
Package ‘strand’
October 14, 2022

Type Package

Title A Framework for Investment Strategy Simulation

Version 0.2.0

Date 2020-11-18

Description Provides a framework for performing discrete (share-level) simulations of
investment strategies. Simulated portfolios optimize exposure to an input signal subject
to constraints such as position size and factor exposure. For background see L. Chincarini
and D. Kim (2010, ISBN:978-0-07-145939-6) ``Quantitative Equity Portfolio Management''.

License GPL-3

URL https://github.com/strand-tech/strand

BugReports https://github.com/strand-tech/strand/issues

Depends R (>= 3.5.0)

Imports R6, Matrix, Rglpk, dplyr, tidyr, arrow, lubridate, rlang,
yaml, ggplot2, tibble, methods

Suggests testthat, knitr, rmarkdown, shiny, shinyFiles, shinyjs, DT,
Rsymphony, officer, flextable, plotly

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Jeff Enos [cre, aut, cph],
David Kane [aut],
Ben Czekanski [ctb],
Robert Hoover [ctb],
Jack Luby [ctb],
Nils Wallin [ctb]

Maintainer Jeff Enos <jeffrey.enos@gmail.com>

Repository CRAN

Date/Publication 2020-11-19 21:40:06 UTC

1

https://github.com/strand-tech/strand
https://github.com/strand-tech/strand/issues

2 strand-package

R topics documented:
strand-package . 2
example_shiny_app . 3
example_strategy_config . 4
make_ft . 4
PortOpt . 5
sample_inputs . 9
sample_pricing . 10
sample_secref . 11
show_best_worst . 11
show_config . 12
show_constraints . 12
show_monthly_returns . 12
show_stats . 13
Simulation . 13

Index 25

strand-package strand: a framework for investment strategy simulation

Description

The strand package provides a framework for performing discrete (share-level) simulations of in-
vestment strategies. Simulated portfolios optimize exposure to an input signal subject to constraints
such as position size and factor exposure.

For an introduction to running simulations using the package, see vignette("strand"). For de-
tails on available methods see the documentation for the Simulation class.

Author(s)

Jeff Enos <jeffrey.enos@gmail.com> and David Kane <dave.kane@gmail.com>

Examples

Load up sample data
data(sample_secref)
data(sample_pricing)
data(sample_inputs)

Load sample configuration
config <- example_strategy_config()

Override config file end date to run a one-week sim
config$to <- as.Date("2020-06-05")

Create the Simulation object and run
sim <- Simulation$new(config,

example_shiny_app 3

raw_input_data = sample_inputs,
raw_pricing_data = sample_pricing,
security_reference_data = sample_secref)

sim$run()

Print overall statistics
sim$overallStatsDf()

Access tabular result data
head(sim$getSimSummary())
head(sim$getSimDetail())
head(sim$getPositionSummary())
head(sim$getInputStats())
head(sim$getOptimizationSummary())
head(sim$getExposures())

Plot results
Not run:
sim$plotPerformance()
sim$plotMarketValue()
sim$plotCategoryExposure("sector")
sim$plotFactorExposure(c("value", "size"))
sim$plotNumPositions()

End(Not run)

example_shiny_app Run an example shiny app

Description

Runs a shiny app that allows interactively configuring and running a simulation. Once the simu-
lation is finished results, such as performance statistics and plots of exposures, are available in a
results panel.

Usage

example_shiny_app()

Examples

if (interactive()) {
example_shiny_app()

}

4 make_ft

example_strategy_config

Load example strategy configuration

Description

Loads an example strategy configuration file for use in examples.

Usage

example_strategy_config()

Value

An object of class list that contains the example configuration. The list object is the result of
loading the package’s example yaml configuration file application/strategy_config.yaml.

Examples

config <- example_strategy_config()
names(config$strategies)
show(config$strategies$strategy_1)

make_ft Make Basic Flextable

Description

Make a flextable with preferred formatting

Usage

make_ft(x, title = NULL, col_names = NULL, hlines = "all")

Arguments

x The data.frame to use for flextable

title The string to use as the table title

col_names A character vector of preferred column names for flextable. Length of character
vector must be equal to the number of columns. Defaults to NULL, in which
case the column names of x are used in the flextable.

hlines The row numbers to draw horizontal lines beneath. Defaults to "all", can be
"all", "none", or a numeric vector.

PortOpt 5

Value

A flextable object with the argued formatting

PortOpt Portfolio optimization class

Description

The PortOpt object is used to set up and solve a portfolio optimization problem.

