
Overview of the vietnameseConverter package

Juergen Niedballa (niedballa@izw-berlin.de)

2021-10-15

Contents
Introduction 1

Background . 1
Installation . 2

Example applications 2
Vectors . 3
Data frames . 3
Spatial data . 8

Introduction
This package helps you read and use data from Vietnamese sources in R. Such data often use Vietnamese
legacy character encodings such as TCVN (Vietnam Standards / Tieu chuan Viet Nam) and are still in use
today. Such data are not read correctly in R (which doesn’t seem to support these Vietnamese encodings).
To correct this problem and make such data available in R, this package converts data in legacy Vietnamese
encodings to the correct Unicode characters. The main function is decodeVN.

The package currently supports conversion between the following encodings:

• Unicode (UTF-8)
• TCVN3
• VPS
• VISCII

It converts between any of these encodings, but most commonly one would want to convert legacy encodings
to their correct Unicode characters. The

package supports character vectors and data frames (the character columns thereof).

Background
For those interested here is some background on character sets and encodings.

A character set is a collection of characters used in languages.

A coded character set assigns a unique number to each character in a character set. The unique values in a
coded character sets are known as code points (e.g. ”U+0041 ” corresponcs to capital letter A in Unicode).

Unicode (also known as Universal Coded Character Set) is a modern coded character set that contains over
100,000 characters from most writing systems of the world.

Character encodings are the method by which a coded character set is converted to binary. UTF-8 is a
commonly used encoding for Unicode characters (UTF stands for Unicode Transformation Format).

1

mailto:niedballa@izw-berlin.de

Historically, the Vietnamese language could not be represented well using 128 characters in the ASCII
standard. Hence, several character encodings were developed for the Vietnamese language with the aim
of representing Vietnamese characters while fitting into 1 byte (=8-bit, allowing up to 255 characters).
To achieve that, some some code points were reassigned and differ from today’s standards like Unicode.
Thus, when reading data that use those Vietnamese encodings on systems that assume e.g. UTF-8 encoding
(Unicode), we get gibberish text (also known as mojibake).

Let’s take a Vietnamese string that is supposed to be:

”Quảng Trị, An Đôn, Thừa Thiên Huế”

If it is encoded using a legacy Vietnamese encoding, it might displayed as something like:

”Qu¶ng TrÞ, An §«n, Thõa Thiªn HuÕ”

”Quäng TrÎ, An Đôn, ThØa Thiên Hu‰”

”Quäng Tr¸, An Đôn, Th×a Thiên Huª”

when it is read in R or other software (depending on the specific encoding of the data).

These days, almost all Vietnamese computer systems use Unicode and there is no need to use the legacy
encodings anymore. Nevertheless, historic data may still be encoded in these legacy encodings and require
conversion.

This package fixes this problem by converting the garbled strings back to their original (with or without the
diacritcs). When saving the output in R, it will use standard encodings and data will read correctly in the
future.

You can check the output from this package using e.g. this website http://www.enderminh.com/minh/vnc
onversions.aspx.

If you want to know more about the technicalities of encodings and character sets, see https://www.joelonso
ftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-
about-unicode-and-character-sets-no-excuses/.

Installation
The package can be installed from CRAN:
install.packages("vietnameseConverter")

and loaded into R via:
library(vietnameseConverter)

Example applications
Disclaimer: Printing Unicode characters from R function output in package vignettes is difficult. Often R
will print the Unicode escape characters (the code point) instead of the actual characters, e.g. <U+1EBF>
instead of “ế”.

This is a limitation in vignettes. I’ll try to circumvent it in this vignette as much as possible, e.g. by using
DT::data.table() and by copy/pasting the correct console output below the output with Unicode characters.
Even though it doesn’t print nicely in this vignette, the converted data are correct (as you can see if you use
data.table(), View(), or print vectors in the R console.

