Package 'psychonetrics'

April 5, 2024

Type Package

Title Structural Equation Modeling and Confirmatory Network Analysis

Version 0.11.6

Author Sacha Epskamp

Maintainer Sacha Epskamp <mail@sachaepskamp.com>

Description

Multi-group (dynamical) structural equation models in combination with confirmatory network models from cross-sectional, time-series and panel data <doi:10.31234/osf.io/8ha93>. Allows for confirmatory testing and fit as well as exploratory model search.

License GPL-2

LinkingTo Rcpp (>= 0.11.3), RcppArmadillo, pbv, roptim

```
Depends R (>= 4.3.0)
```

Imports methods, qgraph, numDeriv, dplyr, abind, Matrix (>= 1.6-5), lavaan, corpcor, glasso, mgcv, optimx, VCA, pbapply, parallel, magrittr, IsingSampler, tidyr, psych, GA, combinat, rlang

Suggests psychTools, semPlot, graphicalVAR, metaSEM, mvtnorm, ggplot2

ByteCompile true

URL http://psychonetrics.org/

BugReports https://github.com/SachaEpskamp/psychonetrics/issues

StagedInstall true

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-04-05 06:10:03 UTC

R topics documented:

psychonet	rics	-pa	cka	age	e			•	 •		•		 					•		•			•				3
bifactor .				•					 •		•		 					•	•	•			•				5
bootstrap				•	•	•	•	•	 •	•	•	•	 	•	•		•	•	•	•		•	•	•	•	 •	6

84

Index

psychonetrics-package Structural Equation Modeling and Confirmatory Network Analysis

Description

Multi-group (dynamical) structural equation models in combination with confirmatory network models from cross-sectional, time-series and panel data <doi:10.31234/osf.io/8ha93>. Allows for confirmatory testing and fit as well as exploratory model search.

Details

The DESCRIPTION file:

Package:	psychonetrics
Type:	Package
Title:	Structural Equation Modeling and Confirmatory Network Analysis
Version:	0.11.6
Author:	Sacha Epskamp
Maintainer:	Sacha Epskamp <mail@sachaepskamp.com></mail@sachaepskamp.com>
Description:	Multi-group (dynamical) structural equation models in combination with confirmatory network models
License:	GPL-2
LinkingTo:	Rcpp (>= 0.11.3), RcppArmadillo, pbv, roptim
Depends:	R (>= 4.3.0)
Imports:	methods, qgraph, numDeriv, dplyr, abind, Matrix (>= 1.6-5), lavaan, corpcor, glasso, mgcv, optimx, VC
Suggests:	psychTools, semPlot, graphicalVAR, metaSEM, mvtnorm, ggplot2
ByteCompile:	true
URL:	http://psychonetrics.org/
BugReports:	https://github.com/SachaEpskamp/psychonetrics/issues
StagedInstall:	true
NeedsCompilation:	yes
Packaged:	2023-10-03 07:28:38 UTC; sachaepskamp
Repository:	CRAN
Date/Publication:	2023-10-03 11:00:02 UTC

Index of help topics:

CIplot	Plot Analytic Confidence Intervals
Ising	Ising model
Jonas	Jonas dataset
MIs	Print modification indices
StarWars	Star Wars dataset
addMIs	Model updating functions
bifactor	Bi-factor models
bootstrap	Bootstrap a psychonetrics model
changedata	Change the data of a psychonetrics object
compare	Model comparison

covML	Maximum likelihood covariance estimate
dlvm1	Lag-1 dynamic latent variable model family of
	psychonetrics models for panel data
duplicationMatrix	Model matrices used in derivatives
emergencystart	Reset starting values to simple defaults
esa	Ergodic Subspace Analysis
factorscores	Compute factor scores
fit	Print fit indices
fixpar	Parameters modification
generate	Generate data from a fitted psychonetrics
	object
getVCOV	Obtain the asymptotic covariance matrix
getmatrix	Extract an estimated matrix
groupequal	Group equality constrains
latentgrowth	Latnet growth curve model
l∨m	Continuous latent variable family of
	psychonetrics models
meta_varcov	Variance-covariance and GGM meta analysis
ml_lvm	Multi-level latent variable model family
ml_tsdlvm1	Multi-level Lag-1 dynamic latent variable model
	family of psychonetrics models for time-series
	data
modelsearch	Stepwise model search
parameters	Print parameter estimates
parequal	Set equality constrains across parameters
partialprune	Partial pruning of multi-group models
prune	Stepdown model search by pruning
	non-significant parameters.
psychonetrics-class	Class '"psychonetrics"'
psychonetrics-package	Structural Equation Modeling and Confirmatory Network Analysis
runmodel	Run a psychonetrics model
setestimator	Convenience functions
setverbose	Should messages of computation progress be printed?
simplestructure	Generate factor loadings matrix with simple
•	structure
stepup	Stepup model search along modification indices
tsdlvm1	Lag-1 dynamic latent variable model family of
	psychonetrics models for time-series data
unionmodel	Unify models across groups
var1	Lag-1 vector autoregression family of
	psychonetrics models
varcov	Variance-covariance family of psychonetrics models

This package can be used to perform Structural Equation Modeling and confirmatory network modeling. Current implemented families of models are (1) the variance–covariance matrix (varcov), (2) the latent variable model (1vm), (3) the lag-1 vector autoregression model (var1), and (4) the

4

bifactor

dynamical lag-1 latent variable model for panel data (dlvm1) and for time-series data (tsdlvm1).

Author(s)

Sacha Epskamp

Maintainer: Sacha Epskamp <mail@sachaepskamp.com>

References

More information: psychonetrics.org

bifactor

Bi-factor models

Description

Wrapper to lvm to specify a bi-factor model.

Usage

```
bifactor(data, lambda, latents, bifactor = "g", ...)
```

Arguments

data	The data as used by lvm
lambda	The factor loadings matrix *without* the bifactor, as used by by $\ensuremath{\tt lvm}$
latents	A vector of names of the latent variables, as used by lvm
bifactor	Name of the bifactor
	Arguments sent to lvm

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

bootstrap

Description

This function will bootstrap the data (once) and return a new unevaluated psychonetrics object. It requres storedata = TRUE to be used when forming a model.

Usage

Arguments

х	A psychonetrics model.
replacement	Logical, should new samples be drawn with replacement?
proportion	Proportion of sample to be drawn. Set to lower than \$1\$ for subsampling.
verbose	Logical, should messages be printed?
storedata	Logical, should the bootstrapped data also be stored?
baseline_satur	ated
	Logical, should the baseline and saturated models be included?

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

changedata

Change the data of a psychonetrics object

Description

This function can be used to change the data in a psychonetrics object.

```
changedata(x, data, covs, nobs, means, groups, missing = "listwise")
```

CIplot

Arguments

x	A psychonetrics model.
data	A data frame encoding the data used in the analysis. Can be missing if covs and nobs are supplied.
covs	A sample variance–covariance matrix, or a list/array of such matrices for mul- tiple groups. IMPORTANT NOTE: psychonetrics expects the maximum likeli- hood (ML) covariance matrix, which is NOT obtained from cov directly. Manu- ally rescale the result of cov with (nobs - 1)/nobs to obtain the ML covariance matrix.
nobs	The number of observations used in covs and means, or a vector of such numbers of observations for multiple groups.
means	A vector of sample means, or a list/matrix containing such vectors for multiple groups.
groups	An optional string indicating the name of the group variable in data.
missing	How should missingness be handled in computing the sample covariances and number of observations when data is used. Can be "listwise" for listwise deletion, or "pairwise" for pairwise deletion.

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

CIplot

Plot Analytic Confidence Intervals

Description

Function to plot analytic confidence intervals (CI) of matrix elements estimated in psychonetrics.

Arguments

х	A psychonetrics model.
matrices	Vector of strings indicating the matrices to plot CIs for
alpha_ci	The alpha level used for the CIs
alpha_color	A vector of alphas used for coloring the CIs
labels	The labels for the variables associated with the rows of a matrix.
labels2	The labels for the variables associated with the columns of a matrix. Defaults to the value of labels for square matrices.
labelstart	The value to determine if labels are printed to the right or to the left of the CI
print	Logical, should the plots also be printed? Only works when one matrix is used in 'matrices'
major_break	Numeric indicating the step size between major breaks
minor_break	Numeric indicating the step size between minor breaks

Value

A single ggplot2 object, or a list of ggplot2 objects for each matrix requested.

Author(s)

Sacha Epskamp

Examples

```
### Example from ?ggm ###
# Load bfi data from psych package:
library("psychTools")
data(bfi)
# Also load dplyr for the pipe operator:
library("dplyr")
# Let's take the agreeableness items, and gender:
ConsData <- bfi %>%
  select(A1:A5, gender) %>%
  na.omit # Let's remove missingness (otherwise use Estimator = "FIML)
# Define variables:
vars <- names(ConsData)[1:5]</pre>
# Let's fit an empty GGM:
mod0 <- ggm(ConsData, vars = vars)</pre>
# Run the model:
mod0 <- mod0 %>% runmodel
# Labels:
labels <- c(</pre>
```

compare

```
"indifferent to the feelings of others",
  "inquire about others' well-being",
  "comfort others",
  "love children",
  "make people feel at ease")
# Plot the CIs:
CIplot(mod0, "omega", labels = labels, labelstart = 0.2)
### Example from ?gvar ###
library("dplyr")
library("graphicalVAR")
beta <- matrix(c(</pre>
  0,0.5,
  0.5,0
),2,2,byrow=TRUE)
kappa <- diag(2)</pre>
simData <- graphicalVARsim(50, beta, kappa)</pre>
# Form model:
model <- gvar(simData)</pre>
# Evaluate model:
model <- model %>% runmodel
# Plot the CIs:
CIplot(model, "beta")
```

compare

Model comparison

Description

This function will print a table comparing multiple models on chi-square, AIC and BIC.

Usage

```
compare(...)
```

```
## S3 method for class 'psychonetrics_compare'
print(x, ...)
```

Arguments

	Any number of psychonetrics models. Can be named to change the rownames
	of the output.
х	Output of the compare function.

Value

A data frame with chi-square values, degrees of freedoms, RMSEAs, AICs, and BICs.

Author(s)

Sacha Epskamp

covML

Maximum likelihood covariance estimate

Description

These functions complement the base R cov function by simplifying obtaining maximum likelihood (ML) covariance estimates (denominator n) instead of unbiased (UB) covariance estimates (denominator n-1). The function covML can be used to obtain ML estimates, the function covUBtoML transforms from UB to ML estimates, and the function covMLtoUB transforms from UB to ML estimates.

Usage

covML(x, ...)
covUBtoML(x, n, ...)
covMLtoUB(x, n, ...)

Arguments

Х	A dataset
n	The sample size
	Arguments sent to the cov function.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

Examples

```
data("StarWars")
Y <- StarWars[,1:10]
# Unbiased estimate:
UB <- cov(Y)
# ML Estimate:
ML <- covML(Y)
# Check:
all(abs(UB - covMLtoUB(ML, nrow(Y))) < sqrt(.Machine$double.eps))
all(abs(ML - covUBtoML(UB, nrow(Y))) < sqrt(.Machine$double.eps))</pre>
```

dlvm1

Lag-1 dynamic latent variable model family of psychonetrics models for panel data

Description

This is the family of models that models a dynamic factor model on panel data. There are four covariance structures that can be modeled in different ways: within_latent, between_latent for the within-person and between-person latent (contemporaneous) models respectively, and within_residual, between_residual for the within-person and between-person residual models respectively. The panelgvar wrapper function sets the lambda to an identity matrix, all residual variances to zero, and models within-person and between-person latent (contemporaneous) models as GGMs. The panelvar wrapper does the same but models contemporaneous relations as a variance-covariance matrix. Finally, the panel_lvgvar wrapper automatically models all latent networks as GGMs.

```
dlvm1(data, vars, lambda, within_latent = c("cov", "chol",
                    "prec", "ggm"), within_residual = c("cov", "chol",
                    "prec"
                           "ggm"), between_latent = c("cov", "chol",
                    "prec", "ggm"), between_residual = c("cov", "chol",
                    "prec", "ggm"), beta = "full", omega_zeta_within =
                    "full", delta_zeta_within = "full", kappa_zeta_within
                    = "full", sigma_zeta_within = "full",
                    lowertri_zeta_within = "full", omega_epsilon_within =
                    "empty", delta_epsilon_within = "empty",
                    kappa_epsilon_within = "empty", sigma_epsilon_within =
                    "empty", lowertri_epsilon_within = "empty",
                    omega_zeta_between = "full", delta_zeta_between =
                    "full", kappa_zeta_between = "full",
                    sigma_zeta_between = "full", lowertri_zeta_between =
                    "full", omega_epsilon_between = "empty",
                    delta_epsilon_between = "empty", kappa_epsilon_between
                    = "empty", sigma_epsilon_between = "empty",
                    lowertri_epsilon_between = "empty", nu, mu_eta,
                    identify = TRUE, identification = c("loadings",
                    "variance"), latents, groups, covs, means, nobs,
                    covtype = c("choose", "ML", "UB"), missing =
                    "listwise", equal = "none", baseline_saturated = TRUE,
                    estimator = "ML", optimizer, storedata = FALSE,
                    verbose = FALSE, sampleStats)
panelgvar(data, vars, within_latent = c("ggm","chol","cov","prec"),
          between_latent = c("ggm","chol","cov","prec"), ...)
panelvar(data, vars, within_latent = c("cov","chol","prec","ggm"),
          between_latent = c("cov", "chol", "prec", "ggm"), ...)
```

panel_lvgvar(...)

