
Package ‘roads’
June 24, 2023

Title Road Network Projection

Version 1.1.1

Date 2023-06-23

URL https://github.com/LandSciTech/roads,

https://landscitech.github.io/roads/

Description Project road network development based on an existing road
network, target locations to be connected by roads and a cost surface. Road
projection methods include minimum spanning tree with least cost path
(Kruskal's algorithm (1956) <doi:10.2307/2033241>), least cost path
(Dijkstra's algorithm (1959) <doi:10.1007/BF01386390>) or snapping.
These road network projection methods are ideal for use with land cover
change projection models.

License Apache License (>= 2)

Encoding UTF-8

LazyData true

Imports dplyr, igraph, data.table, sf, units, rlang, methods,
tidyselect, terra

RoxygenNote 7.2.1

Suggests testthat (>= 2.1.0), knitr, rmarkdown, viridis, tmap, bench

VignetteBuilder knitr

Depends R (>= 2.10)

Collate 'CLUSexample.R' 'buildSimList.R' 'buildSnapRoads.R'
'demoScen.R' 'getClosestRoad.R' 'getDistFromSource.R'
'getGraph.R' 'getLandingsFromTarget.R' 'lcpList.R' 'mstList.R'
'pathsToLines.R' 'projectRoads.R' 'rasterToLineSegments.R'
'shortestPaths.R' 'plotRoads.R' 'rasterizeLine.R'
'prepExData.R' 'roads-package.R'

BugReports https://github.com/LandSciTech/roads/issues

NeedsCompilation no

1

https://github.com/LandSciTech/roads
https://landscitech.github.io/roads/
https://doi.org/10.2307/2033241
https://doi.org/10.1007/BF01386390
https://github.com/LandSciTech/roads/issues

2 CLUSexample

Author Sarah Endicott [aut, cre] (<https://orcid.org/0000-0001-9644-5343>),
Kyle Lochhead [aut],
Josie Hughes [aut],
Patrick Kirby [aut],
Her Majesty the Queen in Right of Canada as represented by the Minister

of the Environment [cph] (Copyright holder for included functions
buildSimList, getLandingsFromTarget, pathsToLines, plotRoads,
projectRoads, rasterizeLine, rasterToLineSegments),

Province of British Columbia [cph] (Copyright holder for included
functions getGraph, lcpList, mstList, shortestPaths,
getClosestRoad, buildSnapRoads)

Maintainer Sarah Endicott <sarah.endicott@ec.gc.ca>

Repository CRAN

Date/Publication 2023-06-24 04:10:03 UTC

R topics documented:
CLUSexample . 2
demoScen . 3
getDistFromSource . 4
getLandingsFromTarget . 5
plotRoads . 7
prepExData . 7
projectRoads . 8
rasterizeLine . 11
rasterToLineSegments . 12

Index 14

CLUSexample Data from the CLUS example

Description

From Kyle Lochhead and Tyler Muhly’s CLUS road simulation example. SpatRaster files created
with the terra package must be saved with [terra::wrap()] and need to be unwrapped before they are
used. [prepExData()] is provided to do this.

Usage

data(CLUSexample)

Format

A named list where: $cost is an object of class PackedSpatRaster representing road cost, $landings
is an object of class sf representing landing locations and $roads is an object of class PackedSpa-
tRaster representing existing roads

https://orcid.org/0000-0001-9644-5343

demoScen 3

Examples

CLUSexample
prepExData(CLUSexample)

demoScen Demonstration set of 10 input scenarios

Description

A demonstration set of scenarios that can be used as input to projectRoads method. The data con-
tains "SpatRaster" objects that must be wrapped to be stored. To unwrap them use [prepExData()]

Usage

data(demoScen)

Format

A list of sub-lists, with each sub-list representing an input scenario. The scenarios (sub-lists) each
contain the following components:

scen.number An integer value representing the scenario number (generated scenarios are num-
bered incrementally from 1).

road.rast A logical PackedSpatRaster representing existing roads. TRUE is existing road. FALSE
is not existing road.

road.line A sf object representing existing roads.

cost.rast A PackedSpatRaster representing the cost of developing new roads on a given cell.

landings.points A sf object representing landings sets and landing locations within each set. The
data frame includes a field named ’set’ which contains integer values representing the landings
set that each point belongs to

landings.stack A PackedSpatRaster with multiple layers representing the landings and landings
sets. Each logical layer represents one landings set. Values of TRUE are a landing in the given
set. Values of FALSE are not.

landings.poly A sf object representing a single set of polygonal landings.

