the msamp function p()

Usage

```
plotn(
        C,
        w,
        G,
        Sens,
        D = c("homogeneous", "heterogeneous", "localized"),
        r = NULL,
        f = NULL
    )
```


Arguments

C suspected lot contamination ($\mathrm{CFU} / \mathrm{g}$)
w weight of single sample unit (g)
G target value to detect (CFU/g)
Sens sensitivity of the analytical test (\%)
D distribution of the bacteria in the product lot: "homogeneous", "heterogeneous", or "localized"
r for the heterogeneous case only, the degree of heterogeneity. $r>0$
$f \quad$ for the localized case, r is further specified. $0<f<1$

Details

Refer to vignette for details.

Value

A plot, of recordedplot class. The probability of detection is on the y-axis and the sample size n is on the x -axis. Overlaid at intersecting red dashed lines is the sample size for probability of detection $($ prob_det $)=0.9$.

Index

n, 2
p, 3
plotn, 4