Run the code from this vignette in your R console to see the actual output, or try the examples in ?decodeVNN

2

http://www.enderminh.com/minh/vnconversions.aspx
http://www.enderminh.com/minh/vnconversions.aspx
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

Vectors
Let’s consider a simple vector with garbled characters:
string_garbled <- c("Qu¶ng TrÞ", "An §«n", "Thõa Thiªn HuÕ")
string_garbled

[1] "Qu¶ng TrÞ" "An §«n" "Thõa Thiªn HuÕ"

It can be fixed using the decodeVN function:
tmp <- decodeVN(string_garbled)
tmp

[1] "Qu<U+1EA3>ng Tr<U+1ECB>" "An Ðôn" "Th<U+1EEB>a Thiên Hu<U+1EBF>"

In your R console, the Unicode characters will be printed correctly as:

[1] "Quảng Trị" "An Ðôn" "Thừa Thiên Huế"

By default, the output contains character with diacritics (accents). We can also get output without the
diacritics (plain ASCII letters) by setting argument diacritics = FALSE:
decodeVN(string_garbled, diacritics = FALSE)

[1] "Quang Tri" "An Don" "Thua Thien Hue"

By default, decodeVN() attempts to convert TCVN3 to Unicode characte (as shown in this example)r. If
your data are in different encodings, set argument from.

For example, a string in VPS encoding is converted via:
string_garbled_vps <- c("Quäng TrÎ", "An ñôn", "ThØa Thiên Hu‰")
decodeVN(string_garbled_vps, from = "VPS")

[1] "Qu<U+1EA3>ng Tr<U+1ECB>" "An Ðôn" "Th<U+1EEB>a Thiên Hu<U+1EBF>"

Which in your R cosole will be

[1] "Quảng Trị" "An Ðôn" "Thừa Thiên Huế"

There is also an argument to, which by default is set to to = "Unicode". If you want output that simulates
data encoded in one of the supported Vietnamese encodings, set argument to accordingly, e.g.
string_tcvn_to_vps <- decodeVN(x = string_garbled, from = "TCVN3", to = "VPS")
string_tcvn_to_vps

[1] "Quäng TrÎ" "An ñôn" "ThØa Thiên Hu‰"

This string is now garbled the VPS-way. It can still be converted to Unicode:
decodeVN(string_tcvn_to_vps, from = "VPS")

[1] "Qu<U+1EA3>ng Tr<U+1ECB>" "An Ðôn" "Th<U+1EEB>a Thiên Hu<U+1EBF>"

which is:

[1] "Quảng Trị" "An Ðôn" "Thừa Thiên Huế"

Data frames
We can also convert entire data frames at once. It will only convert character columns and leave the other
columns untouched. If you have factor columns, convert them to character first.

3

The package contains a list containing several data frames which simulate the problems with different en-
codings. These data frames show what the problems with different encodings look like when the data are
loaded in an environment that assumes UTF-8 / native encoding). The data frame is based on the table of
provinces in https://en.wikipedia.org/wiki/Provinces_of_Vietnam.

Loading the list of sample data.
data(vn_samples)

vn_samples is a list of four data frames. See ?vn_samples for details.

The first item $Unicode shows the correct characters.
head(vn_samples$Unicode)

Province_city Administrative_center Area_km2 Density_perkm2 HDI_2012
1 B<U+1EAF>c Giang B<U+1EAF>c Giang 3895.59 463 0.711
2 B<U+1EAF>c K<U+1EA1>n B<U+1EAF>c K<U+1EA1>n 4859.96 65 0.685
3 Cao B<U+1EB1>ng Cao B<U+1EB1>ng 6700.26 79 0.653
4 Hà Giang Hà Giang 7929.48 108 0.586
5 L<U+1EA1>ng Son L<U+1EA1>ng Son 8310.09 94 0.707
6 Phú Th<U+1ECD> Vi<U+1EC7>t Trì 3534.56 414 0.715

Note: when printing a data frame in the R colsole, the Unicode characters are not displayed properly, which
is a limitation of the print method for data frames in R (it’s the same issue as mentioned in the disclaimer
above). The characters are correct though and show correctly when printing the columns as vectors:
head(vn_samples$Unicode$Province_city)