Details

A PortOpt object is configured in the same way as a Simulation object, by supplying configu-
ration in a yaml file or list to the object constructor. Methods are available for adding constraints
and retrieving information about the optimization setup and results. See the package vignette for
information on configuration file setup.

Methods

Public methods:
• PortOpt$new()

• PortOpt$setVerbose()

• PortOpt$addConstraints()

• PortOpt$getConstraintMatrix()

• PortOpt$getConstraintMeta()

• PortOpt$solve()

• PortOpt$getResultData()

• PortOpt$getLoosenedConstraints()

• PortOpt$getMaxPosition()

• PortOpt$getMaxOrder()

• PortOpt$summaryDf()

• PortOpt$print()

• PortOpt$clone()

Method new(): Create a new PortOpt object.

Usage:
PortOpt$new(config, input_data)

Arguments:

config An object of class list or character. If the value passed is a character vector, it
should be of length 1 and specify the path to a yaml configuration file that contains the
object’s configuration info. If the value passed is of class list(), the list should contain the
object’s configuration info in list form (e.g, the return value of calling yaml.load_file on
the configuration file).

6 PortOpt

input_data A data.frame that contains all necessary input for the optimization.
If the top-level configuration item price_var is not set, prices will be expected in the
ref_price column of input_data.

Returns: A new PortOpt object.

Examples:
library(dplyr)
data(sample_secref)
data(sample_inputs)
data(sample_pricing)

Construct optimization input for one day from sample data. The columns
of the input data must match the input configuration.
optim_input <-
inner_join(sample_inputs, sample_pricing,

by = c("id", "date")) %>%
left_join(sample_secref, by = "id") %>%
filter(date %in% as.Date("2020-06-01")) %>%
mutate(ref_price = price_unadj,

shares_strategy_1 = 0)

opt <-
PortOpt$new(config = example_strategy_config(),

input_data = optim_input)

The problem is not solved until the \code{solve} method is called
explicitly.
opt$solve()

Method setVerbose(): Set the verbose flag to control the amount of informational output.

Usage:
PortOpt$setVerbose(verbose)

Arguments:
verbose Logical flag indicating whether to be verbose or not.

Returns: No return value, called for side effects.

Method addConstraints(): Add optimization constraints.

Usage:
PortOpt$addConstraints(constraint_matrix, dir, rhs, name)

Arguments:
constraint_matrix Matrix with one row per constraint and (S+1)×N columns, where S is

number of strategies and N is the number of stocks.
The variables in the optimization are

x1,1, x2,1, . . . , xN,1,

x1,2, x2,2, . . . , xN,2,

PortOpt 7

...

x1,S , x2,S , . . . , xN,S ,

y1, . . . , yN

The first N × S variables are the individual strategy trades. Variable xi,s represents the
signed trade for stock i in strategy s. The following N auxillary variables y1, . . . , yN repre-
sent the absolute value of the net trade in each stock. So for a stock i, we have:

yi =
∑
s

|xi,s|

dir Vector of class character of length nrow(constraint_matrix) that specifies the direction
of the constraints. All elements must be one of ">=", "==", or "<=".

rhs Vector of class numeric of length nrow(constraint_matrix) that specifies the bounds of
the constraints.

name Character vector of length 1 that specifies a name for the set of constraints that are being
created.

Returns: No return value, called for side effects.

Method getConstraintMatrix(): Constraint matrix access.

Usage:
PortOpt$getConstraintMatrix()

Returns: The optimization’s constraint matrix.

Method getConstraintMeta(): Provide high-level constraint information.

Usage:
PortOpt$getConstraintMeta()

Returns: A data frame that contains constraint metadata, such as current constraint value and
whether a constraint is currently within bounds, for all single-row constraints. Explicitly exclude
net trade constraints and constraints that involve net trade variables.

Method solve(): Solve the optimization. After running solve(), results can be retrieved using
getResultData().

Usage:
PortOpt$solve()

Returns: No return value, called for side effects.

Method getResultData(): Get optimization result.

Usage:
PortOpt$getResultData()

Returns: A data frame that contains the number of shares and the net market value of the trades
at the strategy and joint (net) level for each stock in the optimization’s input.

Method getLoosenedConstraints(): Provide information about any constraints that were
loosened in order to solve the optimization.

8 PortOpt

Usage:
PortOpt$getLoosenedConstraints()

Returns: Object of class list where keys are the names of the loosened constraints and values
are how much they were loosened toward current values. Values are expressed as (current
constraint value - loosened constraint value) / (current constraint value - violated constraint
value). A value of 0 means a constraint was loosened 100% and is not binding.

