An implementation of semi-supervised regression methods including self-learning and co-training by committee based on Hady, M. F. A., Schwenker, F., & Palm, G. (2009) <doi:10.1007/978-3-642-04274-4_13>. Users can define which set of regressors to use as base models from the 'caret' package, other packages, or custom functions.
Version: | 0.1.1 |
Depends: | R (≥ 3.6.0) |
Imports: | caret, e1071 |
Suggests: | knitr, rmarkdown, tgp |
Published: | 2019-09-02 |
DOI: | 10.32614/CRAN.package.ssr |
Author: | Enrique Garcia-Ceja [aut, cre] (<https://orcid.org/0000-0001-6864-8557>) |
Maintainer: | Enrique Garcia-Ceja <e.g.mx at ieee.org> |
BugReports: | https://github.com/enriquegit/ssr/issues |
License: | GPL-3 |
URL: | https://github.com/enriquegit/ssr |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | ssr results |
Reference manual: | ssr.pdf |
Vignettes: |
Introduction to the ssr package |
Package source: | ssr_0.1.1.tar.gz |
Windows binaries: | r-devel: ssr_0.1.1.zip, r-release: ssr_0.1.1.zip, r-oldrel: ssr_0.1.1.zip |
macOS binaries: | r-release (arm64): ssr_0.1.1.tgz, r-oldrel (arm64): ssr_0.1.1.tgz, r-release (x86_64): ssr_0.1.1.tgz, r-oldrel (x86_64): ssr_0.1.1.tgz |
Old sources: | ssr archive |
Please use the canonical form https://CRAN.R-project.org/package=ssr to link to this page.