Arguments

data	A data frame encoding the data used in the analysis. Can be missing if covs and nobs are supplied.
vars	Required argument. Different from in other psychonetrics models, this must be a *matrix* with each row indicating a variable and each column indicating a measurement. The matrix must be filled with names of the variables in the dataset corresponding to variable i at wave j. NAs can be used to indicate miss- ing waves. The rownames of this matrix will be used as variable names.
lambda	Required argument. A model matrix encoding the factor loading structure. Each row indicates an indicator and each column a latent. A 0 encodes a fixed to zero element, a 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
<pre>within_latent within_residual</pre>	The type of within-person latent contemporaneous model to be used.
	The type of within-person residual model to be used.
between_latent	The type of between-person latent model to be used.
between_residua	1
	The type of between-person residual model to be used.
beta	A model matrix encoding the temporal relationships (transpose of temporal net- work). A 0 encodes a fixed to zero element, a 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a ma- trix. Can also be "full" for a full temporal network or "empty" for an empty temporal network.
omega_zeta_with	in
	Only used when within_latent = "ggm". Can be "full", "empty", or a typi- cal model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
delta_zeta_with	in
	Only used when within_latent = "ggm". Can be "full", "empty", or a typi- cal model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
kappa_zeta_with	
	Only used when within_latent = "prec". Can be "full", "empty", or a typi- cal model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

dlvm1

sigma_zeta_within

Only used when within_latent = "cov". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

lowertri_zeta_within

Only used when within_latent = "chol". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

omega_epsilon_within

Only used when within_residual = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

delta_epsilon_within

Only used when within_residual = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

kappa_epsilon_within

Only used when within_residual = "prec". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

sigma_epsilon_within

Only used when within_residual = "cov". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

lowertri_epsilon_within

Only used when within_residual = "chol". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

omega_zeta_between

Only used when between_latent = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

delta_zeta_between

Only used when between_latent = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

kappa_zeta_between

Only used when between_latent = "prec". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

sigma_zeta_between

Only used when between_latent = "cov". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

lowertri_zeta_between

Only used when between_latent = "chol". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

omega_epsilon_between

Only used when between_residual = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

delta_epsilon_between

Only used when between_residual = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

kappa_epsilon_between

Only used when between_residual = "prec". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

sigma_epsilon_between

Only used when between_residual = "cov". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

lowertri_epsilon_between

Only used when between_residual = "chol". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

- nu Optional vector encoding the intercepts of the observed variables. Set elements to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector.
- mu_eta
 Optional vector encoding the means of the latent variables. Set elements to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector.
- identify Logical, should the model be automatically identified?
- identification Type of identification used. "loadings" to fix the first factor loadings to 1, and "variance" to fix the diagonal of the latent variable model matrix (sigma_zeta, lowertri_zeta, delta_zeta or kappa_zeta) to 1.
- latents An optional character vector with names of the latent variables.
- groups An optional string indicating the name of the group variable in data.
- covs A sample variance–covariance matrix, or a list/array of such matrices for multiple groups. IMPORTANT NOTE: psychonetrics expects the maximum likelihood (ML) covariance matrix, which is NOT obtained from cov directly. Manually rescale the result of cov with (nobs - 1)/nobs to obtain the ML covariance matrix.
- means A vector of sample means, or a list/matrix containing such vectors for multiple groups.
- nobs The number of observations used in covs and means, or a vector of such numbers of observations for multiple groups.
- missing How should missingness be handled in computing the sample covariances and number of observations when data is used. Can be "listwise" for listwise deletion, or "pairwise" for pairwise deletion.
- equal A character vector indicating which matrices should be constrained equal across groups.

baseline_saturated

A logical indicating if the baseline and saturated model should be included. Mostly used internally and NOT Recommended to be used manually.

- estimator The estimator to be used. Currently implemented are "ML" for maximum likelihood estimation, "FIML" for full-information maximum likelihood estimation, "ULS" for unweighted least squares estimation, "WLS" for weighted least squares estimation, and "DWLS" for diagonally weighted least squares estimation.
- optimizer The optimizer to be used. Can be one of "nlminb" (the default R nlminb function), "ucminf" (from the optimr package), and C++ based optimizers "cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead". The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".

storedata	Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap)
verbose	Logical, should progress be printed to the console?
sampleStats	An optional sample statistics object. Mostly used internally.
covtype	If 'covs' is used, this is the type of covariance (maximum likelihood or unbiased) the input covariance matrix represents. Set to "ML" for maximum likelihood estimates (denominator n) and "UB" to unbiased estimates (denominator n-1). The default will try to find the type used, by investigating which is most likely to result from integer valued datasets.
	Arguments sent to dlvm1.

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

Examples

library("dplyr")

```
# Smoke data cov matrix, based on LISS data panel https://www.dataarchive.lissdata.nl
smoke <- structure(c(47.2361758611759, 43.5366809116809, 41.0057465682466,</pre>
                      43.5366809116809, 57.9789886039886, 47.6992521367521,
                      41.0057465682466,
                     47.6992521367521, 53.0669434731935), .Dim = c(3L, 3L),
                    .Dimnames = list(
                        c("smoke2008", "smoke2009", "smoke2010"), c("smoke2008",
                    "smoke2009", "smoke2010")))
# Design matrix:
design <- matrix(rownames(smoke),1,3)</pre>
# Form model:
mod <- panelvar(vars = design,</pre>
                covs = smoke, nobs = 352
)
# Run model:
mod <- mod %>% runmodel
# Evaluate fit:
mod %>% fit
```

Description

These matrices are used in the analytic gradients

Usage

<pre>duplicationMatrix(n,</pre>	diag	=	TRUE)
eliminationMatrix(n,	diag	=	TRUE)

```
diagonalizationMatrix(n)
```

Arguments

n	Number of rows and columns in the original matrix
diag	Logical indicating if the diagonal should be included (set to FALSE for deriva- tive of vech(x))

Value

A sparse matrix

Author(s)

Sacha Epskamp

Examples

```
# Duplication matrix for 10 variables:
duplicationMatrix(10)
```

```
# Elimination matrix for 10 variables:
eliminationMatrix(10)
```

```
# Diagonailzation matrix for 10 variables:
diagonalizationMatrix(10)
```

emergencystart

Description

This function overwrites the starting values to simple defaults. This can help in cases where optimization fails.

Usage

emergencystart(x)

Arguments

Х

A psychonetrics model.

Value

A psychonetrics model.

Author(s)

Sacha Epskamp

esa

Ergodic Subspace Analysis

Description

These functions implement Ergodic Subspace Analysis by von Oertzen, Schmiedek and Voelkle (2020). The functions can be used on the output of a dlvm1 model, or manually by supplying a within persons and between persons variance-covariance matrix.

```
esa(x, cutoff = 0.1,
    between = c("crosssection", "between"))
esa_manual(sigma_wp, sigma_bp, cutoff = 0.1)
## S3 method for class 'esa'
print(x, printref = TRUE, ...)
## S3 method for class 'esa_manual'
print(x, printref = TRUE, ...)
## S3 method for class 'esa'
plot(x, plot = c("observed", "latent"), ...)
## S3 method for class 'esa_manual'
plot(x, ...)
```

factorscores

Arguments

х	Output of a dlvm1 model
sigma_wp	Manual within-person variance-covariance matrix
sigma_bp	Manual between-person variance-covariance matrix
cutoff	Cutoff used to determine ergodicity
printref	Logical, should the reference be printed?
plot	Should ergodicity of observed or latent variables be plotted?
between	Should the between-persons variance-covariance matrix be based on exected cross-sectional or between-person relations
	Not used

Value

For each group a esa_manual object with the following elements:

ergodicity	Ergodicity values of each component
Q_esa	Component loadings
V_bp	Between persons subspace
V_ergodic	Ergodic subspace
V_wp	Within person subspace
cutoff	Cutoff value used

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

von Oertzen, T., Schmiedek, F., and Voelkle, M. C. (2020). Ergodic Subspace Analysis. Journal of Intelligence, 8(1), 3.

|--|

Description

Currently, only the lvm framework with single group and no missing data is supported.

```
factorscores(data, model, method = c("bartlett", "regression"))
```

Arguments

data	Dataset to compute factor scores for
model	A psychonetrics model
method	The method to use: "regression" or "bartlett"

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

fit	Print fit indices	
-----	-------------------	--

Description

This function will print all fit indices of the model/

Usage

fit(x)

Arguments

x A psychonetrics model.

Value

Invisibly returns a data frame with fit measure estimates.

Author(s)

Sacha Epskamp

Examples

```
# Load bfi data from psych package:
library("psychTools")
data(bfi)
# Also load dplyr for the pipe operator:
library("dplyr")
# Let's take the agreeableness items, and gender:
ConsData <- bfi %>%
select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)
# Define variables:
vars <- names(ConsData)[1:5]</pre>
```

fixpar

```
# Let's fit an empty GGM:
mod0 <- ggm(ConsData, vars = vars, omega = "empty")
# Run model:
mod0 <- mod0 %>% runmodel
# Inspect fit:
mod0 %>% fit # Pretty bad fit...
```

fixpar

Parameters modification

Description

The fixpar function can be used to fix a parameter to some value (Typically zero), and the freepar function can be used to free a parameter from being fixed to a value.

Usage

freepar(x, matrix, row, col, start, group, verbose, log =
 TRUE, runmodel = FALSE, startEPC = TRUE, ...)

Arguments

х	A psychonetrics model.
matrix	String indicating the matrix of the parameter
row	Integer or string indicating the row of the matrix of the parameter
col	Integer or string indicating the column of the matrix of the parameter
value	Used in fixpar to indicate the value to which a parameters is constrained
start	Used in freepar to indicate the starting value of the parameter
group	Integer indicating the group of the parameter to be constrained
verbose	Logical, should messages be printed?
log	Logical, should the log be updated?
runmodel	Logical, should the model be updated?
startEPC	Logical, should the starting value be set at the expected parameter change?
	Arguments sent to runmodel

Value

An object of the class psychonetrics (psychonetrics-class)

getmatrix

Author(s)

Sacha Epskamp

generate

Generate data from a fitted psychonetrics object

Description

This function will generate new data from the estimated mean and variance-covariance structure of a psychonetrics model.

Usage

generate(x, n = 500)

Arguments

х	A psychonetrics model.
n	Number of cases to sample per group.

Value

A data frame with simulated data

Author(s)

Sacha Epskamp

getmatrix

Extract an estimated matrix

Description

This function will extract an estimated matrix, and will either return a single matrix for single group models or a list of such matrices for multiple group models.

Usage

22

getmatrix

Arguments

х	A psychonetrics model.
matrix	String indicating the matrix to be extracted.
group	Integer indicating the group for the matrix to be extracted.
threshold	Logical. Should the matrix be thresholded (non-significant values set to zero? Can also be a value with an absolute threshold below wich parameters are set to zero.)
alpha	Significance level to use.
adjust	p-value adjustment method to use. See p.adjust.
mode	Mode for adjusting for multiple comparisons. Should all parameters be considered as the total number of tests or only the tested parameters (parameters of interest)?
diag	Set to FALSE to set diagonal elements to zero.

Value

A matrix of parameter estimates, of a list of such matrices for multiple group models.

Author(s)

Sacha Epskamp

Examples

```
# Load bfi data from psych package:
library("psychTools")
data(bfi)
# Also load dplyr for the pipe operator:
library("dplyr")
# Let's take the agreeableness items, and gender:
ConsData <- bfi %>%
  select(A1:A5, gender) %>%
  na.omit # Let's remove missingness (otherwise use Estimator = "FIML)
# Define variables:
vars <- names(ConsData)[1:5]</pre>
# Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "full")</pre>
# Run model:
mod <- mod %>% runmodel
# Obtain network:
mod %>% getmatrix("omega")
```

getVCOV

Description

This function can be used to obtain the estimated asymptotic covariance matrix from a psychonetrics object.

Usage

getVCOV(model)

Arguments

model A psychonetrics model.

Value

This function returns a matrix.

Author(s)

Sacha Epskamp

groupequal

Group equality constrains

Description

The groupequal function constrains parameters equal across groups, and the groupfree function frees equality constrains across groups.

Ising

Arguments

х	A psychonetrics model.
matrix	String indicating the matrix of the parameter
row	Integer or string indicating the row of the matrix of the parameter
col	Integer or string indicating the column of the matrix of the parameter
verbose	Logical, should messages be printed?
log	Logical, should the log be updated?
runmodel	Logical, should the model be updated?
identify	Logical, should the model be identified?
	Arguments sent to runmodel

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

Ising

Ising model

Description

This is the family of Ising models fit to dichotomous datasets. Note that the input matters (see also https://arxiv.org/abs/1811.02916) in this model! Models based on a dataset that is encoded with -1 and 1 are not entirely equivalent to models based on datasets encoded with 0 and 1 (non-equivalences occur in multi-group settings with equality constrains).

