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The package, pwrFDR, is for computing Average and TPX Power under various sequential multiple testing

procedures such as the Benjamini-Hochberg False Discovery Rate (BH-FDR) procedure. Before we begin,

some review of multiple testing and sequential procedures is in order. Consider a multiple testing experiment

with m simultaneous tests of hypotheses. The most widely used multiple testing procedure is Bonferroni’s

procedure which guarantees control of the family-wise error rate (FWER) which is the probability of one or

more false positives. It is applied by referring all p-values to the common threshold α/m. The Benjamini-

Hochberg procedure guarantees control of the false discovery rate (FDR). Since it gained widespread use

in the early 2000’s, most practitioners are at least vaguely familiar with the notion that the target of

protected inference is different for the Bonferroni (FWER) and the BH-FDR (FDR) procedures. The domain

of application and in particular the cost of a false positive guides the choice of the target for protected

inference, with higher costs (drug development) requiring a more conservative target of control, and lower

costs (thresholding in –omics studies) allowing for a less conservative target of control. Application of a

sequential procedure in a multiple testing experiment (MTE) usually begins with ordering the m p-values

from smallest to largest and then comparing each sorted p-value with a corresponding member of a sequnce

of criterion values. This sequence of criterion values, also a non-decreasing sequence and specific to the

particular procedure, is the product of α and a multiple testing penalty. All procedures begin with marking

rows for which the sorted p-value is less than its corresponding criterion value.

Sequential procedures differ in two main features. First is the choice of the sequence of criterion values,

and secondly, by whether the procedure is step-up or step-down. This latter distinction provides a recipe

for calling tests significant based upon marked/unmarked rows of p-value and criterion pairs. A step-up

procedure calls significant all tests up until the last marked row. A step-down procedure calls significant

tests belonging to a block of contiguous marked rows beginning with the first. If the first row is not marked,
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a step-down procedure calls nothing significant.

We now discuss the number of significant calls and of these which are true positives and which are false

positives. Let R denote the number of tests called significant by the procedure. This partitions into the

unobserved false positive count, V , e.g. the number of tests called significant which are distributed as the

null, and unobserved true positive count, T, e.g. the number of tests called significant which are distributed

as the alternative, V + T = R. The ratio, FDP = V/R is called the false discovery proportion and the

ratio, TPP = T/M is called true positive proportion. Here M is the number of statistics distributed as the

alternative (more on this below). Within the fairly broad scope of sequential procedures considered here

the goal of protected multiple inference will be to control some summary of the false discovery proportion

distribution: P{FDP > x} = P{V/R > x}. Protected inference must be done within the context of some

definition of multiple test or aggregate power so that multiple testing experiments can be sized and so

that we have some idea of the probability of success as defined appropriately for the application. We will

consider definitions of aggregate power based upon some summary of the true positive proportion distribution:

P{TPP > x} = P{T/M > x}.

The BH-FDR procedure is a step-up procedure with criterion sequence αj/m. It guarantees control of the

FDR, which is the expected FDP:

FDR = E[FDP] = E[V/R]

The type of aggregate power usually used in conjunction with the BH-FDR procedure is the average power.

It is the expected TPP:

AvgPwr = E[TPP] = E[T/M ]

Let’s begin by computing the sample size required for 80% average power under the BH-FDR procedure at

FDR = 15% when the effect size is 0.79. There is one more parameter required for calculation of sample size

for multiple test power besides the usual required power, type I error and effect size which are sufficient to

calculate the sample size in the single testing case. Whereas in the single test case, we condition upon the

statistic being drawn from the null or the alternative, in the multiple testing case we must somehow make

a specification regarding the number of tests distributed as the alternative. We handle this by posing the

mixture model as the common distribution of the test statistics. Under the mixture model, the population

from which each test statistic is drawn is determined via an a priori density r1 coin flip per test statistic,

the value 1 signifying the alternative distribution. This is the additional parameter which must be specified.
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In applications, a reasonable working value is drawn from substance experts. Let us assume this is 5%, the

value typically used in larger –omics studies like mRNA profiling and RNAseq ([1, 2]).

