Package 'yardstick'

March 21, 2024

```
Type Package
Title Tidy Characterizations of Model Performance
Version 1.3.1
Description Tidy tools for quantifying how well model fits to a data set
      such as confusion matrices, class probability curve summaries, and
      regression metrics (e.g., RMSE).
License MIT + file LICENSE
URL https://github.com/tidymodels/yardstick,
      https://yardstick.tidymodels.org
BugReports https://github.com/tidymodels/yardstick/issues
Depends R (>= 3.6.0)
Imports cli, dplyr (>= 1.1.0), generics (>= 0.1.2), hardhat (>=
      1.3.0), lifecycle (>= 1.0.3), rlang (>= 1.1.0), tibble,
      tidyselect (\geq 1.2.0), utils, vctrs (\geq 0.5.0), withr
Suggests covr, crayon, ggplot2, knitr, probably (>= 1.0.0), rmarkdown,
      survival (>= 3.5-0), testthat (>= 3.0.0), tidyr
VignetteBuilder knitr
Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.0
NeedsCompilation yes
Author Max Kuhn [aut],
      Davis Vaughan [aut],
      Emil Hvitfeldt [aut, cre] (<a href="https://orcid.org/0000-0002-0679-1945">https://orcid.org/0000-0002-0679-1945</a>),
      Posit Software, PBC [cph, fnd]
Maintainer Emil Hvitfeldt <emil.hvitfeldt@posit.co>
Repository CRAN
Date/Publication 2024-03-21 21:50:02 UTC
```

R topics documented:

accuracy	
average_precision	5
bal_accuracy	8
brier_class	11
brier_survival	13
brier_survival_integrated	15
ccc	17
check_metric	19
classification_cost	21
	24
	26
	28
E 1 -1 ,	30
•	32
	35
	36
	38
	42
$\mathcal{E} = 1$	45
6 =	48
1 =	49
-	51
_ _	54
	56
5 -	59
1	59 61
_	64
<i>C</i> =	
	64
1	66
	68
	70
	72
	76
-	77
-	80
mn_log_loss	
mpe	
	86
new-metric	88
_e i =	89
npv	91
pathology	94
1 – 6–	95
	96
F	00
pr_auc	.03

accuracy 3

	pr_curve	106
	recall	109
	rmse	112
	roc_auc	114
	roc_auc_survival	118
	roc_aunp	120
	roc_aunu	122
	roc_curve	125
	roc_curve_survival	127
	rpd	130
	rpiq	132
	rsq	134
	rsq_trad	136
	sens	138
	smape	142
	solubility_test	144
	spec	145
	summary.conf_mat	149
	two_class_example	150
	yardstick_remove_missing	151
Index		152

accuracy Accuracy

Description

Accuracy is the proportion of the data that are predicted correctly.

Usage

```
accuracy(data, ...)
## S3 method for class 'data.frame'
accuracy(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
accuracy_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.

... Not currently used.

4 accuracy

truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
estimate	The column identifier for the predicted class results (that is also factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For accuracy_vec(), a single numeric value (or NA).

Multiclass

Accuracy extends naturally to multiclass scenarios. Because of this, macro and micro averaging are not implemented.

Author(s)

Max Kuhn

See Also

```
Other class metrics: bal_accuracy(), detection_prevalence(), f_meas(), j_index(), kap(), mcc(), npv(), ppv(), precision(), recall(), sens(), spec()
```

```
library(dplyr)
data("two_class_example")
data("hpc_cv")

# Two class
accuracy(two_class_example, truth, predicted)

# Multiclass
# accuracy() has a natural multiclass extension
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  accuracy(obs, pred)

# Groups are respected
```

average_precision 5

```
hpc_cv %>%
  group_by(Resample) %>%
  accuracy(obs, pred)
```

average_precision

Area under the precision recall curve

Description

average_precision() is an alternative to pr_auc() that avoids any ambiguity about what the value of precision should be when recall == 0 and there are not yet any false positive values (some say it should be 0, others say 1, others say undefined).

It computes a weighted average of the precision values returned from pr_curve(), where the weights are the increase in recall from the previous threshold. See pr_curve() for the full curve.

Usage