Usage

Ising(data, omega = "full", tau, beta, vars, groups, covs, means, nobs, covtype = c("choose", "ML", "UB"), responses, missing = "listwise", equal = "none", baseline_saturated = TRUE, estimator = "default", optimizer, storedata = FALSE, WLS.W, sampleStats, identify = TRUE, verbose = FALSE, maxNodes = 20, min_sum = -Inf)

Arguments

data	A data frame encoding the data used in the analysis. Can be missing if covs and nobs are supplied.	
omega	The network structure. Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions nNode x nNode with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.	
tau	Optional vector encoding the threshold/intercept structure. Set elements to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector.	
beta	Optional scalar encoding the inverse temperature. 1 indicate free beta param- eters, and higher integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such scalers.	
vars	An optional character vector encoding the variables used in the analyis. Must equal names of the dataset in data.	
groups	An optional character vector encoding the variables used in the analyis. Must equal names of the dataset in data.	
covs	A sample variance–covariance matrix, or a list/array of such matrices for multiple groups. Make sure covtype argument is set correctly to the type of covariances used.	
means	A vector of sample means, or a list/matrix containing such vectors for multiple groups.	
nobs	The number of observations used in covs and means, or a vector of such num- bers of observations for multiple groups.	
covtype	If 'covs' is used, this is the type of covariance (maximum likelihood or unbiased) the input covariance matrix represents. Set to "ML" for maximum likelihood estimates (denominator n) and "UB" to unbiased estimates (denominator n-1). The default will try to find the type used, by investigating which is most likely to result from integer valued datasets.	
responses	A vector of dichotemous responses used (e.g., $c(-1,1)$ or $c(0,1)$. Only needed when 'covs' is used.)	
missing	How should missingness be handled in computing the sample covariances and number of observations when data is used. Can be "listwise" for listwise deletion, or "pairwise" for pairwise deletion. NOT RECOMMENDED TO BE USED YET IN ISING MODEL.	
equal	A character vector indicating which matrices should be constrained equal across groups.	
baseline_saturated		
	A logical indicating if the baseline and saturated model should be included. Mostly used internally and NOT Recommended to be used manually.	

Ising

estimator	The estimator to be used. Currently implemented are "ML" for maximum like- lihood estimation, "FIML" for full-information maximum likelihood estimation, "ULS" for unweighted least squares estimation, "WLS" for weighted least squares
	estimation, and "DWLS" for diagonally weighted least squares estimation. Only ML estimation is currently supported for the Ising model.
optimizer	The optimizer to be used. Can be one of "nlminb" (the default R nlminb function), "ucminf" (from the optimr package), and C++ based optimizers "cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead" The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".
storedata	Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).
WLS.W	Optional WLS weights matrix. CURRENTLY NOT USED.
sampleStats	An optional sample statistics object. Mostly used internally.
identify	Logical, should the model be identified?
verbose	Logical, should messages be printed?
maxNodes	The maximum number of nodes allowed in the analysis. This function will stop with an error if more nodes are used (it is not recommended to set this higher).
min_sum	The minimum sum score that is artifically possible in the dataset. Defaults to -Inf. Set this only if you know a lower sum score is not possible in the data, for example due to selection bias.

Details

The Ising Model takes the following form:

$$\Pr(\boldsymbol{Y} = \boldsymbol{y}) = \frac{\exp(-\beta H(\boldsymbol{y}; \boldsymbol{\tau}, \boldsymbol{\Omega}))}{Z(\boldsymbol{\tau}, \boldsymbol{\Omega})}$$

With Hamiltonian:

$$H(\boldsymbol{y};\boldsymbol{\tau},\boldsymbol{\Omega}) = -\sum_{i=1}^{m} \tau_i y_i - \sum_{i=2}^{m} \sum_{j=1}^{i-1} \omega_{ij} y_i y_j.$$

And Z representing the partition function or normalizing constant.

Value

An object of the class psychonetrics

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Epskamp, S., Maris, G., Waldorp, L. J., & Borsboom, D. (2018). Network Psychometrics. In: Irwing, P., Hughes, D., & Booth, T. (Eds.), The Wiley Handbook of Psychometric Testing, 2 Volume Set: A Multidisciplinary Reference on Survey, Scale and Test Development. New York: Wiley.

Examples

```
library("dplyr")
data("Jonas")
# Variables to use:
vars <- names(Jonas)[1:10]</pre>
# Arranged groups to put unfamiliar group first (beta constrained to 1):
Jonas <- Jonas[order(Jonas$group),]</pre>
# Form saturated model:
model1 <- Ising(Jonas, vars = vars, groups = "group")</pre>
# Run model:
model1 <- model1 %>% runmodel
# Prune-stepup to find a sparse model:
model1b <- model1 %>% prune(alpha = 0.05) %>% stepup(alpha = 0.05)
# Equal networks:
suppressWarnings(
 model2 <- model1 %>% groupequal("omega") %>% runmodel
)
# Prune-stepup to find a sparse model:
model2b <- model2 %>% prune(alpha = 0.05) %>% stepup(mi = "mi_equal", alpha = 0.05)
# Equal thresholds:
model3 <- model2 %>% groupequal("tau") %>% runmodel
# Prune-stepup to find a sparse model:
model3b <- model3 %>% prune(alpha = 0.05) %>% stepup(mi = "mi_equal", alpha = 0.05)
# Equal beta:
model4 <- model3 %>% groupequal("beta") %>% runmodel
# Prune-stepup to find a sparse model:
model4b <- model4 %>% prune(alpha = 0.05) %>% stepup(mi = "mi_equal", alpha = 0.05)
# Compare all models:
compare(
 `1. all parameters free (dense)` = model1,
 `2. all parameters free (sparse)` = model1b,
 `3. equal networks (dense)` = model2,
 `4. equal networks (sparse)` = model2b,
 `5. equal networks and thresholds (dense)` = model3,
  `6. equal networks and thresholds (sparse)` = model3b,
  `7. all parameters equal (dense)` = model4,
  `8. all parameters equal (sparse)` = model4b
) %>% arrange(BIC)
```

28

Jonas

Description

Responses of 10 attitude items towards a researcher named Jonas. Participants were shown three photos of Jonas with the text: "This is Jonas, a researcher from Germany who is now becoming a PhD in Psychology". Subsequently, the participants had to answer 10 yes / no questions starting with "I believe that Jonas...", as well as rate their familliarity with Jonas. The sample consists of people familiar with Jonas and not familiar with Jonas, and allows for testing Attitudinal Entropy Framework <doi:10.1080/1047840X.2018.1537246>.

Usage

data("Jonas")

Format

A data frame with 215 observations on the following 12 variables.

scientist ... is a good scientist

jeans ... Is a person that wears beautiful jeans

cares ... really cares about people like you

economics ... would solve our economic problems

hardworking ... is hardworking

honest ... is honest

intouch ... is in touch with ordinary people

knowledgeable ... is knowledgeable

makeupmind ... can't make up his mind

getsthingsdone ... gets things done

familiar Answers to the question "How familiar are you with Jonas?" (three responses possible)

group The question 'familiar' categorized in two groups ("Knows Jonas" and "Doesn't Know Jonas")

Examples

data(Jonas)

latentgrowth

Description

Wrapper to lvm to specify a latent growth curve model.

Usage

Arguments

vars	Different from in other psychonetrics models, this must be a *matrix* with each row indicating a variable and each column indicating a measurement. The matrix must be filled with names of the variables in the dataset corresponding to variable i at wave j. NAs can be used to indicate missing waves. The rownames of this matrix will be used as variable names.
time	A vector with the encoding of each measurement (e.g., 0, 1, 2, 3).
covariates	A vector with strings indicating names of between-person covariate variables in the data
covariates_as	Should covariates be included as regressions or actual covariates?
•••	Arguments sent to lvm

Details

See https://github.com/SachaEpskamp/SEM-code-examples/tree/master/Latent_growth_ examples/psychonetrics for examples

Value

An object of the class psychonetrics (psychonetrics-class). See for an example https://github. com/SachaEpskamp/SEM-code-examples/tree/master/Latent_growth_examples/psychonetrics.

Author(s)

Sacha Epskamp

Examples

library("dplyr")

```
41.0057465682466,
                      47.6992521367521, 53.0669434731935), .Dim = c(3L, 3L),
                    .Dimnames = list(
                        c("smoke2008", "smoke2009", "smoke2010"), c("smoke2008",
                    "smoke2009", "smoke2010")))
# Design matrix:
design <- matrix(rownames(smoke),1,3)</pre>
# Form model:
mod <- latentgrowth(vars = design,</pre>
                 covs = smoke, nobs = 352
)
## Not run:
# Run model:
mod <- mod %>% runmodel
# Evaluate fit:
mod %>% fit
# Look at parameters:
mod %>% parameters
## End(Not run)
```

lvm

Continuous latent variable family of psychonetrics models

Description

This is the family of models that models the data as a structural equation model (SEM), allowing the latent and residual variance-covariance matrices to be further modeled as networks. The latent and residual arguments can be used to define what latent and residual models are used respectively: "cov" (default) models a variance-covariance matrix directly, "chol" models a Cholesky decomposition, "prec" models a precision matrix, and "ggm" models a Gaussian graphical model (Epskamp, Rhemtulla and Borsboom, 2017). The wrapper lnm() sets latent = "ggm" for the latent network model (LNM), the wrapper rnm() sets residual = "ggm" for the residual network model (RNM), and the wrapper lrnm() combines the LNM and RNM.

```
lvm(data, lambda, latent = c("cov", "chol", "prec",
    "ggm"), residual = c("cov", "chol", "prec", "ggm"),
    sigma_zeta = "full", kappa_zeta = "full", omega_zeta =
    "full", lowertri_zeta = "full", delta_zeta = "full",
    sigma_epsilon = "empty", kappa_epsilon = "empty",
    omega_epsilon = "empty", lowertri_epsilon = "empty",
    delta_epsilon = "empty", beta = "empty", nu, nu_eta,
```

```
identify = TRUE, identification = c("loadings",
"variance"), vars, latents, groups, covs, means, nobs,
missing = "listwise", equal = "none",
baseline_saturated = TRUE, estimator = "ML",
optimizer, storedata = FALSE, WLS.W, covtype =
c("choose", "ML", "UB"), standardize = c("none", "z",
"quantile"), sampleStats, verbose = FALSE,
simplelambdastart = FALSE)
```

lnm(...)
rnm(...)
lrnm(...)

Arguments

data	A data frame encoding the data used in the analysis. Can be missing if covs and nobs are supplied.
lambda	A model matrix encoding the factor loading structure. Each row indicates an indicator and each column a latent. A 0 encodes a fixed to zero element, a 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
latent	The type of latent model used. See description.
residual	The type of residual model used. See description.
sigma_zeta	Only used when latent = "cov". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
kappa_zeta	Only used when latent = "prec". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
omega_zeta	Only used when latent = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
lowertri_zeta	Only used when latent = "chol". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to

estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

- delta_zeta Only used when latent = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- sigma_epsilon Only used when residual = "cov". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- kappa_epsilon Only used when residual = "prec". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- omega_epsilon Only used when residual = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- lowertri_epsilon

lvm

Only used when residual = "chol". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

- delta_epsilon Only used when residual = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- beta A model matrix encoding the structural relations between latent variables. A 0 encodes a fixed to zero element, a 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- nu Optional vector encoding the intercepts of the observed variables. Set elements to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher

	integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector.
nu_eta	Optional vector encoding the intercepts of the latent variables. Set elements to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector.
identify	Logical, should the model be automatically identified?
identification	Type of identification used. "loadings" to fix the first factor loadings to 1, and "variance" to fix the diagonal of the latent variable model matrix (sigma_zeta, lowertri_zeta, delta_zeta or kappa_zeta) to 1.
vars	An optional character vector encoding the variables used in the analysis. Must equal names of the dataset in data.
latents	An optional character vector with names of the latent variables.
groups	An optional string indicating the name of the group variable in data.
covs	A sample variance–covariance matrix, or a list/array of such matrices for multi- ple groups. Make sure covtype argument is set correctly to the type of covari- ances used.
means	A vector of sample means, or a list/matrix containing such vectors for multiple groups.
nobs	The number of observations used in covs and means, or a vector of such numbers of observations for multiple groups.
missing	How should missingness be handled in computing the sample covariances and number of observations when data is used. Can be "listwise" for listwise deletion, or "pairwise" for pairwise deletion.
equal	A character vector indicating which matrices should be constrained equal across groups.
baseline_satura	
	A logical indicating if the baseline and saturated model should be included. Mostly used internally and NOT Recommended to be used manually.
estimator	The estimator to be used. Currently implemented are "ML" for maximum like- lihood estimation, "FIML" for full-information maximum likelihood estimation, "ULS" for unweighted least squares estimation, "WLS" for weighted least squares estimation, and "DWLS" for diagonally weighted least squares estimation.
optimizer	The optimizer to be used. Can be one of "nlminb" (the default R nlminb function), "ucminf" (from the optimr package), and C++ based optimizers "cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead". The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".
storedata	Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).
verbose	Logical, should progress be printed to the console?
WLS.W	The weights matrix used in WLS estimation (experimental)
sampleStats	An optional sample statistics object. Mostly used internally.