Method getMaxPosition(): Provide information about the maximum position size allowed for
long and short positions.

Usage:
PortOpt$getMaxPosition()

Returns: An object of class data.frame that contains the limits on size for long and short
positions for each strategy and security. The columns in the data frame are:
id Security identifier.
strategy Strategy name.
max_pos_lmv Maximum net market value for a long position.
max_pos_smv Maximum net market value for a short position.

Method getMaxOrder(): Provide information about the maximum order size allowed for each
security and strategy.

Usage:
PortOpt$getMaxOrder()

Returns: An object of class data.frame that contains the limit on order size for each strategy
and security. The columns in the data frame are:
id Security identifier.
strategy Strategy name.
max_order_gmv Maximum gross market value allowed for an order.

Method summaryDf(): Provide aggregate level optimization information if the problem has been
solved.

Usage:
PortOpt$summaryDf()

Returns: A data frame with one row per strategy, including the joint (net) level, and columns
for starting and ending market values and factor expoure values.

Method print(): Print summary information.

Usage:
PortOpt$print()

Returns: No return value, called for side effects.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PortOpt$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

sample_inputs 9

Examples

--
Method `PortOpt$new`
--

library(dplyr)
data(sample_secref)
data(sample_inputs)
data(sample_pricing)

Construct optimization input for one day from sample data. The columns
of the input data must match the input configuration.
optim_input <-

inner_join(sample_inputs, sample_pricing,
by = c("id", "date")) %>%

left_join(sample_secref, by = "id") %>%
filter(date %in% as.Date("2020-06-01")) %>%
mutate(ref_price = price_unadj,

shares_strategy_1 = 0)

opt <-
PortOpt$new(config = example_strategy_config(),

input_data = optim_input)

The problem is not solved until the \code{solve} method is called
explicitly.
opt$solve()

sample_inputs Sample security inputs for examples and testing

Description

A dataset containing sample security input data for 492 securities and 65 weekdays, from 2020-06-
01 to 2020-08-31. Data items include average trading dollar volume, market cap, and normalized
size and value factors. The pricing data used to construct the dataset was downloaded using the
Tiingo Stock API and is used with permission. Fundamental data items were downloaded from
EDGAR.

Usage

data(sample_inputs)

Format

A data frame with 31980 rows and 7 variables:

date Input date. It is assumed that the input data for day X is known at the beginning of day X
(e.g., the data is as-of the previous day’s close).

https://api.tiingo.com/

10 sample_pricing

id Security identifier.

rc_vol Average dollar trading volume for the security over the past 20 trading days.

market_cap Market capitalization, in dollars. The shares outstanding value used to calculate mar-
ket cap is the latest value available at the beginning of the month.

book_to_price Ratio of total equity to market cap. The stockholders’ equity value used to calculate
book to price is the latest value available at the beginning of the month.

size Market cap factor normalized to be N(0,1) for each day.

value Book to price factor normalized to be N(0,1) for each day.

Details

Data for most members of the S&P 500 are present. Some securities have been omitted due to data
processing complexities. For example, securities for companies with multiple share classes have
been omitted in the current version.

Values for shares outstanding and stockholders’ equity downloaded from EDGAR may be inaccu-
rate due to XBRL parsing issues.

Full code for reconstructing the dataset can be found in the pystrand repository.

sample_pricing Sample security pricing data for examples and testing

Description

A dataset containing sample security pricing data for 492 securities and 65 weekdays, from 2020-
06-01 to 2020-08-31. This data was downloaded using the Tiingo Stock API and is redistributed
with permission.

Usage

data(sample_pricing)

Format

A data frame with 31980 rows and 8 variables:

date Pricing date.

id Security identifier.

price_unadj The unadjusted price of the security.

prior_close_unadj The unadjusted prior closing price of the security.

dividend_unadj The dividend for the security on an unadjusted basis, if any.

distribution_unadj The distribution (e.g., spin-off) for the security on an unadjusted basis (note
that there is no spin-off information in this dataset, so all values are zero).

volume Trading volume for the security, in shares.

adjustment_ratio The adjustment ratio for the security. For example, AAPL has an adjustment
ratio of 0.25 to account for its 4:1 split on 2020-08-31.

https://github.com/strand-tech/pystrand
https://api.tiingo.com/

sample_secref 11

Details

Full code for reconstructing the dataset can be found in the pystrand repository.

sample_secref Sample security reference data for examples and testing

Description

A dataset containing sample reference data for the securities of 492 large companies. All securities
in the dataset were in the S&P 500 for most or all of the period June-August 2020.