[1] "B<U+1EAF>c Giang" "B<U+1EAF>c K<U+1EA1>n" "Cao B<U+1EB1>ng" "Hà Giang" "L<U+1EA1>ng Son" "Phú Th<U+1ECD>"

Which again is not formatted nicely in the vignette (but would be formatted correctly in your console). The
string is:

[1] "Bắc Giang" "Bắc Kạn" "Cao Bằng" "Hà Giang" "Lạng Sơn" "Phú Thọ"

It also shows correctly when using View (not shown here, it works in interactive sessions):
View(vn_samples$Unicode)

It is also shown correctly when using DT::datatable:
DT::datatable(vn_samples$Unicode)

4

https://en.wikipedia.org/wiki/Provinces_of_Vietnam

Show 10 entries Search:

Showing 1 to 10 of 63 entries Previous 1 2 3 4 5 6 7 Next

Province_city Administrative_center Area_km2 Density_perkm2 HDI_2012

1 Bắc Giang Bắc Giang 3895.59 463 0.711

2 Bắc Kạn Bắc Kạn 4859.96 65 0.685

3 Cao Bằng Cao Bằng 6700.26 79 0.653

4 Hà Giang Hà Giang 7929.48 108 0.586

5 Lạng Sơn Lạng Sơn 8310.09 94 0.707

6 Phú Thọ Việt Trì 3534.56 414 0.715

7 Quảng Ninh Hạ Long 6178.21 214 0.784

8 Thái Nguyên Thái Nguyên 3526.64 365 0.741

9 Tuyên Quang Tuyên Quang 5867.9 134 0.699

10 Lào Cai Lào Cai 6364.03 115 0.67

The other data frames in vn_samples show garbled text from several Vietnamese encodings. Here’s the
example in TCVN3 encoding:
DT::datatable(vn_samples$TCVN3)

Show 10 entries Search:

Showing 1 to 10 of 63 entries Previous 1 2 3 4 5 6 7 Next

Province_city Administrative_center Area_km2 Density_perkm2 HDI_2012

1 B¾c Giang B¾c Giang 3895.59 463 0.711

2 B¾c K¹n B¾c K¹n 4859.96 65 0.685

3 Cao B»ng Cao B»ng 6700.26 79 0.653

4 Hµ Giang Hµ Giang 7929.48 108 0.586

5 L¹ng S¬n L¹ng S¬n 8310.09 94 0.707

6 Phó Thä ViÖt Tr× 3534.56 414 0.715

7 Qu¶ng Ninh H¹ Long 6178.21 214 0.784

8 Th i̧ Nguyªn Th i̧ Nguyªn 3526.64 365 0.741

9 Tuyªn Quang Tuyªn Quang 5867.9 134 0.699

10 Lµo Cai Lµo Cai 6364.03 115 0.67

One can easily convert the entire data frame:

5

take data frames out of list for easier readability
df_unicode <- vn_samples$Unicode
df_tcvn3 <- vn_samples$TCVN3

conversion from TCVN3 to Unicode (default)
df_tcvn3_converted <- decodeVN(df_tcvn3)

print output
DT::datatable(df_tcvn3_converted)

Show 10 entries Search:

Showing 1 to 10 of 63 entries Previous 1 2 3 4 5 6 7 Next

Province_city Administrative_center Area_km2 Density_perkm2 HDI_2012

1 Bắc Giang Bắc Giang 3895.59 463 0.711

2 Bắc Kạn Bắc Kạn 4859.96 65 0.685

3 Cao Bằng Cao Bằng 6700.26 79 0.653

4 Hà Giang Hà Giang 7929.48 108 0.586

5 Lạng Sơn Lạng Sơn 8310.09 94 0.707

6 Phú Thọ Việt Trì 3534.56 414 0.715

7 Quảng Ninh Hạ Long 6178.21 214 0.784

8 Thái Nguyên Thái Nguyên 3526.64 365 0.741

9 Tuyên Quang Tuyên Quang 5867.9 134 0.699

10 Lào Cai Lào Cai 6364.03 115 0.67

After conversion it is identical to the original with Unicode characters
all.equal(df_unicode, df_tcvn3_converted)

