smurf: Sparse Multi-Type Regularized Feature Modeling

Implementation of the SMuRF algorithm of Devriendt et al. (2021) <doi:10.1016/j.insmatheco.2020.11.010> to fit generalized linear models (GLMs) with multiple types of predictors via regularized maximum likelihood.

Version: 1.1.6
Depends: R (≥ 3.4)
Imports: catdata, glmnet (≥ 4.0), graphics, MASS, Matrix, methods, mgcv, parallel, RColorBrewer, Rcpp (≥ 0.12.12), stats
LinkingTo: Rcpp, RcppArmadillo (≥ 0.8.300.1.0)
Suggests: bookdown, knitr, rmarkdown, roxygen2 (≥ 6.0.0), testthat
Published: 2024-12-02
DOI: 10.32614/CRAN.package.smurf
Author: Tom Reynkens ORCID iD [aut, cre] (<https://orcid.org/0000-0002-5516-5107>), Sander Devriendt [aut], Katrien Antonio [aut]
Maintainer: Tom Reynkens <tomreynkens.r at gmail.com>
BugReports: https://gitlab.com/TReynkens/smurf/-/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://gitlab.com/TReynkens/smurf
NeedsCompilation: yes
Materials: NEWS
CRAN checks: smurf results

Documentation:

Reference manual: smurf.pdf
Vignettes: Introduction to the smurf package (source, R code)

Downloads:

Package source: smurf_1.1.6.tar.gz
Windows binaries: r-devel: smurf_1.1.6.zip, r-release: smurf_1.1.6.zip, r-oldrel: smurf_1.1.6.zip
macOS binaries: r-release (arm64): smurf_1.1.6.tgz, r-oldrel (arm64): smurf_1.1.6.tgz, r-release (x86_64): smurf_1.1.6.tgz, r-oldrel (x86_64): smurf_1.1.6.tgz
Old sources: smurf archive

Reverse dependencies:

Reverse imports: airpart

Linking:

Please use the canonical form https://CRAN.R-project.org/package=smurf to link to this page.