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Abstract

The IBPF algorithm studied by Ning and Ionides (2023) and Ionides et al. (2022) has been
contributed to the R package spatPomp (Asfaw et al., 2021, 2024) as the function ibpf. This
document introduces ibpf and validates its correctness on a simple Gaussian example which is
tractable using the Kalman filter. We also test ibpf on simulated data for a measles transmis-
sion model. In addition to the spatPomp code presented here, the full code to reproduce this
document is available in the R Noweb (.Rnw) source file.
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1 A toy example: Correlated Gaussian random walks

Consider spatial units 1, . . . , U located evenly around a circle, where dist(u, ũ) is the circle distance,

dist(u, ũ) = min
(
|u− ũ|, |u− ũ+ U |, |u− ũ− U |

)
.

The latent process is a U -dimensional Brownian motion X(t) having correlation that decays with
distance. Specifically,

dXu(t) =
U∑

ũ=1

ρdist(u,ũ)u dWũ(t),

where W1(t), . . . ,WU (t) are independent Brownian motions with infinitesimal variance σ2
u, and

|ρu| < 1. An observation Yn is made at each time tn = n for n = 1, 2, . . . , N , and we write
Xn = X(tn). We suppose our measurement model for discrete-time observations of the latent
process is

Yu,n = Xu,n + ηu,n

where ηu,n
iid∼ Normal(0, τ2u). The model is completed by providing the initial conditions, {Xu(0), u ∈

1 : U}, at time t0 = 0. These initial conditions are specified as parameters. An instance of this
model is generated below, using the bm2 function.

R> library(spatPomp)

R> i <- 2

R> b <- bm2(U=4,N=switch(i,10,200),unit_specific_names="rho")

R> plot(b)

U3 U4

U1 U2

0 50 100 150 200 0 50 100 150 200

−20

−15

−10

−5

0

5

−20

−15

−10

−5

0

5

time

Y

2



KF PF BPF BPF BPF
(K = 1) (K = 2) (K = 4)

Log-likelihood mean -1472.69 -1480.79 -1477.88 -1509.06 -1547.80
sd 0.00 3.96 4.00 2.07 1.49

Table 1: Likelihood evaluation for the bm2 model object, b, using the Kalman filter (KF), particle
filter (PF), and block particle filter (BPF) with varying numbers of blocks (K). For Monte Carlo
filters, the mean and standard deviation are shown for 10 replicates.

Here, i is a computational intensity switch which adjusts the code for varying run-time. We
set i=1 for testing and debugging, and i=2 for higher quality results. For simplicity, we consider
only one unit-specific parameter, ρu, with other parameters being fixed at a value shared between
units. The simulation for b has ρu = 0.4 for all u, but the estimators do not know this. Before
carrying out inference, we check likelihood evaluation. For this toy model, the spatPomp function
bm2 kalman logLik provides an exact log-likelihood via the Kalman filter. This study uses a
sufficiently small number of units (U=4) that the particle filter is numerically tractable. We use
the particle filter provided by the pomp package (King et al., 2016), taking advantage of the
class structure where class ‘spatPomp’ inherits from class ‘pomp’. We can readily validate the
agreement between bm2 kalman logLik and pfilter, and identify the likelihood cost of the block
filter approximation in this situation.

R> kf_logLik <- bm2_kalman_logLik(b)

R> pf_logLik <- replicate(10,

+ logLik(pfilter(b,switch(i,10,1000)))

+ )

R> bpf_logLik2 <- replicate(10,

+ logLik(bpfilter(b,switch(i,10,1000),block_size=2))

+ )

Table 1 shows the increasingly negative bias, and decreasing variance, of BPF as the number
of blocks increases. For a single block, K = 1, the BPF algorithm matches PF. PF provides an
unbiased estimate of the likelihood, and due to the convexity of the logarithm it has negative
bias (approximately equal to half the variance) for estimating the log-likelihood. Subsequently, we
investigate inference for ρ1:4 with K = 2.

Ionides et al. (2023) investigated a range of values for U for this model in their Figure 1, and
for an epidemiological model their Figure 3. The small scenario considered here, with U = 4,
is designed for the following purposes: (i) to validate whether or not ibpf is correctly coded by
comparison with direct calculations using the Kalman filter; (ii) to check whether or not the block
approximation has considerable adverse effects on inference in this case. The inherent scalability
of BPF and IBPF, together with the spatial homogeneity of the model, suggests that results for
U = 4 should be representative for larger U .