covtype	If 'covs' is used, this is the type of covariance (maximum likelihood or unbiased) the input covariance matrix represents. Set to "ML" for maximum likelihood estimates (denominator n) and "UB" to unbiased estimates (denominator n-1). The default will try to find the type used, by investigating which is most likely to result from integer valued datasets.	
standardize	Which standardization method should be used? "none" (default) for no stan- dardization, "z" for z-scores, and "quantile" for a non-parametric transforma- tion to the quantiles of the marginal standard normal distribution.	
simplelambdastart		
	Logical, should simple start values be used for lambda? Setting this to TRUE can avoid some estimation problems.	
	Arguments sent to varcov	

Details

The model used in this family is:

$$\begin{aligned} \operatorname{var}(\boldsymbol{y}) &= \boldsymbol{\Lambda} (\boldsymbol{I} - \boldsymbol{B})^{-1} \boldsymbol{\Sigma}_{\zeta} (\boldsymbol{I} - \boldsymbol{B})^{-1\top} \boldsymbol{\Lambda}^{\top} + \boldsymbol{\Sigma}_{\varepsilon} \\ \boldsymbol{\mathcal{E}}(\boldsymbol{y}) &= \boldsymbol{\nu} + \boldsymbol{\Lambda} (\boldsymbol{I} - \boldsymbol{B})^{-1} \boldsymbol{\nu}_{e} t a \end{aligned}$$

in which the latent covariance matrix can further be modeled in three ways. With latent = "chol" as Cholesky decomposition:

$$\Sigma_\zeta = L_\zeta L_\zeta,$$

with latent = "prec" as Precision matrix:

$$\boldsymbol{\Sigma}_{\zeta} = \boldsymbol{K}_{\zeta}^{-1},$$

and finally with latent = "ggm" as Gaussian graphical model:

 $\boldsymbol{\Sigma}_{\zeta} = \boldsymbol{\Delta}_{\zeta} (\boldsymbol{I} - \boldsymbol{\Omega}_{\zeta})^{(-1)} \boldsymbol{\Delta}_{\zeta}.$

Likewise, the residual covariance matrix can also further be modeled in three ways. With residual = "chol" as Cholesky decomposition:

$$\Sigma_{arepsilon} = L_{arepsilon} L_{arepsilon},$$

with latent = "prec" as Precision matrix:

$$\boldsymbol{\Sigma}_{\varepsilon} = \boldsymbol{K}_{\varepsilon}^{-1}$$

and finally with latent = "ggm" as Gaussian graphical model:

 $\boldsymbol{\Sigma}_{\varepsilon} = \boldsymbol{\Delta}_{\varepsilon} (\boldsymbol{I} - \boldsymbol{\Omega}_{\varepsilon})^{(-1)} \boldsymbol{\Delta}_{\varepsilon}.$

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

References

Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Combining network and latent variable models. Psychometrika, 82(4), 904-927.

Examples

```
library("dplyr")
### Confirmatory Factor Analysis ###
# Example also shown in https://youtu.be/Hdu5z-fwuk8
# Load data:
data(StarWars)
# Originals only:
Lambda <- matrix(1,4)</pre>
# Model:
mod0 <- lvm(StarWars, lambda = Lambda, vars = c("Q1", "Q5", "Q6", "Q7"),</pre>
            identification = "variance", latents = "Originals")
# Run model:
mod0 <- mod0 %>% runmodel
# Evaluate fit:
mod0 %>% fit
# Full analysis
# Factor loadings matrix:
Lambda <- matrix(0, 10, 3)
Lambda[1:4,1] <- 1
Lambda[c(1,5:7),2] <- 1
Lambda[c(1,8:10),3] <- 1
# Observed variables:
obsvars <- paste0("Q",1:10)</pre>
# Latents:
latents <- c("Prequels","Original","Sequels")</pre>
# Make model:
mod1 <- lvm(StarWars, lambda = Lambda, vars = obsvars,</pre>
            identification = "variance", latents = latents)
# Run model:
mod1 <- mod1 %>% runmodel
# Look at fit:
mod1
# Look at parameter estimates:
mod1 %>% parameters
# Look at modification indices:
mod1 %>% MIs
```

lvm

```
lvm
```

```
# Add and refit:
mod2 <- mod1 %>% freepar("sigma_epsilon","Q10","Q4") %>% runmodel
# Compare:
compare(original = mod1, adjusted = mod2)
# Fit measures:
mod2 %>% fit
### Path diagrams ###
# semPlot is not (yet) supported by default, but can be used as follows:
# Load packages:
library("semPlot")
# Estimates:
lambdaEst <- getmatrix(mod2, "lambda")</pre>
psiEst <- getmatrix(mod2, "sigma_zeta")</pre>
thetaEst <- getmatrix(mod2, "sigma_epsilon")</pre>
# LISREL Model: LY = Lambda (lambda-y), TE = Theta (theta-epsilon), PS = Psi
mod <- lisrelModel(LY = lambdaEst, PS = psiEst, TE = thetaEst)</pre>
# Plot with semPlot:
semPaths(mod, "std", "est", as.expression = "nodes")
# We can make this nicer (set whatLabels = "none" to hide labels):
semPaths(mod,
# this argument controls what the color of edges represent. In this case,
# standardized parameters:
    what = "std",
# This argument controls what the edge labels represent. In this case, parameter
# estimates:
    whatLabels = "est",
# This argument draws the node and edge labels as mathematical exprssions:
    as.expression = "nodes",
# This will plot residuals as arrows, closer to what we use in class:
    style = "lisrel",
# This makes the residuals larger:
    residScale = 10,
# ggraph colorblind friendly theme:
    theme = "colorblind",
# tree layout options are "tree", "tree2", and "tree3":
    layout = "tree2",
```

```
# This makes the latent covariances connect at a cardinal center point:
    cardinal = "lat cov",
# Changes curve into rounded straight lines:
   curvePivot = TRUE,
# Size of manifest variables:
    sizeMan = 4,
# Size of latent varibales:
   sizeLat = 10,
# Size of edge labels:
    edge.label.cex = 1,
# Sets the margins:
   mar = c(9,1,8,1),
# Prevents re-ordering of ovbserved variables:
    reorder = FALSE,
# Width of the plot:
    width = 8,
# Height of plot:
   height = 5,
# Colors according to latents:
   groups = "latents",
# Pastel colors:
   pastel = TRUE,
# Disable borders:
   borders = FALSE
   )
# Use arguments filetype = "pdf" and filename = "semPlotExample1" to store PDF
### Latent Network Modeling ###
# Latent network model:
lnm <- lvm(StarWars, lambda = Lambda, vars = obsvars,</pre>
           latents = latents, identification = "variance",
           latent = "ggm")
# Run model:
lnm <- lnm %>% runmodel
# Look at parameters:
lnm %>% parameters
# Remove non-sig latent edge:
```

```
lnm <- lnm %>% prune(alpha = 0.05)
# Compare to the original CFA model:
compare(cfa = mod1, lnm = lnm)
# Plot network:
library("qgraph")
qgraph(lnm@modelmatrices[[1]]$omega_zeta, labels = latents,
       theme = "colorblind", vsize = 10)
# A wrapper for the latent network model is the lnm function:
lnm2 <- lnm(StarWars, lambda = Lambda, vars = obsvars,</pre>
            latents = latents, identification = "variance")
lnm2 <- lnm2 %>% runmodel %>% prune(alpha = 0.05)
compare(lnm, lnm2) # Is the same as the model before.
# I could also estimate a "residual network model", which adds partial correlations to
# the residual level:
# This can be done using lvm(..., residal = "ggm") or with rnm(...)
rnm <- rnm(StarWars, lambda = Lambda, vars = obsvars,</pre>
           latents = latents, identification = "variance")
# Stepup search:
rnm <- rnm %>% stepup
# It will estimate the same model (with link Q10 – Q4) as above. In the case of only one
# partial correlation, There is no difference between residual covariances (SEM) or
# residual partial correlations (RNM).
# For more information on latent and residual network models, see:
# Epskamp, S., Rhemtulla, M.T., & Borsboom, D. Generalized Network Psychometrics:
# Combining Network and Latent Variable Models
# (2017). Psychometrika. doi:10.1007/s11336-017-9557-x
### Gaussian graphical models ###
# All psychonetrics functions (e.g., lvm, lnm, rnm...) allow input via a covariance
# matrix, with the "covs" and "nobs" arguments.
# The following fits a baseline GGM network with no edges:
S <- (nrow(StarWars) - 1)/ (nrow(StarWars)) * cov(StarWars[,1:10])</pre>
ggmmod <- ggm(covs = S, nobs = nrow(StarWars))</pre>
# Run model with stepup search and pruning:
ggmmod <- ggmmod%>% prune %>% modelsearch
# Fit measures:
ggmmod %>% fit
# Plot network:
nodeNames <- c(</pre>
"I am a huge Star Wars\nfan! (star what?)",
"I would trust this person\nwith my democracy.",
"I enjoyed the story of\nAnakin's early life.",
```

```
"The special effects in\nthis scene are awful (Battle of\nGeonosis).",
"I would trust this person\nwith my life.",
"I found Darth Vader's big\nreveal in 'Empire' one of the greatest
moments in movie history.",
"The special effects in\nthis scene are amazing (Death Star\nExplosion).",
"If possible, I would\ndefinitely buy this\ndroid.",
"The story in the Star\nWars sequels is an improvement to\nthe previous movies.",
"The special effects in\nthis scene are marvellous (Starkiller\nBase Firing)."
)
library("qgraph")
qgraph(as.matrix(ggmmod@modelmatrices[[1]]$omega), nodeNames = nodeNames,
    legend.cex = 0.25, theme = "colorblind", layout = "spring")
# We can actually compare this model statistically (note they are not nested) to the
# latent variable model:
compare(original_cfa = mod1, adjusted_cfa = mod2, exploratory_ggm = ggmmod)
### Meausrement invariance ###
# Let's say we are interested in seeing if people >= 30 like the original trilogy better
# than people < 30.
# First we can make a grouping variable:
StarWars$agegroup <- ifelse(StarWars$Q12 < 30, "young", "less young")</pre>
# Let's look at the distribution:
table(StarWars$agegroup) # Pretty even...
# Observed variables:
obsvars <- paste0("Q",1:10)</pre>
# Let's look at the mean scores:
StarWars %>% group_by(agegroup) %>% summarize_each_(funs(mean),vars = obsvars)
# Less young people seem to score higher on prequel questions and lower on other
# questions
# Factor loadings matrix:
Lambda <- matrix(0, 10, 3)
Lambda[1:4,1] <- 1
Lambda[c(1,5:7),2] <- 1
Lambda[c(1,8:10),3] <- 1
# Residual covariances:
Theta <- diag(1, 10)
Theta[4,10] <- Theta[10,4] <- 1
# Latents:
latents <- c("Prequels", "Original", "Sequels")</pre>
# Make model:
mod_configural <- lvm(StarWars, lambda = Lambda, vars = obsvars,</pre>
            latents = latents, sigma_epsilon = Theta,
            identification = "variance",
            groups = "agegroup")
```

```
# Run model:
mod_configural <- mod_configural %>% runmodel
# Look at fit:
mod_configural
mod_configural %>% fit
# Looks good, let's try weak invariance:
mod_weak <- mod_configural %>% groupequal("lambda") %>% runmodel
# Compare models:
compare(configural = mod_configural, weak = mod_weak)
# weak invariance can be accepted, let's try strong:
mod_strong <- mod_weak %>% groupequal("nu") %>% runmodel
# Means are automatically identified
# Compare models:
compare(configural = mod_configural, weak = mod_weak, strong = mod_strong)
# Questionable p-value and AIC difference, but ok BIC difference. This is quite good, but
# let's take a look. I have not yet implemented LM tests for equality constrains, but we
# can look at something called "equality-free" MIs:
mod_strong %>% MIs(matrices = "nu", type = "free")
# Indicates that Q10 would improve fit. We can also look at residuals:
residuals(mod_strong)
# Let's try freeing intercept 10:
mod_strong_partial <- mod_strong %>% groupfree("nu",10) %>% runmodel
# Compare all models:
compare(configural = mod_configural,
       weak = mod_weak,
       strong = mod_strong,
       strong_partial = mod_strong_partial)
# This seems worth it and lead to an acceptable model! It seems that older people find
# the latest special effects more marvellous!
mod_strong_partial %>% getmatrix("nu")
# Now let's investigate strict invariance:
mod_strict <- mod_strong_partial %>% groupequal("sigma_epsilon") %>% runmodel
# Compare all models:
compare(configural = mod_configural,
       weak = mod_weak,
       strong_partial = mod_strong_partial,
       strict = mod_strict)
# Strict invariance can be accepted!
# Now we can test for homogeneity!
```

```
# Are the latent variances equal?
mod_eqvar <- mod_strict %>% groupequal("sigma_zeta") %>% runmodel
# Compare:
compare(strict = mod_strict, eqvar = mod_eqvar)
# This is acceptable. What about the means? (alpha = nu_eta)
mod_eqmeans <- mod_eqvar %>% groupequal("nu_eta") %>% runmodel
# Compare:
compare(eqvar = mod_eqvar, eqmeans = mod_eqmeans)
# Rejected! We could look at MIs again:
mod_eqmeans %>% MIs(matrices = "nu_eta", type = "free")
# Indicates the strongest effect for prequels. Let's see what happens:
eqmeans2 <- mod_eqvar %>%
  groupequal("nu_eta",row = c("Original","Sequels")) %>% runmodel
# Compare:
compare(eqvar = mod_eqvar, eqmeans = eqmeans2)
# Questionable, what about the sequels as well?
eqmeans3 <- mod_eqvar %>% groupequal("nu_eta", row = "Original") %>% runmodel
# Compare:
compare(eqvar = mod_eqvar, eqmeans = eqmeans3)
# Still questionable.. Let's look at the mean differences:
mod_eqvar %>% getmatrix("nu_eta")
# Looks like people over 30 like the prequels better and the other two trilogies less!
```

meta_varcov

Variance-covariance and GGM meta analysis

Description

Meta analysis of correlation matrices to fit a homogenous correlation matrix or Gaussian graphical model. Based on meta-analytic SEM (Jak and Cheung, 2019).