```
average_precision(data, ...)
## S3 method for class 'data.frame'
average_precision(
 data,
  truth,
  . . . ,
 estimator = NULL,
 na_rm = TRUE,
 event_level = yardstick_event_level(),
  case_weights = NULL
)
average_precision_vec(
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  event_level = yardstick_event_level(),
  case_weights = NULL,
)
```

Arguments

data

A data.frame containing the columns specified by truth and

. . .

A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.

6 average_precision

truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
estimator	One of "binary", "macro", or "macro_weighted" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other two are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on truth.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
estimate	If truth is binary, a numeric vector of class probabilities corresponding to the "relevant" class. Otherwise, a matrix with as many columns as factor levels of truth. It is assumed that these are in the same order as the levels of truth.

Details

The computation for average precision is a weighted average of the precision values. Assuming you have n rows returned from $pr_curve()$, it is a sum from 2 to n, multiplying the precision value p_i by the increase in recall over the previous threshold, $r_i - r_(i-1)$.

$$AP = \sum (r_i - r_{i-1}) * p_i$$

By summing from 2 to n, the precision value p_1 is never used. While $pr_curve()$ returns a value for p_1 , it is technically undefined as tp / (tp + fp) with tp = 0 and fp = 0. A common convention is to use 1 for p_1 , but this metric has the nice property of avoiding the ambiguity. On the other hand, r_1 is well defined as long as there are some events (p), and it is tp / p with tp = 0, so $r_1 = 0$.

When p_1 is defined as 1, the average_precision() and roc_auc() values are often very close to one another.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For average_precision_vec(), a single numeric value (or NA).

Multiclass

Macro and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

average_precision 7

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

See Also

```
pr_curve() for computing the full precision recall curve.
pr_auc() for computing the area under the precision recall curve using the trapezoidal rule.
Other class probability metrics: brier_class(), classification_cost(), gain_capture(), mn_log_loss(), pr_auc(), roc_auc(), roc_aunp(), roc_aunu()
```

```
# -----
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
average_precision(two_class_example, truth, Class1)
# -----
# Multiclass example
# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 average_precision(obs, VF:L)
# Change the first level of `obs` from `"VF"` to `"M"` to alter the
# event of interest. The class probability columns should be supplied
# in the same order as the levels.
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 mutate(obs = relevel(obs, "M")) %>%
```

8 bal_accuracy

```
average_precision(obs, M, VF:L)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  average_precision(obs, VF:L)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  average_precision(obs, VF:L, estimator = "macro_weighted")
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
  filter(Resample == "Fold01")
average_precision_vec(
   truth = fold1$obs,
   matrix(
    c(fold1$VF, fold1$F, fold1$M, fold1$L),
     ncol = 4
  )
)
```

bal_accuracy

Balanced accuracy

Description

Balanced accuracy is computed here as the average of sens() and spec().

Usage

```
bal_accuracy(data, ...)
## S3 method for class 'data.frame'
bal_accuracy(
  data,
   truth,
   estimate,
   estimator = NULL,
   na_rm = TRUE,
   case_weights = NULL,
   event_level = yardstick_event_level(),
   ...
)
```

bal_accuracy 9

```
bal_accuracy_vec(
   truth,
   estimate,
   estimator = NULL,
   na_rm = TRUE,
   case_weights = NULL,
   event_level = yardstick_event_level(),
   ...
)
```

Arguments

data	Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.
	Not currently used.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
estimate	The column identifier for the predicted class results (that is also factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector.
estimator	One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For bal_accuracy_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default

10 bal_accuracy

is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

Author(s)

Max Kuhn

See Also

```
Other class metrics: accuracy(), detection_prevalence(), f_meas(), j_index(), kap(), mcc(), npv(), ppv(), precision(), recall(), sens(), spec()
```