In order to do this we load the pwrFDR library as well as the ggplot2 and TableMonster libraries. The latter

two libraries are for plotting and for easy generation of nice looking latex tables.

> library(pwrFDR)

> library(ggplot2)

> library(TableMonster)

You can use this vignette file to follow along or if you prefer, open the companion script file (all supporting

text removed) at /usr/local/lib/R/site-library/pwrFDR/doc/pwrFDR-vignette.R.

We are now ready to call pwrFDR to calculate sample size required for 80% average power under the BH-FDR

procedure at α = 0.15 and above mentioned effect size and prior probability:

> avgpwr.fdr.r05 <- pwrFDR(effect.size=0.79, alpha=0.15, r.1=0.05, average.power=0.80)

Notice that we did not specify the number of tests. This calculates the infinite tests limit which exists for

procedures controlling the FDR and for procedures controlling the FDX, but not for procedures controlling

the family-wise error rate (FWER). While we’re at it, in order to see how much the alternative hypothesis

prior probability, r1 affects the required sample size, let’s calculate sample size required for 80% average power

under BH-FDR at α = 0.15 under the above settings ammended to incorporate a higher prior probability,

r.1 = 0.10.

> avgpwr.fdr.r10 <- update(avgpwr.fdr.r05, r.1=0.10)

The following line generates a publication ready table.

> print(avgpwr.fdr.r05, label="tbl:minf", result="tex", cptn="$m=\\infty$")

or we can join the two tables into one, also adding a caption

> print(join.tbl(avgpwr.fdr.r05, avgpwr.fdr.r10), label="tbl:minf-r05-r10",

+ result="tex", cptn="$m=\\infty, r_1=0.05, 0.10$")

From the third and seventh lines in table 1 we can see that sample sizes of 42 and 37 are required for 80%

average power under BH-FDR at α = 0.15 when the effect size is 0.79 and the prior probabilities are r1 = 5%
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Parameter result a result b

N.tests Inf Inf
r.1 0.05 0.1
n.sample 42 37
effect.size 0.79 0.79
alpha 0.15 0.15
FDP.cnt BHFDR BHFDR
average.power 0.8 0.7999
gamma 0.0466 0.0925
sigma.rtm.Rom 0.2806 0.3863
sigma.rtm.VoR 1.742 1.201
sigma.rtm.ToM 2.111 1.513

Table 1: m = ∞, r1 = 0.05, 0.10

and 10% respectively. The meaning of the other entries in the table are as follows. The first line shows that

the sample size was calculated using the infinite tests limit since no value of m (N.tests in the routine)

was specified. The second, forth, fifth, and seventh rows show values of the user specified parameters, r1,

the effect size, α and the average power. The sixth row indicates that the default method of FDP control,

“BHFDR” was used as there was no user specified value. The eighth row shows the value of the rejection

rate or positive rate, which is the inifinite tests consistent limit of the proportion of positive calls, R/m. The

bottom three rows show the asymptotic standard deviations for the rejection proportion, R/m, the false

discovery proportion, V/R and the true positive proportion, T/M . We shall see why it is useful to know

these below.

In any case we can always use simulation. In this case we must specify the number of tests. The simulation

method will not find sample size required for specifed power, so we must also specify the sample size instead

and compute the power (average power in this case). The simulation routine generates replicate data-sets,

each containing m full data records, each consisting of a population indicator (bernouli, probability r1), test

statistic distributed under the null or alternative corresponding to the value of the population indicator,

and corresponding p-values. For each simulation replicate the requested procedure is applied to the m test

statistics, and then the numbers of rejected tests, R, and true positives, T , are recorded. The number of

statistics distributed as the alternative, M , is also recorded. Of course the number of false positives isn’t

recorded because it can be found via subtraction: V = R − T . These per simulation replicate statistics

are in the reps component of the detail attribute which is obtained in this setting via the expression

detail(avgpwr.fdr.sim.r05.m1e5)$reps. In the following code-block, we call the simulation option with

10,000 tests at a sample size of 42. The first line of code calls pwrFDR at the previous parameter settings

in simulation mode. The second line calculates the empirical FDR as the mean of the FDP divided by
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(1− r1) = 0.95. Note that it is actually an slight abuse of nomenclature that we refer to both the expected

value of V/R and α as the false discovery rate, even though the former is in fact (1−r1)α. Notice that we use

the operator %over% instead of the ordinary division operator, /, since, when it is applied component-wise,

any occurrences of 0/0 are treated as 0.