Usage

data(sample_secref)

Format

A data frame with 492 rows and 4 variables:

id Unique security identifier (the security’s ticker).

name Company name.

symbol Human-readable symbol for display and reporting purposes. In the case of this dataset it is
the same as the id variable.

sector GICS sector for the company according to the Wikipedia page List of S&P 500 companies.

show_best_worst Show Best/Worst Performers

Description

Build a flextable object showing a Simulation’s best and worst performers

Usage

show_best_worst(sim)

Arguments

sim A Simulation object to show the best and worst performers for

https://github.com/strand-tech/pystrand
https://en.wikipedia.org/wiki/List_of_S%26P_500_companies

12 show_monthly_returns

show_config Show Strategy Configuration

Description

Build a flextable object showing a Simulation’s configuration

Usage

show_config(sim)

Arguments

sim A Simulation object to show the configuration for

show_constraints Show Strategy Constraints

Description

Build a flextable object showing a Simulation’s risk constraints

Usage

show_constraints(sim)

Arguments

sim A Simulation object to show the configuration for

show_monthly_returns Show monthly returns

Description

Build a flextable object that shows a simulation’s return by month by formatting the output of
‘Simulation$overallReturnsByMonthDf‘.

Usage

show_monthly_returns(sim)

Arguments

sim A Simulation object with results to display

show_stats 13

show_stats Show Overall Stats Table

Description

Build a flextable object showing a Simulation’s overall statistics

Usage

show_stats(sim)

Arguments

sim A Simulation object to show the statistics for

Simulation Simulation class

Description

Class for running a simulation and getting results.

Details

The Simulation class is used to set up and run a daily simulation over a particular period. Portfolio
construction parameters and other simulator settings can be configured in a yaml file that is passed
to the object’s constructor. See vignette("strand") for information on configuration file setup.

Methods

Public methods:
• Simulation$new()

• Simulation$setVerbose()

• Simulation$setShinyCallback()

• Simulation$getSecurityReference()

• Simulation$run()

• Simulation$getSimDates()

• Simulation$getSimSummary()

• Simulation$getSimDetail()

• Simulation$getPositionSummary()

• Simulation$getInputStats()

• Simulation$getLooseningInfo()

• Simulation$getOptimizationSummary()

• Simulation$getExposures()

14 Simulation

• Simulation$getDelistings()

• Simulation$getSingleStrategySummaryDf()

• Simulation$plotPerformance()

• Simulation$plotContribution()

• Simulation$plotMarketValue()

• Simulation$plotCategoryExposure()

• Simulation$plotFactorExposure()

• Simulation$plotNumPositions()

• Simulation$plotTurnover()

• Simulation$plotUniverseSize()

• Simulation$plotNonInvestablePct()

• Simulation$overallStatsDf()

• Simulation$overallReturnsByMonthDf()

• Simulation$print()

• Simulation$writeFeather()

• Simulation$readFeather()

• Simulation$getConfig()

• Simulation$writeReport()

• Simulation$clone()

Method new(): Create a new Simulation object.
Usage:
Simulation$new(
config = NULL,
raw_input_data = NULL,
input_dates = NULL,
raw_pricing_data = NULL,
security_reference_data = NULL,
delisting_data = NULL

)

Arguments:
config An object of class list or character, or NULL. If the value passed is a character vector,

it should be of length 1 and specify the path to a yaml configuration file that contains the
object’s configuration info. If the value passed is of class list(), the list should contain the
object’s configuration info in list form (e.g, the return value of calling yaml.load_file
on the configuration file). If the value passed is NULL, then there will be no configuration
information associated with the simulation and it will not possible to call the run method.
Setting config = NULL is useful when creating simulation objects into which results will be
loaded with readFeather.

raw_input_data A data frame that contains all of the input data (for all periods) for the simu-
lation. The data frame must have a date column. Data supplied using this parameter will be
used if the configuration option simulator/input_data/type is set to object. Defaults
to NULL.

input_dates Vector of class Date that specifies when input data should be updated. If data is
being supplied using the raw_input_data parameter, then input_dates defaults to set of
dates present in this data.