```
# Two class
data("two_class_example")
bal_accuracy(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  bal_accuracy(obs, pred)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  bal_accuracy(obs, pred)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  bal_accuracy(obs, pred, estimator = "macro_weighted")
# Vector version
bal_accuracy_vec(
  two_class_example$truth,
  two_class_example$predicted
# Making Class2 the "relevant" level
bal_accuracy_vec(
```

brier_class 11

```
two_class_example$truth,
  two_class_example$predicted,
  event_level = "second"
)
```

brier_class

Brier score for classification models

Description

Compute the Brier score for a classification model.

Usage

```
brier_class(data, ...)
## S3 method for class 'data.frame'
brier_class(data, truth, ..., na_rm = TRUE, case_weights = NULL)
brier_class_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data	A data.frame containing the columns specified by truth and
	A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
estimate	If truth is binary, a numeric vector of class probabilities corresponding to the "relevant" class. Otherwise, a matrix with as many columns as factor levels of truth. It is assumed that these are in the same order as the levels of truth.

Details

The Brier score is analogous to the mean squared error in regression models. The difference between a binary indicator for a class and its corresponding class probability are squared and averaged.

This function uses the convention in Kruppa et al (2014) and divides the result by two.

Smaller values of the score are associated with better model performance.

brier_class

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For brier_class_vec(), a single numeric value (or NA).

Multiclass

Brier scores can be computed in the same way for any number of classes. Because of this, no averaging types are supported.

Author(s)

Max Kuhn

References

Kruppa, J., Liu, Y., Diener, H.-C., Holste, T., Weimar, C., Koonig, I. R., and Ziegler, A. (2014) Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications. Biometrical Journal, 56 (4): 564-583.

See Also

```
Other class probability metrics: average_precision(), classification_cost(), gain_capture(), mn_log_loss(), pr_auc(), roc_auc(), roc_aunu()
```

```
# Two class
data("two_class_example")
brier_class(two_class_example, truth, Class1)

# Multiclass
library(dplyr)
data(hpc_cv)

# You can use the col1:colN tidyselect syntax
hpc_cv %>%
   filter(Resample == "Fold01") %>%
   brier_class(obs, VF:L)

# Groups are respected
hpc_cv %>%
   group_by(Resample) %>%
   brier_class(obs, VF:L)
```

brier_survival 13

brier_survival	Time-Dependent Brier score for right censored data

Description

Compute the time-dependent Brier score for right censored data, which is the mean squared error at time point .eval_time.

Usage

```
brier_survival(data, ...)
## S3 method for class 'data.frame'
brier_survival(data, truth, ..., na_rm = TRUE, case_weights = NULL)
brier_survival_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data	A data.frame containing the columns specified by truth and
	The column identifier for the survival probabilities this should be a list column of data.frames corresponding to the output given when predicting with censored model. This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, the dots are not used.
truth	The column identifier for the true survival result (that is created using survival::Surv().). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, an survival::Surv() object.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
estimate	A list column of data.frames corresponding to the output given when predicting with censored model. See the details for more information regarding format.

Details

This formulation takes survival probability predictions at one or more specific *evaluation times* and, for each time, computes the Brier score. To account for censoring, inverse probability of censoring weights (IPCW) are used in the calculations.

The column passed to ... should be a list column with one element per independent experiential unit (e.g. patient). The list column should contain data frames with several columns:

• .eval_time: The time that the prediction is made.

14 brier_survival

- .pred_survival: The predicted probability of survival up to .eval_time
- .weight_censored: The case weight for the inverse probability of censoring.

The last column can be produced using parsnip::.censoring_weights_graf(). This corresponds to the weighting scheme of Graf *et al* (1999). The internal data set lung_surv shows an example of the format.

This method automatically groups by the .eval_time argument.

Smaller values of the score are associated with better model performance.

Value

A tibble with columns .metric, .estimator, and .estimate.

For an ungrouped data frame, the result has one row of values. For a grouped data frame, the number of rows returned is the same as the number of groups.

For brier_survival_vec(), a numeric vector same length as the input argument eval_time. (or NA).

Author(s)

Emil Hvitfeldt

References

E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher, "Assessment and comparison of prognostic classification schemes for survival data," *Statistics in Medicine*, vol. 18, no. 17-18, pp. 2529–2545, 1999.

See Also

Other dynamic survival metrics: brier_survival_integrated(), roc_auc_survival()