Usage

```
meta_varcov(cors, nobs, Vmats, Vmethod = c("individual", "pooled",
            "metaSEM_individual", "metaSEM_weighted"), Vestimation
            = c("averaged", "per_study"), type = c("cor", "ggm"),
            sigma_y = "full", kappa_y = "full", omega_y = "full",
            lowertri_y = "full", delta_y = "full", rho_y = "full",
            SD_y = "full", randomEffects = c("chol", "cov",
```

```
"prec", "ggm", "cor"), sigma_randomEffects = "full",
kappa_randomEffects = "full", omega_randomEffects =
"full", lowertri_randomEffects = "full",
delta_randomEffects = "full", rho_randomEffects =
"full", SD_randomEffects = "full", vars,
baseline_saturated = TRUE, optimizer, estimator =
c("FIML", "ML"), sampleStats, verbose = FALSE)
```

meta_ggm(...)

Arguments

cors	A list of correlation matrices. Must contain rows and columns with NAs for variables not included in a study.
nobs	A vector with the number of observations per study.
Vmats	Optional list with 'V' matrices (sampling error variance approximations).
Vmethod	Which method should be used to apprixomate the sampling error variance?
Vestimation	How should the sampling error estimates be evaluated?
type	What to model? Currently only "cor" and "ggm" are supported.
sigma_y	Only used when type = " cov ". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
kappa_y	Only used when type = "prec". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
omega_y	Only used when type = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this ar- gument can be a list or array with each element/slice encoding such a matrix.
lowertri_y	Only used when type = "chol". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
delta_y	Only used when type = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this ar- gument can be a list or array with each element/slice encoding such a matrix.

rho_y	Only used when type = "cor". Either "full" to estimate every element freely,
	"empty" to set all elements to zero, or a matrix of the dimensions node x node
	with 0 encoding a fixed to zero element, 1 encoding a free to estimate element,
	and higher integers encoding equality constrains. For multiple groups, this ar-
	gument can be a list or array with each element/slice encoding such a matrix.

SD_y Only used when type = "cor". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

randomEffects What to model for the random effects?

sigma_randomEffects

Only used when type = "cov". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

kappa_randomEffects

Only used when randomEffects = "prec". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

omega_randomEffects

Only used when randomEffects = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

lowertri_randomEffects

Only used when randomEffects = "chol". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

delta_randomEffects

Only used when randomEffects = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

<pre>rho_randomEffect</pre>	S
-----------------------------	---

Only used when randomEffects = "cor". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

SD_randomEffects

Only used when randomEffects = "cor". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

vars Variables to be included.

baseline_satur	ated
----------------	------

A logical indicating if the baseline and saturated model should be included. Mostly used internally and NOT Recommended to be used manually.

- optimizer The optimizer to be used. Can be one of "nlminb" (the default R nlminb function), "ucminf" (from the optimr package), and C++ based optimizers "cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead". The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".
- estimator The estimator to be used. Currently implemented are "ML" for maximum likelihood estimation or "FIML" for full-information maximum likelihood estimation.
- sampleStats An optional sample statistics object. Mostly used internally.
- verbose Logical, should progress be printed to the console?
- ... Arguments sent to meta_varcov

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Jak, S., and Cheung, M. W. L. (2019). Meta-analytic structural equation modeling with moderating effects on SEM parameters. Psychological methods.

Description

This function prints a list of modification indices (MIs)

Usage

```
MIs(x, all = FALSE, matrices, type = c("normal", "equal", "free"), top = 10,
    verbose = TRUE, nonZero = FALSE)
```

Arguments

х	A psychonetrics model.
all	Logical, should all MIs be printed or only the highest?
matrices	Optional vector of matrices to include in the output.
type	String indicating which kind of modification index should be printed. ("mi" is the typical MI, "mi_free" is the modification index free from equality constrains across groups, and "mi_equal" is the modification index if the parameter is added constrained equal across all groups).
top	Number of MIs to include in output if all = FALSE
verbose	Logical, should messages be printed?
nonZero	Logical, should only MIs be printed of non-zero parameters? Useful to explore violations of group equality.

Value

Invisibly returns a relevant subset of the data frame containing all information on the parameters, or a list of such data frames if multiple types of MIs are requested.

Author(s)

Sacha Epskamp

Examples

```
# Load bfi data from psych package:
library("psychTools")
data(bfi)
# Also load dplyr for the pipe operator:
library("dplyr")
# Let's take the agreeableness items, and gender:
ConsData <- bfi %>%
```

MIs

ml_lvm

```
select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)
# Define variables:
vars <- names(ConsData)[1:5]
# Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "empty")
# Run model:
mod <- mod %>% runmodel
# Modification indices:
mod %>% MIs
```

ml_lvm

Multi-level latent variable model family

Description

This family is the two-level random intercept variant of the lvm model family. It is mostly a special case of the dlvm1 family, with the addition of structural effects rather than temporal effects in the beta matrix.

Usage

```
ml_lnm(...)
ml_rnm(...)
ml_lrnm(...)
ml_lvm(data, lambda, clusters, within_latent = c("cov",
                      "chol", "prec", "ggm"), within_residual = c("cov",
                     "chol", "prec", "ggm"), between_latent = c("cov",
"chol", "prec", "ggm"), between_residual = c("cov",
                     "chol", "prec", "ggm"), beta_within = "empty",
                     beta_between = "empty", omega_zeta_within = "full",
                     delta_zeta_within = "full", kappa_zeta_within =
                     "full", sigma_zeta_within = "full",
                     lowertri_zeta_within = "full", omega_epsilon_within =
                     "empty", delta_epsilon_within = "empty",
                     kappa_epsilon_within = "empty", sigma_epsilon_within =
                     "empty", lowertri_epsilon_within = "empty",
                     omega_zeta_between = "full", delta_zeta_between =
                     "full", kappa_zeta_between = "full",
                     sigma_zeta_between = "full", lowertri_zeta_between =
                     "full", omega_epsilon_between = "empty",
                     delta_epsilon_between = "empty", kappa_epsilon_between
                     = "empty", sigma_epsilon_between = "empty",
                     lowertri_epsilon_between = "empty", nu, nu_eta,
```

```
identify = TRUE, identification = c("loadings",
 "variance"), vars, latents, groups, equal = "none",
 baseline_saturated = TRUE, estimator = c("FIML",
 "MUML"), optimizer, storedata = FALSE, verbose =
 FALSE, standardize = c("none", "z", "quantile"),
 sampleStats)
```

Arguments

8	
data	A data frame encoding the data used in the analysis. Must be a raw dataset.
lambda	A model matrix encoding the factor loading structure. Each row indicates an in- dicator and each column a latent. A 0 encodes a fixed to zero element, a 1 encod- ing a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix. Could also be the result of simplestructure.
clusters	A string indicating the variable in the dataset that describes group membership.
within_latent	The type of within-person latent contemporaneous model to be used.
within_residual	
	The type of within-person residual model to be used.
between_latent	The type of between-person latent model to be used.
between_residua	al
	The type of between-person residual model to be used.
beta_within	A model matrix encoding the within-cluster structural. A 0 encodes a fixed to zero element, a 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix. Defaults to "empty".
beta_between	A model matrix encoding the between-cluster structural. A 0 encodes a fixed to zero element, a 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix. Defaults to "empty".
omega_zeta_with	hin
	Only used when within_latent = "ggm". Can be "full", "empty", or a typi- cal model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
delta_zeta_with	
	Only used when within_latent = "ggm". Can be "full", "empty", or a typi- cal model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
kappa_zeta_with	
	Only used when within_latent = "prec". Can be "full", "empty", or a typi- cal model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple

groups, this argument can be a list or array with each element/slice encoding such a matrix.

sigma_zeta_within

Only used when within_latent = "cov". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

lowertri_zeta_within

Only used when within_latent = "chol". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

omega_epsilon_within

Only used when within_residual = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

delta_epsilon_within

Only used when within_residual = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

kappa_epsilon_within

Only used when within_residual = "prec". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

sigma_epsilon_within

Only used when within_residual = "cov". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

lowertri_epsilon_within

Only used when within_residual = "chol". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

omega_zeta_between

Only used when between_latent = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

delta_zeta_between

Only used when between_latent = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

kappa_zeta_between

Only used when between_latent = "prec". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

sigma_zeta_between

Only used when between_latent = "cov". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

lowertri_zeta_between

Only used when between_latent = "chol". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

omega_epsilon_between

Only used when between_residual = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

delta_epsilon_between

Only used when between_residual = "ggm". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

kappa_epsilon_between

Only used when between_residual = "prec". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

sigma_epsilon_between

Only used when between_residual = "cov". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For

nu

multiple groups, this argument can be a list or array with each element/slice encoding such a matrix. lowertri_epsilon_between Only used when between_residual = "chol". Can be "full", "empty", or a typical model matrix with 0s indicating parameters constrained to zero, 1s indicating free parameters, and higher integers indicating equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix. Optional vector encoding the intercepts of the observed variables. Set elements to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector. Optional vector encoding the intercepts of the latent variables. Set elements to nu_eta 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector. identify Logical, should the model be automatically identified? identification Type of identification used. "loadings" to fix the first factor loadings to 1, and "variance" to fix the diagonal of the latent variable model matrix (sigma_zeta, lowertri_zeta, delta_zeta or kappa_zeta) to 1. vars An optional character vector with names of the variables used. latents An optional character vector with names of the latent variables. An optional string indicating the name of the group variable in data. groups A character vector indicating which matrices should be constrained equal across equal groups. baseline_saturated A logical indicating if the baseline and saturated model should be included. Mostly used internally and NOT Recommended to be used manually. Estimator used. Currently only "FIML" is supported. estimator The optimizer to be used. Usually either "nlminb" (with box constrains) or optimizer "ucminf" (ignoring box constrains), but any optimizer supported by optimr can be used. storedata Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).

- verbose Logical, should progress be printed to the console? Which standardization method should be used? "none" (default) for no stanstandardize
- dardization, "z" for z-scores, and "quantile" for a non-parametric transformation to the quantiles of the marginal standard normal distribution. sampleStats An optional sample statistics object. Mostly used internally.

Arguments sent to 'ml lvm' . . .

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

ml_tsdlvm1

Multi-level Lag-1 dynamic latent variable model family of psychonetrics models for time-series data

Description

This function is a wrapper around dlvm1 that allows for specifying the model using a long format data and similar input as the mlVAR package. The ml_ts_lvgvar simply sets within_latent = "ggm" and between_latent = "ggm" by default. The ml_gvar and ml_var are simple wrappers with different named defaults for contemporaneous and between-person effects.

Usage

```
ml_tsdlvm1(data, beepvar, idvar, vars, groups, estimator = "FIML",
    standardize = c("none", "z", "quantile"), ...)
ml_ts_lvgvar(...)
ml_gvar(..., contemporaneous = c("ggm", "cov", "chol", "prec"),
    between = c("ggm", "cov", "chol", "prec"))
ml_var(..., contemporaneous = c("cov", "chol", "prec", "ggm"),
    between = c("cov", "chol", "prec", "ggm"))
```

Arguments

data	The data to be used. Must be raw data in long format (each row indicates one person at one time point).	
beepvar	Optional string indicating assessment beep per day. Adding this argument will cause non-consecutive beeps to be treated as missing!	
idvar	String indicating the subject ID	
vars	Vectors of variables to include in the analysis	
groups	An optional string indicating the name of the group variable in data.	
estimator	Estimator to be used. Must be "FIML".	
standardize	Which standardization method should be used? "none" (default) for no stan- dardization, "z" for z-scores, and "quantile" for a non-parametric transforma- tion to the quantiles of the marginal standard normal distribution.	
contemporaneous		
	The type of within-person latent contemporaneous model to be used.	
between	The type of between-person latent model to be used.	
	Arguments sent to dlvm1	

modelsearch

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

modelsearch Stepwise model search

Description

This function performs stepwise model search to find an optimal model that (locally) minimizes some criterion (by default, the BIC).