Simulation 15

raw_pricing_data A data frame that contains all of the input data (for all periods) for the sim-
ulation. The data frame must have a date column. Data supplied using this parameter will
only be used if the configuration option simulator/pricing_data/type is set to object.
Defaults to NULL.

security_reference_data A data frame that contains reference data on the securities in the
simulation, including any categories that are used in portfolio construction constraints. Note
that the simulator will throw an error if there are input data records for which there is no
entry in the security reference. Data supplied using this parameter will only be used if the
configuration option simulator/secref_data/type is set to object. Defaults to NULL.

delisting_data A data frame that contains delisting dates and associated returns. It must
contain three columns: id (character), delisting_date (Date), and delisting_return (numeric).
The date in the delisting_date column means the day on which a stock will be removed
from the simulation portfolio. It is typically the day after the last day of trading. The
delisting_return column reflects what, if any, P&L should be recorded on the delisting date.
A delisting_return of -1 means that the shares were deemed worthless. The delisting return
is multiplied by the starting net market value of the position to determine P&L for the
delisted position on the delisting date. Note that the portfolio optimization does not include
stocks that are being removed due to delisting. Data supplied using this parameter will only
be used if the configuration option simulator/delisting_data/type is set to object.
Defaults to NULL.

Returns: A new Simulation object.

Method setVerbose(): Set the verbose flag to control info output.

Usage:
Simulation$setVerbose(verbose)

Arguments:

verbose Logical flag indicating whether to be verbose or not.

Returns: No return value, called for side effects.

Method setShinyCallback(): Set the callback function for updating progress when running a
simulation in shiny.

Usage:
Simulation$setShinyCallback(callback)

Arguments:

callback A function suitable for updating a shiny Progress object. It must have two parame-
ters: value, indicating the progress amount, and detail, and detail, a text string for display
on the progress bar.

Returns: No return value, called for side effects.

Method getSecurityReference(): Get security reference information.

Usage:
Simulation$getSecurityReference()

Returns: An object of class data.frame that contains the security reference data for the simu-
lation.

16 Simulation

Method run(): Run the simulation.

Usage:
Simulation$run()

Returns: No return value, called for side effects.

Method getSimDates(): Get a list of all date for the simulation.

Usage:
Simulation$getSimDates()

Returns: A vector of class Date over which the simulation currently iterates: all weekdays
between the ’from’ and ’to’ dates in the simulation’s config.

Method getSimSummary(): Get summary information.

Usage:
Simulation$getSimSummary(strategy_name = NULL)

Arguments:
strategy_name Character vector of length 1 that specifies the strategy for which to get detail

data. If NULL data for all strategies is returned. Defaults to NULL.

Returns: An object of class data.frame that contains summary data for the simulation, by
period, at the joint and strategy level. The data frame contains the following columns:
strategy Strategy name, or ’joint’ for the aggregate strategy.
sim_date Date of the summary data.
market_fill_nmv Total net market value of fills that do not net down across strategies.
transfer_fill_nmv Total net market value of fills that represent "internal transfers", i.e., fills in

one strategy that net down with fills in another. Note that at the joint level this column by
definition is 0.

market_order_gmv Total gross market value of orders that do not net down across strategies.
market_fill_gmv Total gross market value of fills that do not net down across strategies.
transfer_fill_gmv Total gross market value of fills that represent "internal transfers", i.e., fills

in one strategy that net down with fills in another.
start_nmv Total net market value of all positions at the start of the period.
start_lmv Total net market value of all long positions at the start of the period.
start_smv Total net market value of all short positions at the start of the period.
end_nmv Total net market value of all positions at the end of the period.
end_gmv Total gross market value of all positions at the end of the period.
end_lmv Total net market value of all long positions at the end of the period.
end_smv Total net market value of all short positions at the end of the period.
end_num Total number of positions at the end of the period.
end_num_long Total number of long positions at the end of the period.
end_num_short Total number of short positions at the end of the period.
position_pnl The total difference between the end and start market value of positions.
trading_pnl The total difference between the market value of trades at the benchmark price

and at the end price. Note: currently assuming benchmark price is the closing price, so
trading P&L is zero.

Simulation 17

gross_pnl Total P&L gross of costs, calculated as position_pnl + trading_pnl.
trade_costs Total trade costs (slippage).
financing_costs Total financing/borrow costs.
net_pnl Total P&L net of costs, calculated as gross_pnl - trade_costs - financing_costs.
fill_rate_pct Total fill rate across all market orders, calculated as 100 * market_fill_gmv / mar-

ket_order_gmv.
num_investable Number of investable securities (size of universe).

Method getSimDetail(): Get detail information.