```
library(dplyr)

lung_surv %>%
  brier_survival(
    truth = surv_obj,
    .pred
)
```

```
brier_survival_integrated
```

Integrated Brier score for right censored data

Description

Compute the integrated Brier score for right censored data, which is an overall calculation of model performance for all values of .eval_time.

Usage

```
brier_survival_integrated(data, ...)

## S3 method for class 'data.frame'
brier_survival_integrated(data, truth, ..., na_rm = TRUE, case_weights = NULL)

brier_survival_integrated_vec(
    truth,
    estimate,
    na_rm = TRUE,
    case_weights = NULL,
    ...
)
```

Arguments

data	A data.frame containing the columns specified by truth and
	The column identifier for the survival probabilities this should be a list column of data.frames corresponding to the output given when predicting with censored model. This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, the dots are not used.
truth	The column identifier for the true survival result (that is created using survival::Surv().). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, an survival::Surv() object.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
estimate	A list column of data.frames corresponding to the output given when predicting with censored model. See the details for more information regarding format.

Details

The integrated time-dependent brier score is calculated in an "area under the curve" fashion. The brier score is calculated for each value of .eval_time. The area is calculated via the trapezoidal rule. The area is divided by the largest value of .eval_time to bring it into the same scale as the traditional brier score.

Smaller values of the score are associated with better model performance.

This formulation takes survival probability predictions at one or more specific *evaluation times* and, for each time, computes the Brier score. To account for censoring, inverse probability of censoring weights (IPCW) are used in the calculations.

The column passed to . . . should be a list column with one element per independent experiential unit (e.g. patient). The list column should contain data frames with several columns:

- .eval_time: The time that the prediction is made.
- .pred_survival: The predicted probability of survival up to .eval_time
- .weight_censored: The case weight for the inverse probability of censoring.

The last column can be produced using parsnip::.censoring_weights_graf(). This corresponds to the weighting scheme of Graf *et al* (1999). The internal data set lung_surv shows an example of the format.

This method automatically groups by the .eval_time argument.

Value

A tibble with columns .metric, .estimator, and .estimate.

For an ungrouped data frame, the result has one row of values. For a grouped data frame, the number of rows returned is the same as the number of groups.

For brier_survival_integrated_vec(), a numeric vector same length as the input argument eval_time. (or NA).

Author(s)

Emil Hvitfeldt

References

E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher, "Assessment and comparison of prognostic classification schemes for survival data," Statistics in Medicine, vol. 18, no. 17-18, pp. 2529–2545, 1999.

See Also

Other dynamic survival metrics: brier_survival(), roc_auc_survival()

ccc 17

Examples

```
library(dplyr)

lung_surv %>%
  brier_survival_integrated(
    truth = surv_obj,
    .pred
)
```

ccc

Concordance correlation coefficient

Description

Calculate the concordance correlation coefficient.

Usage

```
ccc(data, ...)

## S3 method for class 'data.frame'
ccc(
   data,
   truth,
   estimate,
   bias = FALSE,
   na_rm = TRUE,
   case_weights = NULL,
   ...
)

ccc_vec(truth, estimate, bias = FALSE, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data	A data. Trame containing the columns specified by the truth and estimate
	arguments.
	NY

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be an

unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a

numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with

truth this can be specified different ways but the primary method is to use an

unquoted variable name. For _vec() functions, a numeric vector.

bias A logical; should the biased estimate of variance be used (as is Lin (1989))?

18 ccc

na_rm A logical value indicating whether NA values should be stripped before the

computation proceeds.

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

ccc() is a metric of both consistency/correlation and accuracy, while metrics such as rmse() are strictly for accuracy and metrics such as rsq() are strictly for consistency/correlation

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For ccc_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

References

Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. *Biometrics*, 45 (1), 255-268.