Usage

Arguments

х	A psychonetrics model.
criterion	String indicating the criterion to minimize. Any criterion from fit can be used.
matrices	Vector of strings indicating which matrices should be searched. Will default to network structures and factor loadings.
prunealpha	Minimal alpha used to consider edges to be removed
addalpha	Maximum alpha used to consider edges to be added
verbose	Logical, should messages be printed?
	Arguments sent to runmodel

Details

The full algorithm is as follows:

1. Evaluate all models in which an edge is removed that has p > prunealpha, or an edge is added that has a modification index with p < addalpha

- 2. If none of these models improve the criterion, return the previous model and stop the algorithm
- 3. Update the model to the model that improved the criterion the most
- 4. Evaluate all other considered models that improved the criterion
- 5. If none of these models improve the criterion, go to 1, else go to 3

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

See Also

prune, stepup

Examples

```
# Load bfi data from psych package:
library("psychTools")
data(bfi)
# Also load dplyr for the pipe operator:
library("dplyr")
# Let's take the agreeableness items, and gender:
ConsData <- bfi %>%
  select(A1:A5, gender) %>%
  na.omit # Let's remove missingness (otherwise use Estimator = "FIML)
# Define variables:
vars <- names(ConsData)[1:5]</pre>
# Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars)</pre>
# Run model:
mod <- mod %>% runmodel
# Model search
mod <- mod %>% prune(alpha= 0.01) %>% modelsearch
```

parameters

Print parameter estimates

Description

This function will print a list of parameters of the model

Usage

```
parameters(x)
```

Arguments

x A psychonetrics model.

Value

Invisibly returns a data frame containing information on all parameters.

parequal

Author(s)

Sacha Epskamp

Examples

```
# Load bfi data from psych package:
library("psychTools")
data(bfi)
# Also load dplyr for the pipe operator:
library("dplyr")
# Let's take the agreeableness items, and gender:
ConsData <- bfi %>%
  select(A1:A5, gender) %>%
  na.omit # Let's remove missingness (otherwise use Estimator = "FIML)
# Define variables:
vars <- names(ConsData)[1:5]</pre>
# Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "empty")</pre>
# Run model:
mod <- mod %>% runmodel
# Parameter estimates:
mod %>% parameters
```

parequal

Set equality constrains across parameters

Description

This function can be used to set parameters equal

Usage

Arguments

х	A psychonetrics model.
	Arguments sent to runmodel
inds	Parameter indices of parameters to be constrained equal
verbose	Logical, should messages be printed?
log	Logical, should the log be updated?
runmodel	Logical, should the model be updated?

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

partialprune

Partial pruning of multi-group models

Description

This function will search for a multi-group model with equality constrains on some but not all parameters. This is called partial pruning (Epskamp, Isvoranu, & Cheung, 2020; Haslbeck, 2020). The algorithm is as follows: 1. remove all parameters not significant at alpha in all groups (without equality constrains), 2. create a union model with all parameters included in any group included in all groups and constrained equal. 3. Stepwise free equality constrains of the parameter that features the largest sum of modification indices until BIC can no longer be improved. 4. Select and return the best model according to BIC (original model, pruned model, union model and partially pruned model).

Usage

```
partialprune(x, alpha = 0.01, matrices, verbose, combinefun = unionmodel, ...)
```

Arguments

х	A psychonetrics model.
alpha	Significance level to use.
matrices	Vector of strings indicating which matrices should be pruned. Will default to network structures.
verbose	Logical, should messages be printed?
combinefun	Function used to combine models of different groups.
	Arguments sent to prune.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Epskamp, S., Isvoranu, A. M., & Cheung, M. (2020). Meta-analytic gaussian network aggregation. PsyArXiv preprint. DOI:10.31234/osf.io/236w8.

Haslbeck, J. (2020). Estimating Group Differences in Network Models using Moderation Analysis. PsyArXiv preprint. DOI:10.31234/osf.io/926pv.

prune

Description

This function will (recursively) remove parameters that are not significant and refit the model.

Usage

Arguments

x	A psychonetrics model.
alpha	Significance level to use.
adjust	p-value adjustment method to use. See p.adjust.
matrices	Vector of strings indicating which matrices should be pruned. Will default to network structures.
runmodel	Logical, should the model be evaluated after pruning?
recursive	Logical, should the pruning process be repeated?
verbose	Logical, should messages be printed?
log	Logical, should the log be updated?
identify	Logical, should models be identified automatically?
startreduce	A numeric value indicating a factor with which the starting values should be reduced. Can be useful when encountering numeric problems.
limit	The maximum number of parameters to be pruned.
mode	Mode for adjusting for multiple comparisons. Should all parameters be considered as the total number of tests or only the tested parameters (parameters of interest)?
	Arguments sent to runmodel

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

See Also

stepup

Examples

```
# Load bfi data from psych package:
library("psychTools")
data(bfi)
# Also load dplyr for the pipe operator:
library("dplyr")
# Let's take the agreeableness items, and gender:
ConsData <- bfi %>%
  select(A1:A5, gender) %>%
  na.omit # Let's remove missingness (otherwise use Estimator = "FIML)
# Define variables:
vars <- names(ConsData)[1:5]</pre>
# Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "full")</pre>
# Run model:
mod <- mod %>% runmodel
# Prune model:
mod <- mod %>% prune(adjust = "fdr", recursive = FALSE)
```

psychonetrics-class Class "psychonetrics"

Description

Main class for psychonetrics results.

Objects from the Class

Objects can be created by calls of the form new("psychonetrics", ...).

Slots

model: Object of class "character" ~~
submodel: Object of class "character" ~~
parameters: Object of class "data.frame" ~~
matrices: Object of class "data.frame" ~~
meanstructure: Object of class "logical" ~~

computed: Object of class "logical" ~~ sample: Object of class "psychonetrics_samplestats" ~~ modelmatrices: Object of class "list" ~~ log: Object of class "psychonetrics_log" ~~ optim: Object of class "list" ~~ fitmeasures: Object of class "list" ~~ baseline_saturated: Object of class "list" ~~ equal: Object of class "character" ~~ objective: Object of class "numeric" ~~ information: Object of class "matrix" ~~ identification: Object of class "character" ~~ optimizer: Object of class "character" ~~ optim.args: Object of class "list" ~~ estimator: Object of class "character" ~~ distribution: Object of class "character" ~~ extramatrices: Object of class "list" ~~ rawts: Object of class "logical" ~~ Drawts: Object of class "list" ~~ types: Object of class "list" ~~ cpp: Object of class "logical" ~~ verbose: Object of class "logical" ~~

Methods

resid signature(object = "psychonetrics"): ...
residuals signature(object = "psychonetrics"): ...
show signature(object = "psychonetrics"): ...

Author(s)

Sacha Epskamp

Examples

showClass("psychonetrics")

psychonetrics_update Model updating functions

Description

These functions update a psychonetrics model. Typically they are not required.

Usage

```
addMIs(x, matrices = "all", type = c("normal", "free",
                                 "equal"), verbose, analyticFisher = TRUE)
addSEs(x, verbose)
addfit(x, verbose)
identify(x)
```

Arguments

х	A psychonetrics model.
matrices	Optional vector of matrices to include in MIs.
type	String indicating which modification indices should be updated.
verbose	Logical, should messages be printed?
analyticFisher	Logical indicating if an analytic Fisher information matrix should be used.

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

runmodel

Description

This is the main function used to run a psychonetrics model.

Usage

```
runmodel(x, level = c("gradient", "fitfunction"), addfit =
    TRUE, addMIs = TRUE, addSEs = TRUE, addInformation =
    TRUE, log = TRUE, verbose, optim.control,
    analyticFisher = TRUE, warn_improper = TRUE,
    warn_gradient = TRUE, return_improper = TRUE, bounded
    = TRUE)
```

Arguments

х	A psychonetrics model.
level	Level at which the model should be estimated. Defaults to "gradient" to indi- cate the analytic gradient should be used.
addfit	Logical, should fit measures be added?
addMIs	Logical, should modification indices be added?
addSEs	Logical, should standard errors be added?
addInformation	Logical, should the Fisher information be added?
log	Logical, should the log be updated?
verbose	Logical, should messages be printed?
optim.control	A list with options for optimr
analyticFisher	Logical, should the analytic Fisher information be used? If FALSE, numeric information is used instead.
return_improper	
	Should a result in which improper computation was used be return? Improper computation can mean that a pseudoinverse of small spectral shift was used in computing the inverse of a matrix.
warn_improper	Logical. Should a warning be given when at some point in the estimation a pseudoinverse was used?
warn_gradient	Logical. Should a warning be given when the average absolute gradient is > 1?
bounded	Logical. Should bounded estimation be used (e.g., variances should be positive)?

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

Examples

```
# Load bfi data from psych package:
library("psychTools")
data(bfi)
# Also load dplyr for the pipe operator:
library("dplyr")
# Let's take the agreeableness items, and gender:
ConsData <- bfi %>%
select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)
# Define variables:
vars <- names(ConsData)[1:5]
# Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "full")
# Run model:
mod <- mod %>% runmodel
```

setestimator Convenience functions

Description

These functions can be used to change some estimator options.

Usage

usecpp(x, use = TRUE)

Arguments

x	A psychonetrics model.
estimator	A string indicating the estimator to be used

setverbose

optimizer	The optimizer to be used. Can be one of "nlminb" (the default R nlminb
	function), "ucminf" (from the optimr package), and C++ based optimizers
	"cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead".
	The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".
use	Logical indicating if C++ should be used (currently only used in FIML)
optim.args	List of arguments to sent to the optimizer.

Details

The default optimizer is nlminb with the following arguments:

- eval.max=20000L
- iter.max=10000L
- trace=0L
- abs.tol=sqrt(.Machine\$double.eps)
- rel.tol=sqrt(.Machine\$double.eps)
- step.min=1.0
- step.max=1.0
- x.tol=1.5e-8
- xf.tol=2.2e-14

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

setverbose

Should messages of computation progress be printed?

Description

This function controls if messages should be printed for a psychonetrics model.

Usage

```
setverbose(x, verbose = TRUE)
```

Arguments

x	A psychonetrics model.
verbose	Logical indicating if verbose should be enabled

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

simplestructure Generate factor loadings matrix with simple structure

Description

This function generates the input for lambda arguments in latent variable models using a simple structure. The input is a vector with an element for each variable indicating the factor the variable loads on.

Usage

simplestructure(x)

Arguments

х

A vector indicating which factor each indicator loads on.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

StarWars

Star Wars dataset

Description

This questionaire was constructed by Carolin Katzera, Charlotte Tanis, Esther Niehoff, Myrthe Veenman, and Jason Nak as part of an assignment for a course on confirmatory factor analysis (http://sachaepskamp.com/SEM2018). They also collected the data among fellow psychology students as well as through social media.

Usage

data("StarWars")

stepup

Format

A data frame with 271 observations on the following 13 variables.

- Q1 I am a huge Star Wars fan! (star what?)
- Q2 I would trust this person with my democracy <picture of Jar Jar Binks>
- Q3 I enjoyed the story of Anakin's early life
- Q4 The special effects in this scene are awful <video of the Battle of Geonosis>
- Q5 I would trust this person with my life <picture of Han Solo>
- Q6 I found Darth Vader'ss big reveal in "Empire" one of the greatest moments in movie history
- Q7 The special effects in this scene are amazing <video of the Death Star explosion>
- Q8 If possible, I would definitely buy this droid <picture of BB-8>
- Q9 The story in the Star Wars sequels is an improvement to the previous movies
- Q10 The special effects in this scene are marvellous <video of the Starkiller Base firing>
- Q11 What is your gender?
- Q12 How old are you?
- Q13 Have you seen any of the Star Wars movies?

Details

The questionaire is online at https://github.com/SachaEpskamp/SEM-code-examples/blob/master/CFA_fit_examples/StarWa The authors of the questionaire defined a measurement model before collecting data: Q2 - Q4 are expected to load on a "prequel" factor, Q5 - Q7 are expected to load in a "originals" factor, and Q8 - Q10 are expected to load on a "sequal" factor. Finally, Q1 is expected to load on all three.

Source

https://github.com/SachaEpskamp/SEM-code-examples/blob/master/CFA_fit_examples

Examples

data(StarWars)

stepup

Stepup model search along modification indices

Description

This function automatically peforms step-up search by adding the parameter with the largest modification index until some criterion is reached or no modification indices are significant at alpha.