See Also

projectRoads

Examples

demoScen[[1]]
demoScen <- prepExData(demoScen)
demoScen[[1]]

4 getDistFromSource

getDistFromSource Moving window approach to get distance from source

Description

This function provides three different methods for calculating the distance of all points on a land-
scape from "source" locations. This is a computationally intensive process so the function argu-
ments can be used to balance the tradeoffs between speed and accuracy. Note the pfocal versions
are only available in the development version of the package.

Usage

getDistFromSource(src, maxDist, kwidth = 3, method = "terra")

Arguments

src SpatRaster or RasterLayer, where all values > 0 are treated as source locations.
NA values are treated as 0s.

maxDist Numeric, maximum distance that should be calculated in units of the CRS.

kwidth Integer, for the "pfocal" and "terra" methods the width of the moving window.
For the "pfocal2" method the aggregation factor.

method Character, the method to use, one of "terra", "pfocal" or "pfocal2". See below
for details.

Details

The "terra" and "pfocal" methods use an iterative moving window approach and assign each cell a
distance based on the number of times the moving window is repeated before it is included. This
means that the moving window function is run many times but for a small window relative to the size
of the raster. The ‘maxDist‘ argument determines the maximum distance calculated and affects the
number of iterations of the moving window that are needed. ‘kwidth‘ is the radius of the moving
window in number of cells, with larger values reducing the number of iterations needed but also
reducing the granularity of the distances produced. The resulting distances will be in increments
of ‘kwidth‘ * the resolution of the raster. The total number of iterations is ‘maxDist‘/ ‘kwidth‘ *
resolution. The only difference in these methods is the underlying package used to do the moving
window. The ‘terra‘ package has methods for handling large rasters by writing them to disk, while
the ‘pfocal‘ package requires that the raster can be held in memory as a matrix.

The third method "pfocal2" uses a global moving window to calculate the distance to the source.
This means that the moving window only needs to be applied once but the window size can be very
large. In this case ‘maxDist‘ determines the total size of the window. ‘kwidth‘ can be used to reduce
the number of cells included in the moving window by aggregating the source raster by a factor of
‘kwidth‘. This will increase the speed of computation but will produce results with artefacts of the
larger grid and which may be less accurate since the output raster is disaggregated using bilinear
interpolation.

getLandingsFromTarget 5

Value

A SpatRaster

Examples

CLUSexample <- prepExData(CLUSexample)
getDistFromSource(CLUSexample$roads, 5, 2)

library(sf)
library(terra)

#make example roads from scratch
rds <- data.frame(x = 1:1000/100, y = cos(1:1000/100)) %>%

st_as_sf(coords = c("x", "y")) %>%
st_union() %>%
st_cast("LINESTRING")

rds_rast <- rasterize(vect(rds),
rast(nrows = 50, ncols = 50,

xmin = 0, xmax = 10,
ymin = -5, ymax = 5),

touches = TRUE)

getDistFromSource(rds_rast, 5, 2)

getLandingsFromTarget Get landing points inside harvest blocks

Description

Generate landing points inside polygons representing harvested area. There are three different sam-
pling types available: "centroid" is the default and will return the centroid or a point that is inside
the polygon if the centroid is not (see st_point_on_surface); "random" takes a random sample
based on the given landingDens see (st_sample); "regular" intersects the polygons with a regular
grid with cell size sqrt(1/landingDens), if a polygon does not intersect with the grid its centroid
is used.

Usage

getLandingsFromTarget(harvest, landingDens = NULL, sampleType = "centroid")

Arguments

harvest sf, SpatialPolygons or RasterLayer object with harvested areas. If it is a Raster-
Layer with more than one unique value other than 0 each value will be run sep-
arately which will produce different results from a 0/1 raster but will be much
slower.

