survML: Tools for Flexible Survival Analysis Using Machine Learning

Statistical tools for analyzing time-to-event data using machine learning. Implements survival stacking for conditional survival estimation, standardized survival function estimation for current status data, and methods for algorithm-agnostic variable importance. See Wolock CJ, Gilbert PB, Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.

Version: 1.2.0
Depends: SuperLearner (≥ 2.0.28)
Imports: Iso (≥ 0.0.18.1), haldensify (≥ 0.2.3), fdrtool (≥ 1.2.17), ChernoffDist (≥ 0.1.0), dplyr (≥ 1.0.10), gtools (≥ 3.9.5), mboost (≥ 2.9.0), survival (≥ 3.5.0), stats (≥ 4.3.2), methods (≥ 4.3.2)
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0), ggplot2 (≥ 3.4.0), gam (≥ 1.22.0)
Published: 2024-10-31
DOI: 10.32614/CRAN.package.survML
Author: Charles Wolock ORCID iD [aut, cre, cph] (<https://orcid.org/0000-0003-3527-1102>), Avi Kenny ORCID iD [ctb] (<https://orcid.org/0000-0002-9465-7307>)
Maintainer: Charles Wolock <cwolock at gmail.com>
BugReports: https://github.com/cwolock/survML/issues
License: GPL (≥ 3)
URL: https://github.com/cwolock/survML, https://cwolock.github.io/survML/
NeedsCompilation: no
Materials: README NEWS
CRAN checks: survML results

Documentation:

Reference manual: survML.pdf
Vignettes: Estimating a conditional survival function using off-the-shelf machine learning tools (source, R code)
Estimating a covariate-adjusted survival function using current status data (source, R code)
Assessing variable importance in survival analysis using machine learning (source, R code)

Downloads:

Package source: survML_1.2.0.tar.gz
Windows binaries: r-devel: survML_1.2.0.zip, r-release: survML_1.2.0.zip, r-oldrel: survML_1.2.0.zip
macOS binaries: r-release (arm64): survML_1.2.0.tgz, r-oldrel (arm64): survML_1.2.0.tgz, r-release (x86_64): survML_1.2.0.tgz, r-oldrel (x86_64): survML_1.2.0.tgz
Old sources: survML archive

Reverse dependencies:

Reverse imports: vaccine

Linking:

Please use the canonical form https://CRAN.R-project.org/package=survML to link to this page.