Processing math: 100%

odin discrete models

Thibaut Jombart, Rich FitzJohn

2024-09-23

Discrete compartmental models in a nutshell

From continuous to discrete time

In its simplest form, a SIR model is typically written in continuous time as:

dSdt=βStItNt

dIdt=βStItNtγIt

dRdt=γIt

Where β is an infection rate and γ a removal rate, assuming ‘R’ stands for ‘recovered’, which can mean recovery or death.

For discrete time equivalent, we take a small time step t (typically a day), and write the changes of individuals in each compartment as:

St+1=StβStItNt

It+1=It+βStItNtγIt

Rt+1=Rt+γIt

Stochastic processes

The discrete model above remains deterministic: for given values of the rates β and γ, dynamics will be fixed. It is fairly straightforward to convert this discrete model into a stochastic one: one merely needs to uses appropriate probability distributions to model the transfer of individuals across compartments. There are at least 3 types of such distributions which will be useful to consider.

Binomial distribution

This distribution will be used to determine numbers of individuals leaving a given compartment. While we may be tempted to use a Poisson distribution with the rates specified in the equations above, this could lead to over-shooting, i.e. more individuals leaving a compartment than there actually are. To avoid infecting more people than there are susceptibles, we use a binomial distribution, with one draw for each individual in the compartment of interest. The workflow will be:

  1. determine a per-capita probability of leaving the compartment, based on the original rates specified in the equations; if the rate at which each individual leaves a compartment is λ, then the corresponding probability of this individual leaving the compartment in one time unit is p=1eλ.

  2. determine the number of individuals leaving the compartment using a Binomial distribution, with one draw per individual and a probability p

As an example, let us consider transition SI in the SIR model. The overall rate at which this change happens is βStItNt. The corresponding per susceptible rate is βItNt. Therefore, the probability for an individual to move from S to I at time t is p(SI),t=1eβItNt.

Poisson distribution

Poisson distributions will be useful when individuals enter a compartment at a given rate, from ‘the outside’. This could be birth or migration (for S), or introduction of infections from an external reservoir (for I), etc. The essential distinction with the previous process is that individuals are not leaving an existing compartment.

This case is simple to handle: one just needs to draw new individuals entering the compartment from a Poisson distribution with the rate directly coming from the equations.

For instance, let us now consider a variant of the SIR model where new infectious cases are imported at a constant rate ϵ. The only change to the equation is for the infected compartment:

It+1=It+βStItNt+ϵγIt

where:

  • individuals move from S to I according to a Binomial distribution B(St,1eβItNt)

  • new infected individuals are imported according to a Poisson distribution P(ϵ)

  • individual move from I to R according to a Binomial distribution B(It,1eγ)

Multinomial distribution

This distribution will be useful when individuals leaving a compartment are distributed over several compartments. The Multinomial distribution will be used to determine how many individuals end up in each compartment. Let us assume that individuals move from a compartment X to compartments A, B, and C, at rates λA, λB and λC. The workflow to handle these transitions will be:

  1. determine the total number of individuals leaving X; this is done by summing the rates (λ=λA+λB+λC) to compute the per capita probability of leaving X (p(X...)=1eλ), and drawing the number of individuals leaving X (n(X...)) from a binomial distribution n(X...)B(X,p(X...))

  2. compute relative probabilities of moving to the different compartments (using i as a placeholder for A, B, C): pi=λiiλi

  3. determine the numbers of individuals moving to A, B and C using a Multinomial distribution: n(XA,B,C)M(n(X...),pA,pB,pC)

Implementation using odin

Deterministic SIR model

We start by loading the odin code for a discrete, stochastic SIR model:

As said in the previous vignette, remember this looks and parses like R code, but is not actually R code. Copy-pasting this in a R session will trigger errors.