6 getLandingsFromTarget

landingDens number of landings per unit area. This should be in the same units as the CRS
of the harvest. Note that 0.001 points per m2 is > 1000 points per km2 so this
number is usually very small for projected CRS.

sampleType character. "centroid" (default), "regular" or "random". Centroid returns one
landing per harvest block, which is guaranteed to be in the harvest block for
sf objects but not for rasters. Regular returns points from a grid with density
landingDens that overlap the harvested areas. Random returns a random set
of points from each polygon where the number is determined by the area of
the polygons and landingDens. If harvest is a raster the centroid is always
returned as one of the landings to ensure all harvest areas get at least one landing.

Details

Note that the landingDens is in points per unit area where the unit of area is determined by the
CRS. For projected CRS this should likely be a very small number i.e. < 0.001.

Value

an sf simple feature collection with an ID column and POINT geometry

Examples

doPlots <- interactive()
demoScen <- prepExData(demoScen)

polys <- demoScen[[1]]$landings.poly[1:2,]

Get centroid
outCent <- getLandingsFromTarget(polys)

if(doPlots){
plot(sf::st_geometry(polys))
plot(outCent, col = "red", add = TRUE)

}

Get random sample with density 0.1 points per unit area
outRand <- getLandingsFromTarget(polys, 0.1, sampleType = "random")

if(doPlots){
plot(sf::st_geometry(polys))
plot(outRand, col = "red", add = TRUE)

}

Get regular sample with density 0.1 points per unit area
outReg <- getLandingsFromTarget(polys, 0.1, sampleType = "regular")

if(doPlots){
plot(sf::st_geometry(polys))
plot(outReg, col = "red", add = TRUE)

}

plotRoads 7

plotRoads Plot projected roads

Description

Plot the results of projectRoads

Usage

plotRoads(sim, mainTitle, subTitle = paste0("Method: ", sim$roadMethod), ...)

Arguments

sim sim list result from projectRoads

mainTitle A title for the plot

subTitle A sub title for the plot, by default the roadMethod is used

... Other arguments passed to raster plot call for the costSurface

Value

Creates a plot using base graphics

Examples

CLUSexample <- prepExData(CLUSexample)
prRes <- projectRoads(CLUSexample$landings, CLUSexample$cost, CLUSexample$roads)
if(interactive()){

plotRoads(prRes, "Title")
}

prepExData Prepare example data

Description

Prepare example data included in the package that contain wrapped terra objects. This applies
[terra::unwrap()] recursively to the list provided so that all PackedSpatRasters are converted to
SpatRasters.

Usage

prepExData(x)

8 projectRoads

Arguments

x A list containing elements some of which are packed SpatRasters.

Value

The same list but with unwrapped SpatRasters

Examples

CLUSexample
prepExData(CLUSexample)

projectRoads Project road network

Description

Project road locations based on existing roads, planned landings, and a cost surface that defines the
cost of building roads.

Usage

projectRoads(
landings = NULL,
cost = NULL,
roads = NULL,
roadMethod = "mst",
plotRoads = FALSE,
mainTitle = "",
neighbourhood = "octagon",
sim = NULL,
roadsOut = NULL,
roadsInCost = TRUE,
ordering = "closest"

)

S4 method for signature 'ANY,ANY,ANY,ANY,ANY,ANY,ANY,missing'
projectRoads(
landings = NULL,
cost = NULL,
roads = NULL,
roadMethod = "mst",
plotRoads = FALSE,
mainTitle = "",
neighbourhood = "octagon",
sim = NULL,
roadsOut = NULL,

projectRoads 9

roadsInCost = TRUE,
ordering = "closest"

)

S4 method for signature 'ANY,ANY,ANY,ANY,ANY,ANY,ANY,list'
projectRoads(
landings = NULL,
cost = NULL,
roads = NULL,
roadMethod = "mst",
plotRoads = FALSE,
mainTitle = "",
neighbourhood = "octagon",
sim = NULL,
roadsOut = NULL,
roadsInCost = TRUE,
ordering = "closest"

)