Usage

Arguments

х	A psychonetrics model.
alpha	Significance level to use.
criterion	String indicating the criterion to minimize. Any criterion from fit can be used.
matrices	Vector of strings indicating which matrices should be searched. Will default to network structures and factor loadings.
mi	String indicating which kind of modification index should be used ("mi" is the typical MI, "mi_free" is the modification index free from equality constrains across groups, and "mi_equal" is the modification index if the parameter is added constrained equal across all groups).
greedyadjust	String indicating which p-value adjustment should be used in greedy start. Any method from p.adjust can be used.
stopif	An R expression, using objects from fit, which will break stepup search if it evaluates to TRUE. For example, stopif = rmsea < 0.05 will lead to search to stop if rmsea is below 0.05.
greedy	Logical, should a greedy start be used? If TRUE, the first step adds any parameter that is significant (after adjustement)
verbose	Logical, should messages be printed?
checkinformati	on
	Logical, should the Fisher information be checked for potentially non-identified models?
singularinform	
	String indicating how to proceed if the information matrix is singular. "tryfix" will adjust starting values to try to fix the proble, "skip" will lead to the algorithm to skip the current parameter, "continue" will ignore the situation, and "stop" will break the algorithm and return a list with the last two models.
startEPC	Logical, should the starting value be set at the expected parameter change?
	Arguments sent to runmodel

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

tsdlvm1

See Also

prune

Examples

```
# Load bfi data from psych package:
library("psychTools")
data(bfi)
# Also load dplyr for the pipe operator:
library("dplyr")
# Let's take the agreeableness items, and gender:
ConsData <- bfi %>%
  select(A1:A5, gender) %>%
  na.omit # Let's remove missingness (otherwise use Estimator = "FIML)
# Define variables:
vars <- names(ConsData)[1:5]</pre>
# Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "full")</pre>
# Run model:
mod <- mod %>%runmodel %>%prune(alpha = 0.05)
# Remove an edge (example):
mod <- mod %>%fixpar("omega",1,2) %>%runmodel
# Stepup search
mod <- mod %>%stepup(alpha = 0.05)
```

tsdlvm1

Lag-1 dynamic latent variable model family of psychonetrics models for time-series data

Description

This is the family of models that models a dynamic factor model on time-series. There are two covariance structures that can be modeled in different ways: contemporaneous for the contemporaneous model and residual for the residual model. These can be set to "cov" for covariances, "prec" for a precision matrix, "ggm" for a Gaussian graphical model and "chol" for a Cholesky decomposition. The ts_lvgvar wrapper function sets contemporaneous = "ggm" for the graphical VAR model.

Usage

```
tsdlvm1(data, lambda, contemporaneous = c("cov", "chol",
    "prec", "ggm"), residual = c("cov", "chol", "prec",
    "ggm"), beta = "full", omega_zeta = "full", delta_zeta
    = "full", kappa_zeta = "full", sigma_zeta = "full",
    lowertri_zeta = "full", omega_epsilon = "empty",
    delta_epsilon = "empty", kappa_epsilon = "empty",
    sigma_epsilon = "empty", lowertri_epsilon = "empty",
    nu, mu_eta, identify = TRUE, identification =
    c("loadings", "variance"), latents, beepvar, dayvar,
    idvar, vars, groups, covs, means, nobs, missing =
    "listwise", equal = "none", baseline_saturated = TRUE,
    estimator = "ML", optimizer, storedata = FALSE,
    sampleStats, covtype = c("choose", "ML", "UB"),
    centerWithin = FALSE, standardize = c("none", "z",
    "quantile"), verbose = FALSE)
```

ts_lvgvar(...)

Arguments

data	A data frame encoding the data used in the analysis. Can be missing if covs and nobs are supplied.
lambda	A model matrix encoding the factor loading structure. Each row indicates an indicator and each column a latent. A 0 encodes a fixed to zero element, a 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
contemporaneous	
	The type of contemporaneous model used. See description.
residual	The type of residual model used. See description.
beta	A model matrix encoding the temporal relationships (transpose of temporal net- work) between latent variables. A 0 encodes a fixed to zero element, a 1 encod- ing a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix. Can also be "full" for a full temporal network or "empty" for an empty temporal network.
omega_zeta	Only used when contemporaneous = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
delta_zeta	Only used when contemporaneous = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to

estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

- kappa_zeta Only used when contemporaneous = "prec". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- sigma_zeta Only used when contemporaneous = "cov". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- lowertri_zeta Only used when contemporaneous = "chol". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- omega_epsilon Only used when residual = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- delta_epsilon Only used when residual = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- kappa_epsilon Only used when residual = "prec". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
- sigma_epsilon Only used when residual = "cov". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.

lowertri_epsilon

Only used when residual = "chol". Either "full" to estimate every element

	freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to es- timate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
nu	Optional vector encoding the intercepts of the observed variables. Set elements to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector.
mu_eta	Optional vector encoding the means of the latent variables. Set elements to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector.
identify	Logical, should the model be automatically identified?
identification	Type of identification used. "loadings" to fix the first factor loadings to 1, and "variance" to fix the diagonal of the latent variable model matrix (sigma_zeta, lowertri_zeta, delta_zeta or kappa_zeta) to 1.
latents	An optional character vector with names of the latent variables.
beepvar	Optional string indicating assessment beep per day. Adding this argument will cause non-consecutive beeps to be treated as missing!
dayvar	Optional string indicating assessment day. Adding this argument makes sure that the first measurement of a day is not regressed on the last measurement of the previous day. IMPORTANT: only add this if the data has multiple observations per day.
idvar	Optional string indicating the subject ID
vars	An optional character vector encoding the variables used in the analyis. Must equal names of the dataset in data.
groups	An optional string indicating the name of the group variable in data.
COVS	A sample variance–covariance matrix, or a list/array of such matrices for multi- ple groups. Make sure covtype argument is set correctly to the type of covari- ances used.
means	A vector of sample means, or a list/matrix containing such vectors for multiple groups.
nobs	The number of observations used in covs and means, or a vector of such num- bers of observations for multiple groups.
missing	How should missingness be handled in computing the sample covariances and number of observations when data is used. Can be "listwise" for listwise deletion, or "pairwise" for pairwise deletion.
equal	A character vector indicating which matrices should be constrained equal across groups.
baseline_saturated	
	A logical indicating if the baseline and saturated model should be included. Mostly used internally and NOT Recommended to be used manually.

tsdlvm1

estimator	The estimator to be used. Currently implemented are "ML" for maximum like- lihood estimation, "FIML" for full-information maximum likelihood estimation, "ULS" for unweighted least squares estimation, "WLS" for weighted least squares estimation, and "DWLS" for diagonally weighted least squares estimation.
optimizer	The optimizer to be used. Can be one of "nlminb" (the default R nlminb function), "ucminf" (from the optimr package), and C++ based optimizers "cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead". The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".
storedata	Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).
standardize	Which standardization method should be used? "none" (default) for no stan- dardization, "z" for z-scores, and "quantile" for a non-parametric transforma- tion to the quantiles of the marginal standard normal distribution.
sampleStats	An optional sample statistics object. Mostly used internally.
centerWithin	Logical, should data be within-person centered?
covtype	If 'covs' is used, this is the type of covariance (maximum likelihood or unbiased) the input covariance matrix represents. Set to "ML" for maximum likelihood estimates (denominator n) and "UB" to unbiased estimates (denominator n-1). The default will try to find the type used, by investigating which is most likely to result from integer valued datasets.
verbose	Logical, should messages be printed?
	Arguments sent to tsdlvm1

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

Examples

```
# Note: this example is wrapped in a dontrun environment because the data is not
# available locally.
## Not run:
# Obtain the data from:
#
# Epskamp, S., van Borkulo, C. D., van der Veen, D. C., Servaas, M. N., Isvoranu, A. M.,
# Riese, H., & Cramer, A. O. (2018). Personalized network modeling in psychopathology:
# The importance of contemporaneous and temporal connections. Clinical Psychological
# Science, 6(3), 416-427.
#
# Available here: https://osf.io/c8wjz/
tsdata <- read.csv("Supplementary2_data.csv")
# Encode time variable in a way R understands:
```

unionmodel

```
# Extract days:
tsdata$Day <- as.Date(tsdata$time, tz = "Europe/Amsterdam")</pre>
# Variables to use:
vars <- c("relaxed", "sad", "nervous", "concentration", "tired", "rumination",</pre>
          "bodily.discomfort")
# Create lambda matrix (in this case: one factor):
Lambda <- matrix(1,7,1)</pre>
# Estimate dynamical factor model:
model <- tsdlvm1(</pre>
  tsdata,
  lambda = Lambda,
  vars = vars,
  dayvar = "Day"
  estimator = "FIML"
)
# Run model:
model <- model %>% runmodel
# Look at fit:
model %>% print
model %>% fit # Pretty bad fit
## End(Not run)
```

unionmodel

Unify models across groups

Description

The unionmodel will add all parameters to all groups that are free in at least one group, and the intersectionmodel will constrain all parameters across groups to zero unless they are free to estimate in all groups.

Usage

Arguments ×

A psychonetrics model.

runmodel	Logical, should the model be updated?
verbose	Logical, should messages be printed?
log	Logical, should the log be updated?
identify	Logical, should the model be identified?
	Arguments sent to runmodel

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

var1

Lag-1 vector autoregression family of psychonetrics models

Description

This is the family of models that models time-series data using a lag-1 vector autoregressive model (VAR; Epskamp,Waldorp, Mottus, Borsboom, 2018). The model is fitted to the Toeplitz matrix, but unlike typical SEM software the block of covariances of the lagged variables is not used in estimating the temporal and contemporaneous relationships (the block is modeled completely separately using a cholesky decomposition, and does not enter the model elsewise). The contemporaneous argument can be used to define what contemporaneous model is used: contemporaneous = "cov" (default) models a variance-covariance matrix, contemporaneous = "chol" models a Cholesky decomposition, contemporaneous = "prec" models a precision matrix, and contemporaneous = "ggm" (alias: gvar()) models a Gaussian graphical model, also then known as a graphical VAR model.

Usage

```
var1(data, contemporaneous = c("cov", "chol", "prec",
    "ggm"), beta = "full", omega_zeta = "full", delta_zeta
    = "full", kappa_zeta = "full", sigma_zeta = "full",
    lowertri_zeta = "full", mu, beepvar, dayvar, idvar,
    vars, groups, covs, means, nobs, missing = "listwise",
    equal = "none", baseline_saturated = TRUE, estimator =
    "ML", optimizer, storedata = FALSE, covtype =
    c("choose", "ML", "UB"), standardize = c("none", "z",
    "quantile"), sampleStats, verbose = FALSE, bootstrap =
    FALSE)
```

Arguments

data	A data frame encoding the data used in the analysis. Can be missing if covs and nobs are supplied.
contemporaneou	S
	The type of contemporaneous model used. See description.
beta	A model matrix encoding the temporal relationships (transpose of temporal net- work). A 0 encodes a fixed to zero element, a 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a ma- trix. Can also be "full" for a full temporal network or "empty" for an empty temporal network.
omega_zeta	Only used when contemporaneous = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimen- sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multi- ple groups, this argument can be a list or array with each element/slice encoding such a matrix.
delta_zeta	Only used when contemporaneous = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimen- sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multi- ple groups, this argument can be a list or array with each element/slice encoding such a matrix.
kappa_zeta	Only used when contemporaneous = "prec". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
sigma_zeta	Only used when contemporaneous = "cov". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
lowertri_zeta	Only used when contemporaneous = "chol". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
mu	Optional vector encoding the mean structure. Set elements to 0 to indicate fixed to zero constrains, 1 to indicate free means, and higher integers to indicate equality constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector.

beepvar	Optional string indicating assessment beep per day. Adding this argument will cause non-consecutive beeps to be treated as missing!
dayvar	Optional string indicating assessment day. Adding this argument makes sure that the first measurement of a day is not regressed on the last measurement of the previous day. IMPORTANT: only add this if the data has multiple observations per day.
idvar	Optional string indicating the subject ID
vars	An optional character vector encoding the variables used in the analyis. Must equal names of the dataset in data.
groups	An optional string indicating the name of the group variable in data.
covs	A sample variance–covariance matrix, or a list/array of such matrices for multiple groups. Make sure covtype argument is set correctly to the type of covariances used.
means	A vector of sample means, or a list/matrix containing such vectors for multiple groups.
nobs	The number of observations used in covs and means, or a vector of such numbers of observations for multiple groups.
missing	How should missingness be handled in computing the sample covariances and number of observations when data is used. Can be "listwise" for listwise deletion, or "pairwise" for pairwise deletion.
equal	A character vector indicating which matrices should be constrained equal across groups.
baseline_satura	ated
	A logical indicating if the baseline and saturated model should be included. Mostly used internally and NOT Recommended to be used manually.
estimator	The estimator to be used. Currently implemented are "ML" for maximum like- lihood estimation, "FIML" for full-information maximum likelihood estimation, "ULS" for unweighted least squares estimation, "WLS" for weighted least squares estimation, and "DWLS" for diagonally weighted least squares estimation.
optimizer	The optimizer to be used. Can be one of "nlminb" (the default R nlminb function), "ucminf" (from the optimr package), and C++ based optimizers "cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead". The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".
storedata	Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).
standardize	Which standardization method should be used? "none" (default) for no stan- dardization, "z" for z-scores, and "quantile" for a non-parametric transforma- tion to the quantiles of the marginal standard normal distribution.
sampleStats	An optional sample statistics object. Mostly used internally.
covtype	If 'covs' is used, this is the type of covariance (maximum likelihood or unbiased) the input covariance matrix represents. Set to "ML" for maximum likelihood estimates (denominator n) and "UB" to unbiased estimates (denominator n-1). The default will try to find the type used, by investigating which is most likely to result from integer valued datasets.

verbose	Logical, should messages be printed?
bootstrap	Bootstraps the data (reshuffles rows with replacement).
	Arguments sent to var1

Details

This will be updated in a later version.