> avgpwr.fdr.sim.r05.m1e5 <- pwrFDR(effect.size=0.79, alpha=0.15, r.1=0.05,

+ n.sample=avgpwr.fdr.r05$n.sample, N.tests=10000,

+ meth="sim")

> avgpwr.fdr.sim.r05.m1e3 <- update(avgpwr.fdr.sim.r05.m1e5, N.tests=1000)

> avgpwr.fdr.sim.r05.m100 <- update(avgpwr.fdr.sim.r05.m1e5, N.tests=100)

> avgpwr.fdr.r10.sim.m100 <- update(avgpwr.fdr.r10, n.sample=avgpwr.fdr.r10$n.sample,

+ average.power=NULL, method="sim", N.tests=100)

Parameter result a result b result c result d

N.tests 10000 1000 100 100
r.1 0.05 0.05 0.05 0.1
n.sample 42 42 42 37
effect.size 0.79 0.79 0.79 0.79
alpha 0.15 0.15 0.15 0.15
emp.FDR 0.1416 0.141 0.1378 0.1275
FDP.cnt BHFDR BHFDR BHFDR BHFDR
average.power 0.8008 0.7983 0.7865 0.8039
gamma 0.0467 0.0472 0.048 0.0938
se.Rom 0.0028 0.0091 0.0277 0.0361
se.VoR 0.017 0.0532 0.1754 0.1141
se.ToM 0.0209 0.0677 0.243 0.1569

Table 2: Results of simulation calls with varying ‘m’ and ‘r.1’.

Next, looking at the first three columns of table 2, we see that passing from 10000, to 1000, to 100 simulta-

neous tests changes nothing regarding the sample size required for average power 80.08%. This is because

the average power is independent of the number of tests and is in fact the infinite tests limit of the true

positive proportion. The empirical FDR also is the same, at least to within simulation error. The only values

which change are the standard errors of the positive proportion, false discovery proportion and true positive

proportion, as these are of order one over the square root of number of tests. Note that these empirical

standard errors times
√
m, e.g. the square root of N.tests as shown in the table, aggree well with their

asymptotic values shown in the table 2. The final column which was run with identical parameters except

for r1 = 0.10 for m = 100 simultaneous tests shows a smaller sample size required for 80% average power,

smaller emprical FDR and nearly twice as large rejection fraction, γ. This makes sense because there twice
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as many statistics are expected to be distributed as the null.

So judging by the results shown in table 2 alone, it seems that the BH-FDR procedure controls the FDR,

no matter the number of test statistics, just as stated in the results proved by Benjamini and Hochberg.

Lets pay special attention to what is being controlled. As we mentioned previously, the FDR is the expected

proportion of false discoveries, E[FDP] = E[V/R]. And above, in the table we corroborate that the empirical

false discovery rate (eFDR) is indeed less than or equal to the nominal value. The eFDR is the average over

1000 multiple testing experiments defined by the parameters in the calling sequence. What we are in fact

guaranteed of controlling is an average value over many identical multiple testing experiments. This average

itself is only meaningful if the distribution of the FDP is tightly distributed above its mean, as is the case

with several thousand simultaneous tests, m = 10000. If the FDP is not tightly distributed above its mean,

the FDR says little to nothing about the FDP for any one given multiple testing experiment.
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Figure 1: Violin plots of FDP distribution for numbers of simultaneous tests varying from 10,000 down to
100, effect.size=0.79, n.sample=47, r.1=0.20, alpha=0.15
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Figure 2: Violin plots of TPP distribution for numbers of simultaneous tests varying from 10,000 down to
100, effect.size=0.79, n.sample=47, r.1=0.20, alpha=0.15
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