Arguments

landings sf polygons or points, RasterLayer, SpatialPolygons*, SpatialPoints*, matrix,
containing features to be connected to the road network. Matrix should contain
columns x, y with coordinates, all other columns will be ignored.

cost RasterLayer. Cost surface where existing roads must be the only cells with a
cost of 0. If existing roads do not have 0 cost set roadsInCost = FALSE and
they will be burned in.

roads sf lines, SpatialLines*, RasterLayer. Existing road network.
roadMethod Character. Options are "mst", "dlcp", "lcp", "snap".
plotRoads Boolean. Should the resulting road network be plotted. Default FALSE.
mainTitle Character. A title for the plot
neighbourhood Character. ’rook’,’queen’, or ’octagon’. The cells that should be considered

adjacent. ’octagon’ option is a modified version of the queen’s 8 cell neigh-
bourhood in which diagonals weights are 2^0.5x higher than horizontal/vertical
weights.

sim list. Returned from a previous iteration of projectRoads. cost, roads, and
roadMethod are ignored if a sim list is provided.

roadsOut Character. Either "raster", "sf" or NULL. If "raster" roads are returned as a raster
in the sim list. If "sf" the roads are returned as an sf object which will contain
lines if the roads input was sf lines but a geometry collection of lines and points
if the roads input was a raster. The points in the geometry collection represent
the existing roads while new roads are created as lines. If NULL (default) then
the returned roads are sf if the input is sf or Spatial* and raster if the input was
a raster.

roadsInCost Logical. The default is TRUE which means the cost raster is assumed to include
existing roads as 0 in its cost surface. If FALSE then the roads will be "burned
in" to the cost raster with a cost of 0.

10 projectRoads

ordering character. The order in which roads should be built to landings when ‘road-
Method = "dlcp"‘. Options are "closest" (default) where landings closest to
existing roads are accessed first, or "none" where landings are accessed in the
order they are provided in.

Details

Four different methods for projecting road networks have been implemented:

• "snap": Connects each landing directly to the closest road without reference to the cost or
other landings

• "lcp": Least Cost Path connects each landing to the closest point on the road by determining
the least cost path based on the cost surface provided, it does not consider other landings

• "dlcp": Dynamic Least Cost Path, same as "lcp" but it builds each path sequentially so that
later roads will use earlier roads. The sequence of landings is determined by ‘ordering‘ and
is "closest" by default, the other option is "none" which will use the order that landings are
supplied in.

• "mst": Minimum Spanning Tree connects all landings to the road by determining the least cost
path to the road or other landings based on the cost surface

Value

a list with components:

• roads: the projected road network, including new and input roads.

• costSurface: the cost surface, updated to have 0 for new roads that were added.

• roadMethod: the road simulation method used.

• landings: the landings used in the simulation.

• g: the graph that describes the cost of paths between each cell in the cost raster. This is updated
based on the new roads so that vertices were connected by new roads now have a cost of 0.
This can be used to avoid recomputing the graph in a simulation with multiple time steps.

Examples

CLUSexample <- prepExData(CLUSexample)
doPlots <- interactive()

projectRoads(CLUSexample$landings, CLUSexample$cost, CLUSexample$roads,
"lcp", plotRoads = doPlots, mainTitle = "CLUSexample")

More realistic examples that take longer to run

demoScen <- prepExData(demoScen)

using: scenario 1 / sf landings / least-cost path ("lcp")
demo scenario 1
scen <- demoScen[[1]]

rasterizeLine 11

landing set 1 of scenario 1:
land.pnts <- scen$landings.points[scen$landings.points$set==1,]

prRes <- projectRoads(land.pnts, scen$cost.rast, scen$road.line, "lcp",
plotRoads = doPlots, mainTitle = "Scen 1: SPDF-LCP")

using: scenario 1 / SpatRaster landings / minimum spanning tree ("mst")
demo scenario 1
scen <- demoScen[[1]]

the RasterLayer version of landing set 1 of scenario 1:
land.rLyr <- scen$landings.stack[[1]]

prRes <- projectRoads(land.rLyr, scen$cost.rast, scen$road.line, "mst",
plotRoads = doPlots, mainTitle = "Scen 1: Raster-MST")