[1] TRUE

Again, we can choose to return characters without accents by setting diacritics = FALSE:
df_tcvn3_converted2 <- decodeVN(df_tcvn3, diacritics = FALSE)
DT::datatable(df_tcvn3_converted2)

6

Show 10 entries Search:

Showing 1 to 10 of 63 entries Previous 1 2 3 4 5 6 7 Next

Province_city Administrative_center Area_km2 Density_perkm2 HDI_2012

1 Bac Giang Bac Giang 3895.59 463 0.711

2 Bac Kan Bac Kan 4859.96 65 0.685

3 Cao Bang Cao Bang 6700.26 79 0.653

4 Ha Giang Ha Giang 7929.48 108 0.586

5 Lang Son Lang Son 8310.09 94 0.707

6 Phu Tho Viet Tri 3534.56 414 0.715

7 Quang Ninh Ha Long 6178.21 214 0.784

8 Thai Nguyen Thai Nguyen 3526.64 365 0.741

9 Tuyen Quang Tuyen Quang 5867.9 134 0.699

10 Lao Cai Lao Cai 6364.03 115 0.67

We can also use the from and to arguments for conversions between other encodings.

For example, to convert VISCII-encoded data to Unicode, use:
df_viscii <- vn_samples$VISCII
DT::datatable(decodeVN(df_viscii, from = "VISCII"))

Show 10 entries Search:

Showing 1 to 10 of 63 entries Previous 1 2 3 4 5 6 7 Next

Province_city Administrative_center Area_km2 Density_perkm2 HDI_2012

1 Bắc Giang Bắc Giang 3895.59 463 0.711

2 Bắc Kạn Bắc Kạn 4859.96 65 0.685

3 Cao Bằng Cao Bằng 6700.26 79 0.653

4 Hà Giang Hà Giang 7929.48 108 0.586

5 Lạng Sơn Lạng Sơn 8310.09 94 0.707

6 Phú Thọ Việt Trì 3534.56 414 0.715

7 Quảng Ninh Hạ Long 6178.21 214 0.784

8 Thái Nguyên Thái Nguyên 3526.64 365 0.741

9 Tuyên Quang Tuyên Quang 5867.9 134 0.699

10 Lào Cai Lào Cai 6364.03 115 0.67

7

The same thing without diacritics:
DT::datatable(decodeVN(df_viscii, from = "VISCII", diacritics = FALSE))

Show 10 entries Search:

Showing 1 to 10 of 63 entries Previous 1 2 3 4 5 6 7 Next

Province_city Administrative_center Area_km2 Density_perkm2 HDI_2012

1 Bac Giang Bac Giang 3895.59 463 0.711

2 Bac Kan Bac Kan 4859.96 65 0.685

3 Cao Bang Cao Bang 6700.26 79 0.653

4 Ha Giang Ha Giang 7929.48 108 0.586

5 Lang Son Lang Son 8310.09 94 0.707

6 Phu Tho Viet Tri 3534.56 414 0.715

7 Quang Ninh Ha Long 6178.21 214 0.784

8 Thai Nguyen Thai Nguyen 3526.64 365 0.741

9 Tuyen Quang Tuyen Quang 5867.9 134 0.699

10 Lao Cai Lao Cai 6364.03 115 0.67

Spatial data
Since version 0.4.0, decodeVN() works directly on sf objects and preserves the geometry column. The
workflow is identical to data frames shown above.
library(sf)
sf_object <- st_read(...)
sf_object_decoded <- decodeVN(sf_object)

8

	Introduction
	Background
	Installation

	Example applications
	Vectors
	Data frames
	Spatial data