Value

An object of the class psychonetrics

Author(s)

Sacha Epskamp

References

Epskamp, S., Waldorp, L. J., Mottus, R., & Borsboom, D. (2018). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453-480.

See Also

lvm, varcov, dlvm1

Examples

```
library("dplyr")
library("graphicalVAR")
beta <- matrix(c(</pre>
  0,0.5,
  0.5,0
),2,2,byrow=TRUE)
kappa <- diag(2)</pre>
simData <- graphicalVARsim(50, beta, kappa)</pre>
# Form model:
model <- gvar(simData)</pre>
# Evaluate model:
model <- model %>% runmodel
# Parameter estimates:
model %>% parameters
# Plot the CIs:
CIplot(model, "beta")
# Note: this example is wrapped in a dontrun environment because the data is not
```

```
# available locally.
```

var1

```
## Not run:
# Longer example:
#
# Obtain the data from:
#
# Epskamp, S., van Borkulo, C. D., van der Veen, D. C., Servaas, M. N., Isvoranu, A. M.,
# Riese, H., & Cramer, A. O. (2018). Personalized network modeling in psychopathology:
# The importance of contemporaneous and temporal connections. Clinical Psychological
# Science, 6(3), 416-427.
#
# Available here: https://osf.io/c8wjz/
tsdata <- read.csv("Supplementary2_data.csv")</pre>
# Encode time variable in a way R understands:
tsdata$time <- as.POSIXct(tsdata$time, tz = "Europe/Amsterdam")</pre>
# Extract days:
tsdata$Day <- as.Date(tsdata$time, tz = "Europe/Amsterdam")</pre>
# Variables to use:
vars <- c("relaxed", "sad", "nervous", "concentration", "tired", "rumination",</pre>
          "bodily.discomfort")
# Estimate, prune with FDR, and perform stepup search:
model_FDRprune <- gvar(</pre>
  tsdata,
  vars = vars,
  dayvar = "Day",
  estimator = "FIML"
  ) %>%
  runmodel %>%
  prune(adjust = "fdr", recursive = FALSE) %>%
  stepup(criterion = "bic")
# Estimate with greedy stepup search:
model_stepup <- gvar(</pre>
  tsdata,
  vars = vars,
  dayvar = "Day"
  estimator = "FIML",
  omega_zeta = "empty",
  beta = "empty"
) %>%
  runmodel %>%
  stepup(greedy = TRUE, greedyadjust = "bonferroni", criterion = "bic")
# Compare models:
compare(
  FDRprune = model_FDRprune,
  stepup = model_stepup
)
# Very similar but not identical. Stepup is prefered here according to AIC and BIC
```

77

```
# Stepup results:
temporal <- getmatrix(model_stepup, "PDC") # PDC = Partial Directed Correlations</pre>
contemporaneous <- getmatrix(model_stepup, "omega_zeta")</pre>
# Average layout:
library("qgraph")
L <- averageLayout(temporal, contemporaneous)</pre>
# Labels:
labs <- gsub("\\.","\n",vars)</pre>
# Plot:
layout(t(1:2))
qgraph(temporal, layout = L, theme = "colorblind", directed=TRUE, diag=TRUE,
       title = "Temporal", vsize = 12, mar = rep(6,4), asize = 5,
       labels = labs)
qgraph(contemporaneous, layout = L, theme = "colorblind",
       title = "Contemporaneous", vsize = 12, mar = rep(6,4), asize = 5,
       labels = labs)
## End(Not run)
```

varcov

Variance-covariance family of psychonetrics models

Description

This is the family of models that models only a variance-covariance matrix with mean structure. The type argument can be used to define what model is used: type = "cov" (default) models a variance-covariance matrix directly, type = "chol" (alias: cholesky()) models a Cholesky decomposition, type = "prec" (alias: precision()) models a precision matrix, type = "ggm" (alias: ggm()) models a Gaussian graphical model (Epskamp, Rhemtulla and Borsboom, 2017), and type = "cor" (alias: corr()) models a correlation matrix.

Usage

```
varcov(data, type = c("cov", "chol", "prec", "ggm", "cor"),
    sigma = "full", kappa = "full", omega = "full",
    lowertri = "full", delta = "full", rho = "full", SD =
    "full", mu, tau, vars, ordered = character(0), groups,
    covs, means, nobs, missing = "listwise", equal =
    "none", baseline_saturated = TRUE, estimator =
    "default", optimizer, storedata = FALSE, WLS.W,
    sampleStats, meanstructure, corinput, verbose = FALSE,
    covtype = c("choose", "ML", "UB"), standardize =
    c("none", "z", "quantile"), fullFIML = FALSE)
cholesky(...)
precision(...)
```

78

prec(...) ggm(...) corr(...)

Arguments

data	A data frame encoding the data used in the analysis. Can be missing if $covs$ and nobs are supplied.
type	The type of model used. See description.
sigma	Only used when type = " cov ". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
kappa	Only used when type = "prec". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
omega	Only used when type = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this ar- gument can be a list or array with each element/slice encoding such a matrix.
lowertri	Only used when type = "chol". Either "full" to estimate every element freely, "empty" to only include diagonal elements, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this argument can be a list or array with each element/slice encoding such a matrix.
delta	Only used when type = "ggm". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this ar- gument can be a list or array with each element/slice encoding such a matrix.
rho	Only used when type = "cor". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this ar- gument can be a list or array with each element/slice encoding such a matrix.
SD	Only used when type = "cor". Either "full" to estimate every element freely, "empty" to set all elements to zero, or a matrix of the dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate element, and higher integers encoding equality constrains. For multiple groups, this ar- gument can be a list or array with each element/slice encoding such a matrix.

mu	Optional vector encoding the mean structure. Set elements to 0 to indicate fixed to zero constrains, 1 to indicate free means, and higher integers to indicate equal- ity constrains. For multiple groups, this argument can be a list or array with each element/column encoding such a vector.
tau	Optional list encoding the thresholds per variable.
vars	An optional character vector encoding the variables used in the analyis. Must equal names of the dataset in data.
groups	An optional string indicating the name of the group variable in data.
COVS	A sample variance–covariance matrix, or a list/array of such matrices for multi- ple groups. Make sure covtype argument is set correctly to the type of covari- ances used.
means	A vector of sample means, or a list/matrix containing such vectors for multiple groups.
nobs	The number of observations used in covs and means, or a vector of such numbers of observations for multiple groups.
covtype	If 'covs' is used, this is the type of covariance (maximum likelihood or unbiased) the input covariance matrix represents. Set to "ML" for maximum likelihood estimates (denominator n) and "UB" to unbiased estimates (denominator n-1). The default will try to find the type used, by investigating which is most likely to result from integer valued datasets.
missing	How should missingness be handled in computing the sample covariances and number of observations when data is used. Can be "listwise" for listwise deletion, or "pairwise" for pairwise deletion.
equal	A character vector indicating which matrices should be constrained equal across groups.
baseline_satura	
	A logical indicating if the baseline and saturated model should be included. Mostly used internally and NOT Recommended to be used manually.
estimator	The estimator to be used. Currently implemented are "ML" for maximum like- lihood estimation, "FIML" for full-information maximum likelihood estimation, "ULS" for unweighted least squares estimation, "WLS" for weighted least squares estimation, and "DWLS" for diagonally weighted least squares estimation.
optimizer	The optimizer to be used. Can be one of "nlminb" (the default R nlminb function), "ucminf" (from the optimr package), and C++ based optimizers "cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead". The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".
storedata	Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).
standardize	Which standardization method should be used? "none" (default) for no stan- dardization, "z" for z-scores, and "quantile" for a non-parametric transforma- tion to the quantiles of the marginal standard normal distribution.
WLS.W	Optional WLS weights matrix.
sampleStats	An optional sample statistics object. Mostly used internally.
verbose	Logical, should progress be printed to the console?

ordered	A vector with strings indicating the variables that are ordered catagorical, or set to TRUE to model all variables as ordered catagorical.
meanstructure	Logical, should the meanstructure be modeled explicitly?
corinput	Logical, is the input a correlation matrix?
fullFIML	Logical, should row-wise FIML be used? Not recommended!
	Arguments sent to varcov

Details

The model used in this family is:

 $\operatorname{var}(\boldsymbol{y}) = \boldsymbol{\Sigma}$

 $\mathcal{E}(\boldsymbol{y}) = \boldsymbol{\mu}$

in which the covariance matrix can further be modeled in three ways. With type = "chol" as Cholesky decomposition:

 $\Sigma = LL$,

with type = "prec" as Precision matrix:

$$\mathbf{\Sigma} = K^{-1}$$

and finally with type = "ggm" as Gaussian graphical model:

 $\boldsymbol{\Sigma} = \boldsymbol{\Delta} (\boldsymbol{I} - \boldsymbol{\Omega})^{(-1)} \boldsymbol{\Delta}.$

Value

An object of the class psychonetrics

Author(s)

Sacha Epskamp

References

Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Combining network and latent variable models. Psychometrika, 82(4), 904-927.

See Also

lvm, var1, dlvm1

Examples

```
# Load bfi data from psych package:
library("psychTools")
data(bfi)
# Also load dplyr for the pipe operator:
library("dplyr")
# Let's take the agreeableness items, and gender:
```

```
ConsData <- bfi %>%
  select(A1:A5, gender) %>%
  na.omit # Let's remove missingness (otherwise use Estimator = "FIML)
# Define variables:
vars <- names(ConsData)[1:5]</pre>
# Saturated estimation:
mod_saturated <- ggm(ConsData, vars = vars)</pre>
# Run the model:
mod_saturated <- mod_saturated %>% runmodel
# We can look at the parameters:
mod_saturated %>% parameters
# Labels:
labels <- c(</pre>
  "indifferent to the feelings of others",
  "inquire about others' well-being",
  "comfort others",
  "love children",
  "make people feel at ease")
# Plot CIs:
CIplot(mod_saturated, "omega", labels = labels, labelstart = 0.2)
# We can also fit an empty network:
mod0 <- ggm(ConsData, vars = vars, omega = "empty")</pre>
# Run the model:
mod0 <- mod0 %>% runmodel
# We can look at the modification indices:
mod0 %>% MIs
# To automatically add along modification indices, we can use stepup:
mod1 <- mod0 %>% stepup
# Let's also prune all non-significant edges to finish:
mod1 <- mod1 %>% prune
# Look at the fit:
mod1 %>% fit
# Compare to original (baseline) model:
compare(baseline = mod0, adjusted = mod1)
# We can also look at the parameters:
mod1 %>% parameters
```

82

Or obtain the network as follows: getmatrix(mod1, "omega")

Index

* classes
 psychonetrics-class, 58
* datasets
 Jonas, 29
 StarWars, 64

addfit (psychonetrics_update), 60
addMIs (psychonetrics_update), 60
addSEs (psychonetrics_update), 60

bifactor, 5 bootstrap, 6, *16*, *34*, *51*

changedata, 6 cholesky (varcov), 78 CIplot, 7 compare, 9 corr (varcov), 78 cov, 7, 15 covML, 10 covMLtoUB (covML), 10 covUBtoML (covML), 10

diagonalizationMatrix (duplicationMatrix), 17 dlvm1, 5, 11, 18, 19, 47, 52, 76, 81 duplicationMatrix, 17

eliminationMatrix (duplicationMatrix), 17 emergencystart, 18 esa, 18 esa_manual (esa), 18

factorscores, 19
fit, 20, 53, 66
fixpar, 21
freepar (fixpar), 21

generate, 22 getmatrix, 22 getVCOV, 24
ggm(varcov), 78
groupequal, 24
groupfree(groupequal), 24
gvar(var1), 73

identify(psychonetrics_update), 60
intersectionmodel(unionmodel), 72
Ising, 25

Jonas, 29

latentgrowth, 30 lnm (lvm), 31 lrnm (lvm), 31 lvm, 4, 5, 30, 31, 47, 76, 81

meta_ggm (meta_varcov), 42
meta_varcov, 42
MIs, 46
ml_gvar (ml_tsdlvm1), 52
ml_lnm (ml_lvm), 47
ml_lrnm (ml_lvm), 47
ml_rnm (ml_lvm), 47
ml_ts_lvgvar (ml_tsdlvm1), 52
ml_tsdlvm1, 52
ml_var (ml_tsdlvm1), 52
modelsearch, 53

panel_lvgvar (dlvm1), 11
panelgvar (dlvm1), 11
panelvar (dlvm1), 11
parameters, 54
parequal, 55
partialprune, 56
plot.esa(esa), 18
plot.esa_manual (esa), 18
prec (varcov), 78
precision (varcov), 78
print.esa(esa), 18

INDEX

resid,psychonetrics-method (psychonetrics-class), 58 residuals,psychonetrics-method (psychonetrics-class), 58 rnm (lvm), 31 runmodel, 53, 57, 61, 66

```
ts_lvgvar(tsdlvm1), 67
tsdlvm1, 5, 67
```

unionmodel, 72 usecpp(setestimator), 62

var1, 4, 73, 81 varcov, 4, 76, 78