We then use odin to compile this model:

## Loading required namespace: pkgbuild
## <odin_model> object generator
##   Public:
##     initialize: function (..., user = list(...), use_dde = FALSE, unused_user_action = NULL) 
##     ir: function () 
##     set_user: function (..., user = list(...), unused_user_action = NULL) 
##     initial: function (step) 
##     rhs: function (step, y) 
##     update: function (step, y) 
##     contents: function () 
##     transform_variables: function (y) 
##     run: function (step, y = NULL, ..., use_names = TRUE) 
##   Private:
##     ptr: NULL
##     use_dde: NULL
##     odin: NULL
##     variable_order: NULL
##     output_order: NULL
##     n_out: NULL
##     ynames: NULL
##     interpolate_t: NULL
##     cfuns: list
##     dll: discrete.deterministic.sir60af4dac
##     user: I_ini S_ini beta gamma
##     registration: function () 
##     set_initial: function (step, y, use_dde) 
##     update_metadata: function () 
##   Parent env: <environment: namespace:discrete.deterministic.sir60af4dac>
##   Locked objects: TRUE
##   Locked class: FALSE
##   Portable: TRUE

Note: this is the slow part (generation and then compilation of C code)! Which means for computer-intensive work, the number of times this is done should be minimized.

The returned object sir_generatoris an R6 generator that can be used to create an instance of the model: generate an instance of the model:

## <odin_model>
##   Public:
##     contents: function () 
##     initial: function (step) 
##     initialize: function (..., user = list(...), use_dde = FALSE, unused_user_action = NULL) 
##     ir: function () 
##     rhs: function (step, y) 
##     run: function (step, y = NULL, ..., use_names = TRUE) 
##     set_user: function (..., user = list(...), unused_user_action = NULL) 
##     transform_variables: function (y) 
##     update: function (step, y) 
##   Private:
##     cfuns: list
##     dll: discrete.deterministic.sir60af4dac
##     interpolate_t: NULL
##     n_out: 0
##     odin: environment
##     output_order: NULL
##     ptr: externalptr
##     registration: function () 
##     set_initial: function (step, y, use_dde) 
##     update_metadata: function () 
##     use_dde: FALSE
##     user: I_ini S_ini beta gamma
##     variable_order: list
##     ynames: step S I R

x is an ode_model object which can be used to generate dynamics of a discrete-time, deterministic SIR model. This is achieved using the function x$run(), providing time steps as single argument, e.g.:

##       step         S        I         R
##  [1,]    0 1000.0000 1.000000 0.0000000
##  [2,]    1  999.8002 1.099800 0.1000000
##  [3,]    2  999.5805 1.209517 0.2099800
##  [4,]    3  999.3389 1.330125 0.3309317
##  [5,]    4  999.0734 1.462696 0.4639442
##  [6,]    5  998.7814 1.608403 0.6102138
##  [7,]    6  998.4604 1.768530 0.7710541
##  [8,]    7  998.1076 1.944486 0.9479071
##  [9,]    8  997.7198 2.137811 1.1423557
## [10,]    9  997.2937 2.350191 1.3561368
## [11,]   10  996.8254 2.583469 1.5911558
An example of deterministic, discrete-time SIR model

An example of deterministic, discrete-time SIR model

Stochastic SIR model

The stochastic equivalent of the previous model can be formulated in odin as follows:

We can use the same workflow as before to run the model, using 10 initial infected individuals (I_ini = 10):

## <odin_model> object generator
##   Public:
##     initialize: function (..., user = list(...), use_dde = FALSE, unused_user_action = NULL) 
##     ir: function () 
##     set_user: function (..., user = list(...), unused_user_action = NULL) 
##     initial: function (step) 
##     rhs: function (step, y) 
##     update: function (step, y) 
##     contents: function () 
##     transform_variables: function (y) 
##     run: function (step, y = NULL, ..., use_names = TRUE) 
##   Private:
##     ptr: NULL
##     use_dde: NULL
##     odin: NULL
##     variable_order: NULL
##     output_order: NULL
##     n_out: NULL
##     ynames: NULL
##     interpolate_t: NULL
##     cfuns: list
##     dll: discrete.stochastic.sir307b4e03
##     user: I_ini S_ini beta gamma
##     registration: function () 
##     set_initial: function (step, y, use_dde) 
##     update_metadata: function () 
##   Parent env: <environment: namespace:discrete.stochastic.sir307b4e03>
##   Locked objects: TRUE
##   Locked class: FALSE
##   Portable: TRUE
An example of stochastic, discrete-time SIR model

An example of stochastic, discrete-time SIR model

This gives us a single stochastic realisation of the model, which is of limited interest. As an alternative, we can generate a large number of replicates using arrays for each compartment:

## <odin_model> object generator
##   Public:
##     initialize: function (..., user = list(...), use_dde = FALSE, unused_user_action = NULL) 
##     ir: function () 
##     set_user: function (..., user = list(...), unused_user_action = NULL) 
##     initial: function (step) 
##     rhs: function (step, y) 
##     update: function (step, y) 
##     contents: function () 
##     transform_variables: function (y) 
##     run: function (step, y = NULL, ..., use_names = TRUE) 
##   Private:
##     ptr: NULL
##     use_dde: NULL
##     odin: NULL
##     variable_order: NULL
##     output_order: NULL
##     n_out: NULL
##     ynames: NULL
##     interpolate_t: NULL
##     cfuns: list
##     dll: discrete.stochastic.sir.arrays0c8b756d
##     user: I_ini S_ini beta gamma nsim
##     registration: function () 
##     set_initial: function (step, y, use_dde) 
##     update_metadata: function () 
##   Parent env: <environment: namespace:discrete.stochastic.sir.arrays0c8b756d>
##   Locked objects: TRUE
##   Locked class: FALSE
##   Portable: TRUE
100 replicates of a stochastic, discrete-time SIR model

100 replicates of a stochastic, discrete-time SIR model

A stochastic SEIRDS model

This model is a more complex version of the previous one, which we will use to illustrate the use of all distributions mentioned in the first part: Binomial, Poisson and Multinomial.

The model is contains the following compartments:

There are no birth of natural death processes in this model. Parameters are:

The model will be written as:

St+1=StβSt(IR,t+ID,t)Nt+ωRt

Et+1=Et+βSt(IR,t+ID,t)NtδEt+ϵ

IR,t+1=IR,t+δ(1μ)EtγRIR,t+ϵ

ID,t+1=ID,t+δμEtγDID,t+ϵ

Rt+1=Rt+γRIR,tωRt

Dt+1=Dt+γDID,t

The formulation of the model in odin is:

## <odin_model> object generator
##   Public:
##     initialize: function (..., user = list(...), use_dde = FALSE, unused_user_action = NULL) 
##     ir: function () 
##     set_user: function (..., user = list(...), unused_user_action = NULL) 
##     initial: function (step) 
##     rhs: function (step, y) 
##     update: function (step, y) 
##     contents: function () 
##     transform_variables: function (y) 
##     run: function (step, y = NULL, ..., use_names = TRUE) 
##   Private:
##     ptr: NULL
##     use_dde: NULL
##     odin: NULL
##     variable_order: NULL
##     output_order: NULL
##     n_out: NULL
##     ynames: NULL
##     interpolate_t: NULL
##     cfuns: list
##     dll: discrete.stochastic.seirdsd3faadd9
##     user: E_ini S_ini beta delta epsilon gamma_D gamma_R mu omega
##     registration: function () 
##     set_initial: function (step, y, use_dde) 
##     update_metadata: function () 
##   Parent env: <environment: namespace:discrete.stochastic.seirdsd3faadd9>
##   Locked objects: TRUE
##   Locked class: FALSE
##   Portable: TRUE

Several runs can be obtained without rewriting the model, for instance, to get 100 replicates:

## [1] 366 600
##    S.1 E.1 Id.1 Ir.1 R.1 D.1  S.2 E.2 Id.2 Ir.2
## 1 1000   1    0    0   0   0 1000   1    0    0
## 2 1000   1    0    0   0   0 1000   1    0    0
## 3 1000   0    0    1   0   0 1000   2    0    0
## 4 1000   0    0    1   0   0 1000   1    1    0
## 5 1000   0    0    1   0   0 1000   1    1    0
## 6 1000   0    0    1   0   0 1000   0    2    0
100 replicates of a stochastic, discrete-time SEIRDS model

100 replicates of a stochastic, discrete-time SEIRDS model

It is then possible to explore the behaviour of the model using a simple function:

This is a sanity check with a null infection rate and no imported case:

Stochastic SEIRDS model: sanity check with no infections

Stochastic SEIRDS model: sanity check with no infections

Another easy case: no importation, no waning immunity:

Stochastic SEIRDS model: no importation or waning immunity

Stochastic SEIRDS model: no importation or waning immunity

A more nuanced case: persistence of the disease with limited import, waning immunity, low severity, larger population:

Stochastic SEIRDS model: endemic state in a larger population

Stochastic SEIRDS model: endemic state in a larger population