Usage:
Simulation$getSimDetail(
sim_date = NULL,
strategy_name = NULL,
security_id = NULL,
columns = NULL

)

Arguments:
sim_date Vector of length 1 of class Date or character that specifies the period for which to get

detail information. If NULL then data from all periods is returned. Defaults to NULL.
strategy_name Character vector of length 1 that specifies the strategy for which to get detail

data. If NULL data for all strategies is returned. Defaults to NULL.
security_id Character vector of length 1 that specifies the security for which to get detail

data. If NULL data for all securities is returned. Defaults to NULL.
columns Vector of class character specifying the columns to return. This parameter can be

useful when dealing with very large detail datasets.

Returns: An object of class data.frame that contains security-level detail data for the simula-
tion for the desired strategies, securities, dates, and columns. Available columns include:
id Security identifier.
strategy Strategy name, or ’joint’ for the aggregate strategy.
sim_date Date to which the data pertains.
shares Shares at the start of the period.
int_shares Shares at the start of the period that net down with positions in other strategies.
ext_shares Shares at the start of the period that do not net down with positions in other strate-

gies.
order_shares Order, in shares.
market_order_shares Order that does not net down with orders in other strategies, in shares.
transfer_order_shares Order that nets down with orders in other strategies, in shares.
fill_shares Fill, in shares.
market_fill_shares Fill that does not net down with fills in other strategies, in shares.
transfer_fill_shares Fill that nets down with fills in other strategies, in shares.
end_shares Shares at the end of the period.
end_int_shares Shares at the end of the period that net down with positions in other strategies.
end_ext_shares Shares at the end of the period that do not net down with positions in other

strategies.

18 Simulation

start_price Price for the security at the beginning of the period.
end_price Price for the security at the end of the period.
dividend Dividend for the security, if any, for the period.
distribution Distribution (e.g., spin-off) for the security, if any, for the period.
investable Logical indicating whether the security is part of the investable universe. The value

of the flag is set to TRUE if the security has not been delisted and satisfies the universe
criterion provided (if any) in the simulator/universe configuration option.

delisting Logical indicating whether a position in the security was removed due to delisting.
If delisting is set to TRUE, the gross_pnl and net_pnl columns will contain the P&L due
to delisting, if any. P&L due to delisting is calculated as the delisting return times the
start_nmv of the position.

position_pnl Position P&L, calculated as shares * (end_price + dividend + distribution - start_price)
trading_pnl The difference between the market value of trades at the benchmark price and at

the end price. Note: currently assuming benchmark price is the closing price, so trading
P&L is zero.

trade_costs Trade costs, calculated as a fixed percentage (set in the simulation configuration)
of the notional of the market trade (valued at the close).

financing_costs Financing cost for the position, calculated as a fixed percentage (set in the
simulation configuration) of the notional of the starting value of the portfolio’s external po-
sitions. External positions are positions held on the street and are recorded in the ext_shares
column.

gross_pnl Gross P&L, calculated as position_pnl + trading_pnl.
net_pnl Net P&L, calculated as gross_pnl - trade_costs - financing_costs.
market_order_nmv Net market value of the order that does not net down with orders in other

strategies.
market_fill_gmv Gross market value of the order that does not net down with orders in other

strategies.
market_fill_nmv Net market value of the fill that does not net down with orders in other strate-

gies.
market_fill_gmv Gross market value of the fill that does not net down with orders in other

strategies.
transfer_fill_nmv Net market value of the fill that nets down with fills in other strategies.
transfer_fill_gmv Gross market value of the fill that nets down with fills in other strategies.
start_nmv Net market value of the position at the start of the period.
end_nmv Net market value of the position at the end of the period.
end_gmv Gross market value of the position at the end of the period.

Method getPositionSummary(): Get summary information by security. This method can be
used, for example, to calculate the biggest winners and losers over the course of the simulation.

Usage:
Simulation$getPositionSummary(strategy_name = NULL)

Arguments:

strategy_name Character vector of length 1 that specifies the strategy for which to get detail
data. If NULL data for all strategies is returned. Defaults to NULL.

Simulation 19

Returns: An object of class data.frame that contains summary information aggregated by
security. The data frame contains the following columns:
id Security identifier.
strategy Strategy name, or ’joint’ for the aggregate strategy.
gross_pnl Gross P&L for the position over the entire simulation.
gross_pnl Net P&L for the position over the entire simulation.
average_market_value Average net market value of the position over days in the simulation

where the position was not flat.
total_trading Total gross market value of trades for the security.
trade_costs Total cost of trades for the security over the entire simulation.
trade_costs Total cost of financing for the position over the entire simulation.
days_in_portfolio Total number of days there was a position in the security in the portfolio

over the entire simulation.

Method getInputStats(): Get input statistics.

