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fitConf Fit a static confidence model to data
Description

This function fits one static model of decision confidence to binary choices and confidence judg-
ments. It calls a corresponding fitting function for the selected model.

Usage

fitConf(data, model = "SDT", nInits = 5, nRestart = 4)

Arguments

data a data.frame where each row is one trial, containing following variables:

» diffCond (optional; different levels of discriminability, should be a factor
with levels ordered from hardest to easiest),

* rating (discrete confidence judgments, should be a factor with levels or-
dered from lowest confidence to highest confidence; otherwise will be trans-
formed to factor with a warning),

* stimulus (stimulus category in a binary choice task, should be a factor with
two levels, otherwise it will be transformed to a factor with a warning),

* correct (encoding whether the response was correct; should be 0 for in-
correct responses and 1 for correct responses)
model character of length 1. Models implemented so far: "WEV’, ’SDT’, "GN,
"PDA’, ’IG’, "ITGc’, "ITGem’, "logN’, and "logWEV’.
nInits integer. Number of initial values used for maximum likelihood optimization.
Defaults to 5.

nRestart integer. Number of times the optimization algorithm is restarted. Defaults to
4.
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Details

The fitting routine first performs a coarse grid search to find promising starting values for the max-
imum likelihood optimization procedure. Then the best nInits parameter sets found by the grid
search are used as the initial values for separate runs of the Nelder-Mead algorithm implemented in
optim. Each run is restarted nRestart times.

Mathematical description of models:

The computational models are all based on signal detection theory (Green & Swets, 1966). It is
assumed that participants select a binary discrimination response R about a stimulus S. Both S
and R can be either -1 or 1. R is considered correct if S = R. In addition, we assume that there
are K different levels of stimulus discriminability in the experiment, i.e. a physical variable that
makes the discrimination task easier or harder. For each level of discriminability, the function fits
a different discrimination sensitivity parameter dj. If there is more than one sensitivity parameter,
we assume that the sensitivity parameters are ordered such as 0 < d; < ... < dx. The models
assume that the stimulus generates normally distributed sensory evidence « with mean .S x dj, /2
and variance of 1. The sensory evidence x is compared to a decision criterion c¢ to generate a
discrimination response R, which is 1, if = exceeds c and -1 else. To generate confidence, it is
assumed that the confidence variable y is compared to another set of criteria 0 ;,7 = 1,..., L —1,
depending on the discrimination response R to produce a L-step discrete confidence response.
The number of thresholds will be inferred from the number of steps in the rating column of
data. Thus, the parameters shared between all models are:

* sensitivity parameters dy,...,dx (K: number of difficulty levels)
¢ decision criterion ¢

* confidence criterion 8_1 1,012, ..., 0_1,.—1, 01,1, 01,2,..., 01,—1 (L: number of confidence
categories available for confidence ratings)

How the confidence variable y is computed varies across the different models. The following
models have been implemented so far:

Signal Detection Rating Model (SDT):

According to SDT, the same sample of sensory evidence is used to generate response and con-
fidence, i.e., y = x and the confidence criteria span from the left and right side of the decision
criterion ¢ (Green & Swets, 1966).

Gaussian Noise Model (GN):

According to the model, y is subject to additive noise and assumed to be normally distributed
around the decision evidence value = with a standard deviation ¢ (Maniscalco & Lau, 2016).
The parameter o is a free parameter.

Weighted Evidence and Visibility model (WEV):

WEV assumes that the observer combines evidence about decision-relevant features of the
stimulus with the strength of evidence about choice-irrelevant features to generate confidence
(Rausch et al., 2018). Here, we use the version of the WEV model used by Rausch et al. (2023),
which assumes that y is normally distributed with a mean of (1 — w) X « + w x dy X R and
standard deviation o. The parameter o quantifies the amount of unsystematic variability con-
tributing to confidence judgments but not to the discrimination judgments. The parameter w
represents the weight that is put on the choice-irrelevant features in the confidence judgment. w
and o are fitted in addition to the set of shared parameters.