For our test of IBPF, we start searches at ρu = u/5 to investigate the effect (if any) on starting
value.
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R> rho_start <- seq(from=0.2,to=0.8,length=U)

R> params_start <- coef(b)

R> params_start[paste0("rho",1:U)] <- rho_start

R> ibpf_mle_searches <- foreach(reps=1:switch(i,3,10))%dopar%{

+ ibpf(b,params=params_start,

+ Nbpf=switch(i,2,50),Np=switch(i,10,1000),

+ rw.sd=rw_sd(rho1=0.02,rho2=0.02,rho3=0.02,rho4=0.02),

+ unitParNames="rho",

+ sharedParNames=NULL,

+ block_size=2,

+ cooling.fraction.50=0.5

+ )

+ }

To assess the success of these searches, we evaluate the likelihood of the resulting parameter
estimates using the Kalman filter. The highest likelihood found in these ten searches was -1473.06
which is not far from the actual maximum of -1472.11. However, the median of -1476.93 reveals that
substantial Monte Carlo maximization error is present. On harder problems, it can be intractable
to increase computational effort to the point where the Monte Carlo error is negligible, and instead
we emphasize methods that quantify and control the error.

The MLE may be of less interest than marginal confidence intervals for each unit-specific pa-
rameter. Therefore, we compute a profile likelihood for ρu, using Monte Carlo adjusted profile
methodology (Ionides et al., 2017; Ning et al., 2021). We compare this with an exact likelihood
profile constructed by numerical optimization of the log-likelihood evaluated using the Kalman fil-
ter. The IBPF implementation is identical to the search above, except that the profiled parameter
is fixed. For the profile shown in Figure 1, we first evaluate the likelihood using BPF rather than the
Kalman filter, to present methodology applicable to non-Gaussian models. We then check against
the likelihood evaluated via the Kalman filter for the IBPF estimates, and the profile computed
directly from the Kalman filter. These reveal a distinct bias in the IBPF/BPF profile, apparently
primarily to do with a bias in likelihood evaluation. The parameter in question describes a dynamic
coupling between the units, and a heuristic explanation may be that the blocking procedure breaks
some of the coupling and thereby leads to a higher inferred value of the coupling parameter to
counterbalance that bias. The bottom panel of Figure shows that we can also diagnose this effect
using the particle filter, on this small example for which the particle filter is tractable.

The profile maximization took 15.20 mins using 36 computing cores.
We now do the same calculation for σ, shown in Figure 2, for comparison with ρ. There is some

evidence of a bias for σ, but the issue appears to be more severe for ρ.
In Figures 2 and 1, we see that the particle filter provides a close approximation to the exact

likelihood, though even for 4 units the variablility is noticeable. Comparison with PF for a small
number of units can be used to assess BPF and IBPF for a metapopulation model. We will see
below that this model is well suited to BPF and IBPF. Intuitively, this may be because the coupling
between units is weak—population movement between towns is critical to disease dynamics, but
the vast majority of transmission occurs among residents of the same town.
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Figure 1: Top: profile for ρ1 using an IBPF search with likelihood computed using BPF, for K = 2
blocks each having 2 units. Middle: Exact profile (dashed red line) and the same IBPF search
with likelihood computed exactly using the Kalman filter. Bottom: The same IBPF search with
likelihood computed using the particle filter. Vertical lines show the MLE and a 95% confidence
interval, with a dotted line at the true parameter value.
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Figure 2: Top: profile for σ1 using an IBPF search with likelihood computed using BPF, for K = 2
blocks each having 2 units. Middle: Exact profile (dashed red line) and the same IBPF search
with likelihood computed exactly using the Kalman filter. Bottom: The same IBPF search with
likelihood computed using the particle filter. Vertical lines show the MLE and a 95% confidence
interval, with a dotted line at the true parameter value.
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PF BPF BPF BPF
(K = 1) (K = 2) (K = 4)

Log-likelihood mean -10851.09 -10836.02 -10785.13 -10777.54
sd 15.89 11.76 3.22 1.42

Table 2: Likelihood evaluation for the he10 model object, m, using the particle filter (PF), and
block particle filter (BPF) with varying numbers of blocks (K). The mean and standard deviation
are shown for 10 replicates with 104 particles.

