ssaBSS: Stationary Subspace Analysis
Stationary subspace analysis (SSA) is a blind source separation (BSS) variant where stationary components are separated from non-stationary components. Several SSA methods for multivariate time series are provided here (Flumian et al. (2021); Hara et al. (2010) <doi:10.1007/978-3-642-17537-4_52>) along with functions to simulate time series with time-varying variance and autocovariance (Patilea and Raissi(2014) <doi:10.1080/01621459.2014.884504>).
Version: |
0.1.1 |
Depends: |
tsBSS (≥ 0.5.3), ICtest (≥ 0.3-4), JADE (≥ 2.0-2), BSSprep, ggplot2 |
Imports: |
xts, zoo |
Published: |
2022-12-01 |
DOI: |
10.32614/CRAN.package.ssaBSS |
Author: |
Markus Matilainen
[cre, aut] (<https://orcid.org/0000-0002-5597-2670>),
Lea Flumian [aut],
Klaus Nordhausen
[aut] (<https://orcid.org/0000-0002-3758-8501>),
Sara Taskinen
[aut] (<https://orcid.org/0000-0001-9470-7258>) |
Maintainer: |
Markus Matilainen <markus.matilainen at outlook.com> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
no |
Materials: |
ChangeLog |
CRAN checks: |
ssaBSS results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=ssaBSS
to link to this page.