Post-decisional accumulation model (PDA):
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PDA represents the idea of on-going information accumulation after the discrimination choice
(Rausch et al., 2018). The parameter b indicates the amount of additional accumulation. The
confidence variable is normally distributed with mean x + .S x dj, x b and variance b. For this
model the parameter b is fitted in addition to the set of shared parameters.

Independent Gaussian Model (IG):

According to IG, y is sampled independently from = (Rausch & Zehetleitner, 2017). y is nor-
mally distributed with a mean of a X dj and variance of 1 (again as it would scale with m).
The free parameter m represents the amount of information available for confidence judgment
relative to amount of evidence available for the discrimination decision and can be smaller as
well as greater than 1.

Independent Truncated Gaussian Model: HMetad-Version (ITGc):

According to the version of ITG consistent with the HMetad-method (Fleming, 2017; see
Rausch et al., 2023), y is sampled independently from x from a truncated Gaussian distribu-
tion with a location parameter of S x dj X m/2 and a scale parameter of 1. The Gaussian
distribution of y is truncated in a way that it is impossible to sample evidence that contradicts
the original decision: If R = —1, the distribution is truncated to the right of c. If R = 1, the
distribution is truncated to the left of c. The additional parameter m represents metacognitive
efficiency, i.e., the amount of information available for confidence judgments relative to amount
of evidence available for discrimination decisions and can be smaller as well as greater than 1.

Independent Truncated Gaussian Model: Meta-d’-Version (ITGcm):

According to the version of the ITG consistent with the original meta-d’ method (Maniscalco &
Lau, 2012, 2014; see Rausch et al., 2023), y is sampled independently from x from a truncated
Gaussian distribution with a location parameter of S x dj x m/2 and a scale parameter of 1.
If R = —1, the distribution is truncated to the right of m x ¢. If R = 1, the distribution is
truncated to the left of m x c. The additional parameter m represents metacognitive efficiency,
i.e., the amount of information available for confidence judgments relative to amount of evidence
available for the discrimination decision and can be smaller as well as greater than 1.

Logistic Noise Model (logN):

According to logN, the same sample of sensory evidence is used to generate response and
confidence, i.e., y = x just as in SDT (Shekhar & Rahnev, 2021). However, according to
logN, the confidence criteria are not assumed to be constant, but instead they are affected by
noise drawn from a lognormal distribution. In each trial, _; ; is given by ¢ — ¢;. Like-
wise, 01 ; is given by ¢ + €. ¢; is drawn from a lognormal distribution with the location
parameter pp; = log(|0r; — ¢|) — 0.5 x 0% and scale parameter o. o is a free parameter
designed to quantify metacognitive ability. It is assumed that the criterion noise is perfectly
correlated across confidence criteria, ensuring that the confidence criteria are always perfectly
ordered. Because 0_1 1, ..., 0_1,r—1, 01,1, ..., 01,L—1 change from trial to trial, they are not
estimated as free parameters. Instead, we estimate the means of the confidence criteria, i.e.,
5_171, ceny §_17L_1,§1’1, ...51711_1, as free parameters.

Logistic Weighted Evidence and Visibility model (logWEV):

logWEYV is a combination of logN and WEV proposed by Shekhar and Rahnev (2023). Concep-
tually, logWEV assumes that the observer combines evidence about decision-relevant features
of the stimulus with the strength of evidence about choice-irrelevant features (Rausch et al.,
2018). The model also assumes that noise affecting the confidence decision variable is lognor-
mal in accordance with Shekhar and Rahnev (2021). According to logWEYV, the confidence
decision variable y is equal to y* x R. y* is sampled from a lognormal distribution with a
location parameter of (1 — w) X & X R + w X dj, and a scale parameter of 0. The parameter
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o quantifies the amount of unsystematic variability contributing to confidence judgments but
not to the discrimination judgments. The parameter w represents the weight that is put on the
choice-irrelevant features in the confidence judgment. w and o are fitted in addition to the set
of shared parameters.