2 A measles model

We now proceed to carry out a similar analysis for the measles model generated by the spatPomp
function he10. This is a susceptible-exposed-infected-recovered model for measles transmission,
described by Ionides et al. (2022) and Asfaw et al. (2024). For this model, exact likelihood evaluation
is not available. However, for a relatively small number of units (U = 4) the particle filter provide
an adequate approximation. Ionides et al. (2022) considered fitting this model to data using IBPF,
with 20 cities and up to 20×13 parameters. Here, our task is to focus on a smaller, simulated dataset,
estimating fewer parameters in order to assess more clearly whether or not the block approximation
is leading to substantial bias. We choose two large towns (London and Birmingham) and two small
towns (Cardiff and Hastings) since we expect that population movement from large towns to small
towns is essential to explain disase persistence in small towns. Large towns can maintain an ongoing
epidemic, but, below a critical community size local extinction of the disease is expected during
epidemic troughs.

R> he10_model <- he10(U=4,dt=1/365,Tmax=switch(i,1955,1964),

+ expandedParNames=c("R0"),

+ towns_selected=c(1,2,11,12),

+ basic_params = c(

+ alpha =0.99, iota=0, R0=30,

+ cohort=0.5, amplitude=0.3, gamma=52,

+ sigma=52, mu=0.02, sigmaSE=0.05,

+ rho=0.5, psi=0.1, g=800,

+ S_0=0.036, E_0=0.00007, I_0=0.00006

+ )

+ )

R> m <- simulate(he10_model,seed=27)

Likelihood evaluation took 2.71 mins. Recall that the bias-variance trade-off for likelihood
evaluation becomes a tradeoff between two sources of bias for log-likelihood evaluation, due to
Jensen’s inqeuality. Table 2 shows that little likelihood is lost due to the block approximation for
small numbers of units. Indeed, even for a large number of particles, a small block size gives higher
log-likelihood estimates. This is on contrast to the results in Table 1 for the spatially correlated
random walk example in Section 1.

Accurate BPF likelihood evalution for a small number of units suggests that the accuracy will
persist for larger numbers of units. It is hard to directly test this for the measles model, since we
do not have an alternative accurate evalation once PF becomes inapplicable. However, BPF has
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Figure 3: Weekly measles case reports. (A) Data for four UK towns. (B) Simulated data.
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favorable scaling properties, and if the weak coupling that makes BPF accurate on the small system
is also a feature of the big system, it may be reasonable to expect accuracy in situations where it
cannot be directly tested.

The R01 profile took 264.25 mins using 36 computing cores. Subsequent likelihood evaluation
at the proposed profile points took 196.51 mins, for BPF and PF combined. Accurate evaluation
of the likelihood is important for inference, and optimization has been empirically found to require
fewer particles than evaluation. This is a large computing time for one profile with only 4 units.
Perhaps satisfactory results could have been generated more quickly, but generally one expects that
simulation based inference for highly nonlinear and non-Gaussian spatiotemporal systems is going
to require a considerable amount of computation.

If IBPF is effectively maximizing the BPF approximation to the likelihood, then situations
where BPF has low likelihood evaluation bias may correspond to situations where IBPF has low
estimation bias. A profile likelihood for one paramter is presented to support this, in Figure 4.
Here, the evaluation using PF gives a slightly tighter estimate of the profile, but this may be less
accurate: PF is a higher variance algorithm, even with U = 4, and its variance increases as the
model becomes increasingly misspecified. Thus, the profile likelihood estimate may have additional
curvature due to increasing variance (and therefore increasing Jensen bias) away from the MLE.

The block approximation in BPF concerns dependence between blocks and therefore may have
an effect on estimation of parameters describing the coupling between units. The measles metapop-
ulation model has a so-called gravity model for coupling, with a parameter gu controlling the rate of
transmission from other cities into city u. A relatively straightforward way to investigate estimation
of gu using BPF and IBPF is to compute a likelihood slice through the true parameter value for a
simulation, with only gu being varied. Here, we investigate a slice for u = 4. A likelihood profile
cannot take a lower value than a likelihood slice, since the profile has an additional optimization.
Therefore, a flat slice implies a flat profile; the converse is not necessarily true. Clear evidence of
bias in a slice for a small number of units would anticipate difficulties when undertaking the more
time-consuming task of obtaining a profile with many units and many parameters. Figure 5 is
consistent with a small positive bias: BPF ignores part of the dependence in the filter distribution,
so it may be expected that it compensates by a bias toward parameter values that increase the
coupling.