using: scenario 2 / matrix landings raster roads / snapping ("snap")
demo scenario 2
scen <- demoScen[[2]]

landing set 5 of scenario 2, as matrix:
land.mat <- scen$landings.points[scen$landings.points$set==5,] |>

sf::st_coordinates()

prRes <- projectRoads(land.mat, scen$cost.rast, scen$road.rast, "snap",
plotRoads = doPlots, mainTitle = "Scen 2: Matrix-Snap")

using scenario 7 / Polygon landings raster / minimum spanning tree
demo scenario 7
scen <- demoScen[[7]]
rasterize polygonal landings of demo scenario 7:
land.polyR <- terra::rasterize(scen$landings.poly, scen$cost.rast)

prRes <- projectRoads(land.polyR, scen$cost.rast, scen$road.rast, "mst",
plotRoads = doPlots, mainTitle = "Scen 7: PolyRast-MST")

rasterizeLine Faster rasterize for lines

Description

Rasterize a line using stars because fasterize doesn’t work on lines and rasterize is slow. Dep-
recated use terra::rasterize

Usage

rasterizeLine(sfLine, rast, value)

12 rasterToLineSegments

Arguments

sfLine an sf object to be rasterized

rast a raster to use as template for the output raster

value a number value to give the background ie 0 or NA

Value

a RasterLayer where the value of cells that touch the line will be the row index of the line in the sf

Examples

CLUSexample <- prepExData(CLUSexample)
roadsLine <- sf::st_sf(geometry = sf::st_sfc(sf::st_linestring(
matrix(c(0.5, 4.5, 4.5, 4.51),

ncol = 2, byrow = TRUE)
)))

Deprecated rasterizeLine(roadsLine, CLUSexample$cost, 0)
Use terra::rasterize
terra::rasterize(roadsLine, CLUSexample$cost, background = 0)

rasterToLineSegments Convert raster to lines

Description

Converts rasters that represent lines into an sf object.

Usage

rasterToLineSegments(rast, method = "mst")

Arguments

rast raster representing lines all values > 0 are assumed to be lines

method method of building lines. See Details

Details

For method = "nearest" raster is first converted to points and then lines are drawn between the
nearest points. If there are two different ways to connect the points that have the same distance both
are kept which can cause doubled lines. USE WITH CAUTION. method = "mst" converts the raster
to points, reclassifies the raster so roads are 0 and other cells are 1 and then uses projectRoads to
connect all the points with a minimum spanning tree. This will always connect all raster cells and
is slower but will not double lines as often. Neither method is likely to work for very large rasters

rasterToLineSegments 13

Value

an sf simple feature collection

Examples

CLUSexample <- prepExData(CLUSexample)
works well for very simple roads
roadLine1 <- rasterToLineSegments(CLUSexample$roads)

longer running more realistic examples

demoScen <- prepExData(demoScen)
mst method works well in this case
roadLine2 <- rasterToLineSegments(demoScen[[1]]$road.rast)

nearest method has doubled line where the two roads meet
roadLine3 <- rasterToLineSegments(demoScen[[1]]$road.rast, method = "nearest")

The mst method can also produce odd results in some cases
roadLine4 <- rasterToLineSegments(demoScen[[4]]$road.rast)

Index

∗ datasets
CLUSexample, 2
demoScen, 3

CLUSexample, 2

demoScen, 3

getDistFromSource, 4
getLandingsFromTarget, 5

plotRoads, 7
prepExData, 7
projectRoads, 3, 7, 8
projectRoads,ANY,ANY,ANY,ANY,ANY,ANY,ANY,list-method

(projectRoads), 8
projectRoads,ANY,ANY,ANY,ANY,ANY,ANY,ANY,missing-method

(projectRoads), 8

rasterizeLine, 11
rasterToLineSegments, 12

st_point_on_surface, 5
st_sample, 5

14

	CLUSexample
	demoScen
	getDistFromSource
	getLandingsFromTarget
	plotRoads
	prepExData
	projectRoads
	rasterizeLine
	rasterToLineSegments
	Index