Value

Gives data frame with one row and columns for the fitted parameters of the selected model as
well as additional information about the fit (negLoglL ik (negative log-likelihood of the final set of
parameters), k (number of parameters), N (number of data rows), AIC (Akaike Information Criterion;
Akaike, 1974), BIC (Bayes information criterion; Schwarz, 1978), and AICc (AIC corrected for
small samples; Burnham & Anderson, 2002))

Author(s)

Sebastian Hellmann, <sebastian.hellmann@ku.de>

Manuel Rausch, <manuel.rausch@hochschule-rhein-waal.de>
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Examples

# 1. Select one subject from the masked orientation discrimination experiment
data <- subset(MaskOri, participant == 1)
head(data)

# 2. Use fitting function

# Fitting takes some time to run:
FitFirstSbjWEV <- fitConf(data, model="WEV")

fitConfModels Fit several static confidence models to multiple participants

Description

This function is a wrapper of the function fitConf. It calls the function for every possible combi-
nation of model in the model argument and participant in the data, respectively. See the Details for
more information about the parameters.

Usage

fitConfModels(data, models = "all”, nInits = 5, nRestart = 4,
.parallel = FALSE, n.cores = NULL)

Arguments

data a data.frame where each row is one trial, containing following variables:

» diffCond (optional; different levels of discriminability, should be a factor
with levels ordered from hardest to easiest),

* rating (discrete confidence judgments, should be a factor with levels or-
dered from lowest confidence to highest confidence; otherwise will be trans-
formed to factor with a warning),

* stimulus (stimulus category in a binary choice task, should be a factor with
two levels, otherwise it will be transformed to a factor with a warning),

* correct (encoding whether the response was correct; should be 0 for in-
correct responses and 1 for correct responses)

* participant (giving the subject ID; the models given in the second argu-
ment are fitted for each subject individually.
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models character. Models implemented so far: "WEV’, ’SDT’, "GN’, "PDA’, ’1G’,
'ITGe’, "ITGem’, ’logN’, and 'logWEV’. Alternatively, if model="all" (de-
fault), all implemented models will be fit.

nlnits integer. Number of initial values used for maximum likelihood optimization.
Defaults to 5.

nRestart integer. Number of times the optimization is restarted. Defaults to 4.

.parallel logical. Whether to parallelize the fitting over models and participant (default:
FALSE)

n.cores integer. Number of cores used for parallelization. If NULL (default), the

available number of cores -1 will be used.

Details

The fitting routine first performs a coarse grid search to find promising starting values for the max-
imum likelihood optimization procedure. Then the best nInits parameter sets found by the grid
search are used as the initial values for separate runs of the Nelder-Mead algorithm implemented in
optim. Each run is restarted nRestart times.

Mathematical description of models:

The computational models are all based on signal detection theory (Green & Swets, 1966). It
is assumed that participants select a binary discrimination response R about a stimulus .S. Both
S and R can be either -1 or 1. R is considered correct if S = R. In addition, we assume
that there are K different levels of stimulus discriminability in the experiment, i.e. a physical
variable that makes the discrimination task easier or harder. For each level of discriminability,
the function fits a different discrimination sensitivity parameter dj. If there is more than one
sensitivity parameter, we assume that the sensitivity parameters are ordered such as 0 < d; <
de < ... < dg. The models assume that the stimulus generates normally distributed sensory
evidence = with mean S X dj/2 and variance of 1. The sensory evidence x is compared to a
decision criterion c to generate a discrimination response R, which is 1, if  exceeds c and -1 else.
To generate confidence, it is assumed that the confidence variable y is compared to another set of
criteria 0p 4,7 = 1,2, ..., L — 1, depending on the discrimination response R to produce a L-step
discrete confidence response. The number of thresholds will be inferred from the number of steps
in the rating column of data. Thus, the parameters shared between all models are:

* sensitivity parameters dy,...,dx (/: number of difficulty levels)

e decision criterion ¢

* confidence criterion §_1 1,0_12, ..., 0_1,.—1, 01,1, 61,2,..., 61,.—1 (L: number of confidence
categories available for confidence ratings)

How the confidence variable y is computed varies across the different models. The following
models have been implemented so far:

Signal Detection Rating Model (SDT):

According to SDT, the same sample of sensory evidence is used to generate response and con-
fidence, i.e., y = z and the confidence criteria span from the left and right side of the decision
criterion ¢(Green & Swets, 1966).