A slice is equivalent to a profile with only a single estimated parameter, so we can construct
a Monte Carlo adjusted profile confidence interval under this assumption. The g4 slice took 11.93
mins using 36 computing cores, which was considerably less computational effort than was used
for the profile. Typically, sliced likelihood plots are a computationally convenient tool used for
preliminary investigations, and a full profile is preferred for a final conclusion.

9



26 28 30 32 34

−
10

86
0

−
10

82
0

−
10

78
0

Lo
g−

lik
el

ih
oo

d

26 28 30 32 34

−
10

94
0

−
10

90
0

R0

Lo
g−

lik
el

ih
oo

d

Figure 4: Top: profile for R01 using an IBPF search with likelihood computed using BPF, for
K = 4 blocks each having 1 unit. Bottom: The same IBPF search with likelihood computed using
the particle filter. Vertical lines show the MLE and a 95% confidence interval, with a dotted line
at the true parameter value.
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Figure 5: Slice for g4 through the true parameter vector, using BPF evaluation with K = 4 blocks
each having 1 unit. Vertical lines show the MLE and a 95% confidence interval, with a dotted line
at the true parameter value.
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3 Diagnostics

If likelihood maximization appears to be failing, or has unacceptably high Monte Carlo variability,
one wishes to diagnose the cause, or causes. Even if inference appears to be operating satisfactorily,
it is good practice to see whether there are some data points for which the model is inappropriate,
or some parameters for which optimization is less stable. It may be interesting to know if less Monte
Carlo effort would be sufficient, or if greater effort would be beneficial. For all these questions, a
starting point is exploratory analysis of diagnostic data produced by ibpf and bpfilter.

The success of an iterated filter for likelihood maximization depends on the success of a single
pass of that filter for likelihood evaluation. A useful diagnostic quantity for the particle filter is
the effective sample size (ESS) (Doucet and Johansen, 2011; Liu, 2001). In the notation of King
et al. (2016), the filter observation weight for particle j at time n is w(n, j) = fYn|Xn

(y∗n|XP
n,j ; θ),

the normal weight is w̃(n, j) = w(n, j)
/∑J

k=1w(n, k), and the effective sample size is

ESSn =




J∑

j=1

w̃(n, j)2




−1

. (1)

ESS is generally motivated as an approximation to the equivalent number of independent samples
from the filtering distribution. In the context of likelihood-based inference, it is convenient to think
of ESS−1

n as an approximation to the variance of the conditional log-likelihood estimate,

ℓ̂n = log


 1

J

J∑

j=1

w(n, j)


 . (2)

However, ubiquitous multi-core computation permits us to calculate this variance directly, by Monte
Carlo replication. This bypasses consideration of whether or not ESS is a good estimator. Also,

the Monte Carlo replicates, denoted by ℓ̂
(r)
n , for r = 1, . . . , R, give rise to an improved estimate of

the conditional log-likelihood,

ℓ̄n =
1

R

R∑

r=1

ℓ̂(r)n , (3)

together with an uncertainty estimate via the central limit theorem. One could also replace the
arithmetic average in (3) using pomp::logmeanexp.

Figure 6 shows both ESS and conditional log-likelihood variance (CLLV) for measles in London.
We see that both measures agree on the most problematic observation. However, ESS is not a
sensitive proxy for CLLV elsewhere in the distribution. CLLV can be calculated for each observation
time (cumulative over all units) for a block particle filter, but for diagnostic purposes we write the
conditional log-likelihood as a sum of block conditional log-likelihood (BCLL) values. Using the
notation of Asfaw et al. (2024), the weights for block Bk ⊂ 1:U are

wj
k,n =

∏

u∈Bk

fYn,n|Xu,n

(
y∗u,n |XP,j

u,n ;θ
)
. (4)

The BCLL is

ℓ̂k,n =
1

J

J∑

j=1

wj
k,n, (5)