Usage:
Simulation$getInputStats()

Returns: An object of class data.frame that contains statistics on select columns of input data.
Statistics are tracked for the columns listed in the configuration variable simulator/input_data/track_metadata.
The data frame contains the following columns:
period Period to which statistics pertain.
input_rows Total number of rows of input data, including rows carried forward from the pre-

vious period.
cf_rows Total number of rows carried forward from the previous period.
num_na_column Number of NA values in column. This measure appears for each element of

track_metadata.
cor_column Period-over-period correlation for column. This measure appears for each element

of track_metadata.

Method getLooseningInfo(): Get loosening information.

Usage:
Simulation$getLooseningInfo()

Returns: An object of class data.frame that contains, for each period, which constraints were
loosened in order to solve the portfolio optimization problem, if any. The data frame contains
the following columns:
date Date for which the constraint was loosened.
constraint_name Name of the constraint that was loosened.
pct_loosened Percentage by which the constraint was loosened, where 100 means loosened

fully (i.e., the constraint is effectively removed).

Method getOptimizationSummary(): Get optimization summary information.

Usage:
Simulation$getOptimizationSummary()

20 Simulation

Returns: An object of class data.frame that contains optimization summary information, such
as starting and ending factor constraint values, at the strategy and joint level. The data frame
contains the following columns:
strategy Strategy name, or ’joint’ for the aggregate strategy.
sim_date Date to which the data pertains.
order_gmv Total gross market value of orders generated by the optimization.
start_smv Total net market value of short positions at the start of the optimization.
start_lmv Total net market value of long positions at the start of the optimization.
end_smv Total net market value of short positions at the end of the optimization.
end_lmv Total net market value of long positions at the end of the optimization.
start_factor Total net exposure to factor at the start of the optimization, for each factor con-

straint.
end_factor Total net exposure to factor at the start of the optimization, for each factor con-

straint.

Method getExposures(): Get end-of-period exposure information.

Usage:
Simulation$getExposures(type = "net")

Arguments:

type Vector of length 1 that may be one of "net", "long", "short", and "gross".

Returns: An object of class data.frame that contains end-of-period exposure information
for the simulation portfolio. The units of the exposures are portfolio weight relative to strat-
egy_captial (i.e., net market value of exposure divided by strategy capital). The data frame
contains the following columns:
strategy Strategy name, or ’joint’ for the aggregate strategy.
sim_date Date of the exposure data.
category_level Exposure to level within category, for all levels of all category constraints, at

the end of the period.
factor Exposure to factor, for all factor constraints, at the end of the period.

Method getDelistings(): Get information on positions removed due to delisting.

Usage:
Simulation$getDelistings()

Returns: An object of class data.frame that contains a row for each position that is removed
from the simulation portfolio due to a delisting. Each row contains the size of the position on
the day on which it was removed from the portfolio.

Method getSingleStrategySummaryDf(): Get summary information for a single strategy suit-
able for plotting input.

Usage:
Simulation$getSingleStrategySummaryDf(
strategy_name = "joint",
include_zero_row = TRUE

)

Simulation 21

Arguments:

strategy_name Strategy for which to return summary data.
include_zero_row Logical flag indicatiing whether to prepend a row to the summary data with

starting values at zero. Defaults to TRUE.

Returns: A data frame that contains summary information for the desired strategy, as well as
columns for cumulative net and gross total return, calculated as pnl divided by ending gross
market value.

Method plotPerformance(): Draw a plot of cumulative gross and net return by date.

Usage:
Simulation$plotPerformance(strategy_name = "joint")

Arguments:

strategy_name Character vector of length 1 specifying the strategy for the plot. Defaults to
"joint".

Method plotContribution(): Draw a plot of contribution to net return on GMV for levels of
a specified category.

Usage:
Simulation$plotContribution(category_var, strategy_name = "joint")

Arguments:

category_var Plot performance contribution for the levels of category_var. category_var
must be present in the simulation’s security reference, and detail data must be present in the
object’s result data.

strategy_name Character vector of length 1 specifying the strategy for the plot. Defaults to
"joint".

Method plotMarketValue(): Draw a plot of total gross, long, short, and net market value by
date.

Usage:
Simulation$plotMarketValue(strategy_name = "joint")

Arguments:

strategy_name Character vector of length 1 specifying the strategy for the plot. Defaults to
"joint".

Method plotCategoryExposure(): Draw a plot of exposure to all levels in a category by date.

Usage:
Simulation$plotCategoryExposure(in_var, strategy_name = "joint")

Arguments:

in_var Category for which exposures are plotted. In order to plot exposures for category
in_var, we must have run the simulation with in_var in the config setting simulator/calculate_exposures/category_vars.

strategy_name Character vector of length 1 specifying the strategy for the plot. Defaults to
"joint".