Gaussian Noise Model (GN):

According to the model, y is subject to additive noise and assumed to be normally distributed
around the decision evidence value x with a standard deviation o(Maniscalco & Lau, 2016). ¢
is an additional free parameter.
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Weighted Evidence and Visibility model (WEV):

WEV assumes that the observer combines evidence about decision-relevant features of the
stimulus with the strength of evidence about choice-irrelevant features to generate confidence
(Rausch et al., 2018). Thus, the WEV model assumes that y is normally distributed with a mean
of (1 —w) X x + w X di, x R and standard deviation o. The standard deviation quantifies the
amount of unsystematic variability contributing to confidence judgments but not to the discrim-
ination judgments. The parameter w represents the weight that is put on the choice-irrelevant
features in the confidence judgment. w and o are fitted in addition to the set of shared parame-
ters.

Post-decisional accumulation model (PDA):

PDA represents the idea of on-going information accumulation after the discrimination choice
(Rausch et al., 2018). The parameter a indicates the amount of additional accumulation. The
confidence variable is normally distributed with mean x + S x dj, x a and variance a. For this
model the parameter a is fitted in addition to the shared parameters.

Independent Gaussian Model (IG):

According to IG, y is sampled independently from = (Rausch & Zehetleitner, 2017). y is nor-
mally distributed with a mean of a x dj, and variance of 1 (again as it would scale with m). The
additional parameter m represents the amount of information available for confidence judgment
relative to amount of evidence available for the discrimination decision and can be smaller as
well as greater than 1.

Independent Truncated Gaussian Model: HMetad-Version (ITGc):

According to the version of ITG consistent with the HMetad-method (Fleming, 2017; see
Rausch et al., 2023), y is sampled independently from z from a truncated Gaussian distribu-
tion with a location parameter of S x dj x m/2 and a scale parameter of 1. The Gaussian
distribution of y is truncated in a way that it is impossible to sample evidence that contradicts
the original decision: If R = —1, the distribution is truncated to the right of c¢. If R = 1, the
distribution is truncated to the left of c¢. The additional parameter m represents metacognitive
efficiency, i.e., the amount of information available for confidence judgments relative to amount
of evidence available for discrimination decisions and can be smaller as well as greater than 1.

Independent Truncated Gaussian Model: Meta-d’-Version (ITGcem):

According to the version of the ITG consistent with the original meta-d’ method (Maniscalco &
Lau, 2012, 2014; see Rausch et al., 2023), y is sampled independently from z from a truncated
Gaussian distribution with a location parameter of S X dj x m/2 and a scale parameter of 1.
If R = —1, the distribution is truncated to the right of m x c¢. If R = 1, the distribution is
truncated to the left of m x c. The additional parameter m represents metacognitive efficiency,
i.e., the amount of information available for confidence judgments relative to amount of evidence
available for the discrimination decision and can be smaller as well as greater than 1.

Logistic Noise Model (logN):

According to logN, the same sample of sensory evidence is used to generate response and
confidence, i.e., y = z just as in SDT (Shekhar & Rahnev, 2021). However, according to
logN, the confidence criteria are not assumed to be constant, but instead they are affected by
noise drawn from a lognormal distribution. In each trial, §_; ; is given by ¢ — ¢;. Like-
wise, 07 ; is given by ¢ + €. ¢; is drawn from a lognormal distribution with the location
parameter yp; = log(|0r; — c|) — 0.5 x o2 and scale parameter 0. o is a free parameter
designed to quantify metacognitive ability. It is assumed that the criterion noise is perfectly
correlated across confidence criteria, ensuring that the confidence criteria are always perfectly
ordered. Because 6_1 1, ..., 0_1 1, 01,1, ..., 61,,—1 change from trial to trial, they are not
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Value

estimated as free parameters. Instead, we estimate the means of the confidence criteria, i.e.,
0_11,-,0-1,0-1,011,...01,L—1, as free parameters.