12



0.00005 0.00020 0.00100 0.00500 0.02000

0.
00

00
5

0.
00

02
0

0.
00

10
0

0.
00

50
0

0.
02

00
0

Conditional log−likelihood variance

1/
E

S
S

Figure 6: Comparison of effective sample size and conditional log-likelihood variance for measles
in London
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and the block approximation to the conditional likelihood of y∗1, . . . , y
∗
U is

ℓ̂n =
K∑

k=1

ℓ̂k,n. (6)

For our measles spatPomp exmple, we calculate the BCLL and its variance (BCLLV) as follows:

R> bpf_list <- foreach(rep=1:switch(i,6,40)) %dopar% {

+ bpfilter(he10_model,Np=switch(i,10,2000),block_size=1)

+ }

R> bpf_ll <- sapply(bpf_list,function(x)x@block.cond.loglik)

R> dim(bpf_ll) <- c(dim(bpf_list[[1]]@block.cond.loglik),length(bpf_list))

R> bcll <- apply(bpf_ll,c(1,2),mean)

R> bcllv <- apply(bpf_ll,c(1,2),var)

Once we have identified that an observation is hard to filter, there are various classes of explana-
tion: (i) the data point is an outlier, which any reasonable model would struggle to explain; (ii) the
model is poor at that point; (iii) there is no problem with the model or data, but the system happens
to require a high Monte Carlo effort at that point. Neither ESS nor CLLV can distinguish these al-
ternatives. It can be helpful to compare the model fit against a simple statistical model, to provide
an objective benchmark. Measles case counts are an example of a population system exhibiting
exponential growth and decay, and in such cases a log-scale autoregressive moving average (log-
ARMA) model can provide an appropriate benchmark. The function spatPomp::arma benchmark

fits this model for each unit of a spatPomp object and provides the unit conditional log-likelihood
values for each time point. Here, blocks are taken to be units, so we define the log-likelihood
anomaly as the difference between the BCCL and the unit benchmark,

R> benchmark <- arma_benchmark(he10_model)

R> anomaly <- bcll - benchmark$cond

Unlike BCLL, both log-likelihood anomaly and BCLLV have the convenient property that they
do not depend on the scale of the data, or the units in which it is measured.

Figure 7 investigates two units—London and Birmingham—via BCLLV and log-likelihood
anomaly. We see that the model used here fits London well and Birmingham poorly. Some time
points have very high Monte Carlo likelihood estimate variance, and those points also have poor
likelihood compared to the benchmark. One observation for London has a poor log-likelihood
anomaly but a decent BCLLV. For Birmingham, both anomaly and BCLLV lead the same conclu-
sion that the model is unsatisfactory, at these default initial parameter values. Here, our goal is
only to check methods on simulated data, but if we wanted to fit the model to data, we should
confirm whether the diagnostics from the final fitted model have improved.

Log-likelihood anomalies can be plotted against any covariate of interest for exploratory data
analysis. This is analogous to residual analysis for linear models.

Trace plots to check on the convergence of ibpf are similar to those for other iterated filtering
algorithms. In Figure 8, we show this for the Gaussian correlated random walk example. In this
case, we see replicable convergence among independent searches.
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Figure 7: Block particle filter diagnostics for London (A,C) and Birmingham (B,D).
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R> ibpf_traces <- pomp::melt(lapply(ibpf_mle_searches,pomp:::traces_internal))

R> ibpf_traces$iteration <- as.numeric(ibpf_traces$iteration)

R> ggplot(ibpf_traces, aes(x=iteration,y=value,group=.L1,color=factor(.L1))) +

+ geom_line() +

+ guides(color="none") +

+ facet_wrap(~variable,scales="free_y")

4 Discussion

Further examples of ibpf being used for data analysis are provided by Li et al. (2024) and Wheeler
et al. (2024). Li et al. (2024) studied the spread of COVID-19 in China at the start of the pan-
demic. Their models are available in the metapoppkg R package (https://doi.org/10.5281/
zenodo.10149233) and the article source code is available at https://doi.org/10.5281/zenodo.
10149258. Wheeler et al. (2024) studied a cholera epidemic in Haiti. Their models are available
in the haitipkg R package (https://doi.org/10.5281/zenodo.7557099) and the article source
code is available at https://doi.org/10.5281/zenodo.10783080.
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Figure 8: Trace plots for the correlated Gaussian random walk example.
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