Method plotFactorExposure(): Draw a plot of exposure to factors by date.

22 Simulation

Usage:
Simulation$plotFactorExposure(in_var, strategy_name = "joint")

Arguments:

in_var Factors for which exposures are plotted.
strategy_name Character vector of length 1 specifying the strategy for the plot. Defaults to

"joint".

Method plotNumPositions(): Draw a plot of number of long and short positions by date.

Usage:
Simulation$plotNumPositions(strategy_name = "joint")

Arguments:

strategy_name Character vector of length 1 specifying the strategy for the plot. Defaults to
"joint".

Method plotTurnover(): Draw a plot of number of long and short positions by date.

Usage:
Simulation$plotTurnover(strategy_name = "joint")

Arguments:

strategy_name Character vector of length 1 specifying the strategy for the plot. Defaults to
"joint".

Method plotUniverseSize(): Draw a plot of the universe size, or number of investable stocks,
over time.

Usage:
Simulation$plotUniverseSize(strategy_name = "joint")

Arguments:

strategy_name Character vector of length 1 specifying the strategy for the plot. Defaults to
joint.

Method plotNonInvestablePct(): Draw a plot of the percentage of portfolio GMV held in
non-investable stocks (e.g., stocks that do not satisfy universe criteria) for a given strategy. Note
that this plot requires detail data.

Usage:
Simulation$plotNonInvestablePct(strategy_name = "joint")

Arguments:

strategy_name Character vector of length 1 specifying the strategy for the plot. Defaults to
"joint".

Method overallStatsDf(): Calculate overall simulation summary statistics, such as total P&L,
Sharpe, average market values and counts, etc.

Usage:
Simulation$overallStatsDf()

Returns: A data frame that contains summary statistics, suitable for reporting.

Simulation 23

Method overallReturnsByMonthDf(): Calculate return for each month and summary statistics
for each year, such as total return and annualized Sharpe. Return in data frame format suitable for
reporting.

Usage:
Simulation$overallReturnsByMonthDf()

Returns: The data frame contains one row for each calendar year in the simulation, and up to
seventeen columns: one column for year, one column for each calendar month, and columns
for the year’s total return, annualized return, annualized volatility, and annualized Sharpe. Total
return is the sum of daily net returns. Annualized return is the mean net return times 252. Annu-
alized volatility is the standard deviation of net return times the square root of 252. Annualized
Sharpe is the ratio of annualized return to annualized volatility. All returns are in percent.

Method print(): Print overall simulation statistics.

Usage:
Simulation$print()

Method writeFeather(): Write the data in the object to feather files.

Usage:
Simulation$writeFeather(out_loc)

Arguments:
out_loc Directory in which output files should be created.

Returns: No return value, called for side effects.

Method readFeather(): Load files created with writeFeather into the object. Note that
because detail data is not re-split by period, it will not be possible to use the sim_date parameter
when calling getSimDetail on the populated object.

Usage:
Simulation$readFeather(in_loc)

Arguments:
in_loc Directory that contains files to be loaded.

Returns: No return value, called for side effects.

Method getConfig(): Get the object’s configuration information.

Usage:
Simulation$getConfig()

Returns: Object of class list that contains the simulation’s configuration information.

Method writeReport(): Write an html document of simulation results.

Usage:
Simulation$writeReport(
out_dir,
out_file,
out_fmt = "html",
contrib_vars = NULL

)

24 Simulation

Arguments:

out_dir Directory in which output files should be created
out_file File name for output
out_fmt Format in which output files should be created. The default is html and that is currently

the only option.
contrib_vars Security reference variables for which to plot return contribution.
res The object of class ’Simulation’ which we want to write the report about.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Simulation$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Index

∗ datasets
sample_inputs, 9
sample_pricing, 10
sample_secref, 11

example_shiny_app, 3
example_strategy_config, 4

make_ft, 4

PortOpt, 5

sample_inputs, 9
sample_pricing, 10
sample_secref, 11
show_best_worst, 11
show_config, 12
show_constraints, 12
show_monthly_returns, 12
show_stats, 13
Simulation, 2, 13
strand (strand-package), 2
strand-package, 2

25

	strand-package
	example_shiny_app
	example_strategy_config
	make_ft
	PortOpt
	sample_inputs
	sample_pricing
	sample_secref
	show_best_worst
	show_config
	show_constraints
	show_monthly_returns
	show_stats
	Simulation
	Index