Logistic Weighted Evidence and Visibility model (logWEV):

logWEYV is a combination of logN and WEV proposed by Shekhar and Rahnev (2023). Concep-
tually, logWEV assumes that the observer combines evidence about decision-relevant features
of the stimulus with the strength of evidence about choice-irrelevant features (Rausch et al.,
2018). The model also assumes that noise affecting the confidence decision variable is lognor-
mal in accordance with Shekhar and Rahnev (2021). According to logWEYV, the confidence
decision variable is y is equal to y* x R. y™* is sampled from a lognormal distribution with a
location parameter of (1 — w) X & x R+ w X dj, and a scale parameter of o. The parameter
o quantifies the amount of unsystematic variability contributing to confidence judgments but
not to the discrimination judgments. The parameter w represents the weight that is put on the
choice-irrelevant features in the confidence judgment. w and o are fitted in addition to the set
of shared parameters.

Gives data frame with one row for each combination of model and participant and columns for the
estimated parameters. Additional information about the fit is provided in additional columns:

* negloglik (negative log-likelihood of the best-fitting set of parameters),
* k (number of parameters),

¢ N (number of trials),

e AIC (Akaike Information Criterion; Akaike, 1974),

* BIC (Bayes information criterion; Schwarz, 1978),

* AICc (AIC corrected for small samples; Burnham & Anderson, 2002) If length(models) > 1
or models == "all", there will be three additional columns:

* wAIC: Akaike weights based on AIC,
* WAIC: Akaike weights based on AICc,
* wBICc: Schwarz weights (see Burnham & Anderson, 2002)

Author(s)

Sebastian Hellmann, <sebastian.hellmann@ku.de>

Manuel Rausch, <manuel . rausch@hochschule-rhein-waal.de>
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Examples

# 1. Select two subjects from the masked orientation discrimination experiment
data <- subset(MaskOri, participant %in% c(1:2))
head(data)

# 2. Fit some models to each subject of the masked orientation discrimination experiment

# Fitting several models to several subjects takes quite some time

# If you want to fit more than just two subjects,

# we strongly recommend setting .parallel=TRUE

Fits <- fitConfModels(data, models = c("SDT", "ITGc"), .parallel = FALSE)

fitMetaDprime Fits meta-d’ and meta-d’/d’ ratios for data from one or several sub-
jects

Description

This function computes meta-d’ and meta-d’/d’ for each participant in the data, respectively.
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Usage

fitMetaDprime(data, model = "ML", nInits = 5, nRestart = 3,
.parallel = FALSE, n.cores = NULL)

Arguments

data a data.frame where each row is one trial, containing following variables:

* rating (discrete confidence judgments, should be given as factor; other-
wise will be transformed to factor with a warning),

* stimulus (stimulus category in a binary choice task, should be a factor with
two levels, otherwise it will be transformed to a factor with a warning),

* correct (encoding whether the response was correct; should be 0 for in-
correct responses and 1 for correct responses)

* participant (giving the subject ID; the models given in the second argu-
ment are fitted for each subject individually.

model character of length 1. Either "ML" to use the original model specification
by Maniscalco and Lau (2012, 2014) or "F" to use the model specification by
Fleming (2017)’s HmetaD method. Defaults to "ML"

nInits integer. Number of initial values used for maximum likelihood optimization.
Defaults to 5.

nRestart integer. Number of times the optimization is restarted. Defaults to 3.

.parallel logical. Whether to parallelize the fitting over models and participant (default:
FALSE)

n.cores integer. Number of cores used for parallelization. If NULL (default), the

available number of cores -1 will be used.

Details

The function computes meta-d’ and meta-d’/d’ either using the hypothetical signal detection model
assumed by Maniscalco and Lau (2012, 2014) or the one assumed by Fleming (2014). The fitting
routine first performs a coarse grid search to find promising starting values for the maximum like-
lihood optimization procedure. Then the best nInits parameter sets found by the grid search are
used as the initial values for separate runs of the Nelder-Mead algorithm implemented in optim.
Each run is restarted nRestart times. Warning: meta-d’/d’ is only guaranteed to be unbiased from
discrimination sensitivity, discrimination bias, and confidence criteria if the data is generated ac-
cording to the independent truncated Gaussian model (see Rausch et al., 2023).

