Optimize drug regimens through model-informed precision dosing,
using individual pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic
(PK-PD) profiles. By integrating therapeutic drug monitoring (TDM) data with
population models, 'posologyr' provides accurate posterior estimates and
enables the calculation of personalized dosing regimens. The empirical Bayes
estimates are computed following the method described by Kang et al. (2012)
<doi:10.4196/kjpp.2012.16.2.97>.
Version: |
1.2.7 |
Depends: |
R (≥ 3.5.0) |
Imports: |
rxode2, stats, mvtnorm, data.table |
Suggests: |
lotri, rmarkdown, testthat (≥ 3.0.0), ggplot2, magrittr, tidyr |
Published: |
2024-09-13 |
DOI: |
10.32614/CRAN.package.posologyr |
Author: |
Cyril Leven [aut,
cre, cph] (<https://orcid.org/0000-0002-0697-4370>),
Matthew Fidler
[ctb] (<https://orcid.org/0000-0001-8538-6691>),
Emmanuelle Comets [ctb],
Audrey Lavenu [ctb],
Marc Lavielle [ctb] |
Maintainer: |
Cyril Leven <cyril.leven at chu-brest.fr> |
BugReports: |
https://github.com/levenc/posologyr/issues |
License: |
AGPL-3 |
URL: |
https://levenc.github.io/posologyr/,
https://github.com/levenc/posologyr |
NeedsCompilation: |
no |
Citation: |
posologyr citation info |
Materials: |
README NEWS |
In views: |
Pharmacokinetics |
CRAN checks: |
posologyr results [issues need fixing before 2025-02-06] |