Value
Gives data frame with rows for each participant and columns dprime, ¢, metaD, and Ratio

* dprime is the discrimination sensitivity index d, calculated using a standard SDT formula
* cis the discrimination bias c, calculated using a standard SDT formula

* metaD is meta-d’, discrimination sensitivity estimated from confidence judgments conditioned
on the response

 Ratio is meta-d’/d’, a quantity usually referred to as metacognitive efficiency.
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Examples

# 1. Select two subject from the masked orientation discrimination experiment
data <- subset(MaskOri, participant %in% c(1:2))
head(data)

# 2. Fit meta-d/d for each subject in data
MetaDs <- fitMetaDprime(data, model="F", .parallel = FALSE)

MaskOri Data of 16 participants in a masked orientation discrimination exper-
iment (Hellmann et al., 2023, Exp. 1)

Description

In each trial, participants were shown a sinusoidal grating oriented either horizontally or vertically,
followed by a mask after varying stimulus-onset-asynchronies. Participants were instructed to re-
port the orientation and their degree of confidence as accurately as possible

Usage

data(MaskOri)

Format

A data.frame with 25920 rows representing different trials and 5 variables:

participant integer values as unique participant identifier

stimulus orientation of the grating (90: vertical, O: horizontal)
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correct 0-1 column indicating whether the discrimination response was correct (1) or not (0)

rating 0-4 confidence rating on a continous scale binned into five categories

diffCond stimulus-onset-asynchrony in ms (i.e. time between stimulus and mask onset)

trialNo Enumeration of trials per participant

Examples

data(MaskOri)
summary (MaskOri)

simConf

Simulate data according to a static model of confidence

Description

Simulate data according to a static model of confidence

Usage

simConf (model = "SDT", paramDf)

Arguments

model

paramDf

character of length 1. Models implemented so far: "WEV’, ’SDT’, "GN,
"PDA’, ’IG’, 'ITGc’, "ITGem’, "logN’, and "logWEV”.
a data. frame that contains all parameters to simulate a data set, with one row

and the different parameters in different columns. Which parameters are needed
depends on the specific model:

¢ N (the number of trials be simulated),

* participant (optional, the participant ID of each parameter set. Should
be unique to each row),

e d_1,d_2, ... (sensitivity parameters. The number of sensitivity parameters
determines the number of levels of discriminability),

¢ ¢ (discrimination bias),

e theta_minus.1, theta_minus.2, ... (confidence criteria associated with
the response R = -1. The function simulates one more confidence category
than there are confidence criteria),

e theta_plus.1, theta_plus.2, ... (confidence criteria associated with the
response R = 1. The function simulates one more confidence category than
there are confidence criteria),

* w (only for models WEV and logWEV: the visibility weighting parameter,

bounded between 0 and 1),

sigma (only for models WEV, GN, logN, and logWEV: confidence noise,

bounded between 0 and Inf),
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* m (only for IG, ITGm, and ITGecm: metacognitive efficiency parameter,
bounded between 0 and Inf),

* b (only for PDA: postdecisional accumulation parameter, bounded between
0 and Inf),

* M_theta_minus.1,M_theta_minus.2, ... (only for logN: Mean confidence
criteria associated with the response R = -1),

* M_theta_plus.1, M_theta_plus.2,... (only for logN: Mean confidence
criteria associated with the response R = 1).

Details

see fitConf for a detailed description of the different models.

Value

a dataframe with N rows, and the columns stimulus, correct and rating. If more than 1 sensitiv-
ity parameter is provided, there is diffCond.

Author(s)

Manuel Rausch, <manuel . rausch@hochschule-rhein-waal.de>

Examples

# 1. define some parameters

paramDf <- data.frame(d_1 =0, d_2 = 2, d_3 = 4,c = .0,
theta_minus.2 = -2, theta_minus.1 = -1, theta_plus.1 =
sigma = 1/2, w = 0.5, N = 500)

# 2. Simulate dataset

SimulatedData <- simConf(model = "WEV", paramDf)

1, theta_plus.2 = 2,
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