Nickerson, C. (1997). A note on "A concordance correlation coefficient to evaluate reproducibility". *Biometrics*, 53(4), 1503-1507.

See Also

```
Other numeric metrics: huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other consistency metrics: rpd(), rpiq(), rsq_trad(), rsq()

Other accuracy metrics: huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mse(), mpe(), msd(), poisson_log_loss(), rmse(), smape()
```

```
# Supply truth and predictions as bare column names
ccc(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

# create 10 resamples
solubility_resampled <- bind_rows(</pre>
```

check_metric 19

```
replicate(
   n = times,
   expr = sample_n(solubility_test, size, replace = TRUE),
   simplify = FALSE
),
   .id = "resample"
)

# Compute the metric by group
metric_results <- solubility_resampled %>%
   group_by(resample) %>%
   ccc(solubility, prediction)

metric_results

# Resampled mean estimate
metric_results %>%
   summarise(avg_estimate = mean(.estimate))
```

check_metric

Developer function for checking inputs in new metrics

Description

check_numeric_metric(), check_class_metric(), and check_prob_metric() are useful along-side metric-summarizers for implementing new custom metrics. metric-summarizers call the metric function inside dplyr::summarise(). These functions perform checks on the inputs in accordance with the type of metric that is used.

Usage

```
check_numeric_metric(truth, estimate, case_weights, call = caller_env())
check_class_metric(
    truth,
    estimate,
    case_weights,
    estimator,
    call = caller_env()
)
check_prob_metric(
    truth,
    estimate,
    case_weights,
    estimator,
    call = caller_env()
)
```

20 check_metric

```
check_dynamic_survival_metric(
   truth,
   estimate,
   case_weights,
   call = caller_env()
)

check_static_survival_metric(
   truth,
   estimate,
   case_weights,
   call = caller_env()
)
```

Arguments

truth

The realized vector of truth.

- For check_numeric_metric(), a numeric vector.
- For check_class_metric(), a factor.
- For check_prob_metric(), a factor.
- For check_dynamic_survival_metric(), a Surv object.
- For check_static_survival_metric(), a Surv object.

estimate

The realized estimate result.

- For check_numeric_metric(), a numeric vector.
- For check_class_metric(), a factor.
- For check_prob_metric(), a numeric vector for binary truth, a numeric matrix for multic-class truth.
- For check_dynamic_survival_metric(), list-column of data.frames.
- For check_static_survival_metric(), a numeric vector.

case_weights

The realized case weights, as a numeric vector. This must be the same length as truth.

call

The execution environment of a currently running function, e.g. caller_env(). The function will be mentioned in error messages as the source of the error. See the call argument of abort() for more information.

estimator

This can either be NULL for the default auto-selection of averaging ("binary" or "macro"), or a single character to pass along to the metric implementation describing the kind of averaging to use.

See Also

metric-summarizers

classification_cost 21

classification_cost Costs function

Costs function for poor classification

Description

classification_cost() calculates the cost of a poor prediction based on user-defined costs. The costs are multiplied by the estimated class probabilities and the mean cost is returned.

Usage

```
classification_cost(data, ...)
## S3 method for class 'data.frame'
classification_cost(
  data,
  truth,
  costs = NULL,
  na_rm = TRUE,
  event_level = yardstick_event_level(),
  case_weights = NULL
classification_cost_vec(
  truth,
  estimate,
  costs = NULL,
  na_rm = TRUE,
  event_level = yardstick_event_level(),
  case_weights = NULL,
)
```

Arguments

data A data. frame containing the columns specified by truth and

A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.

truth The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and

supports quasiquotation (you can unquote column names). For _vec() func-

tions, a factor vector.

22 classification_cost

costs A data frame with columns "truth", "estimate", and "cost".

"truth" and "estimate" should be character columns containing unique combinations of the levels of the truth factor.

"costs" should be a numeric column representing the cost that should be applied when the "estimate" is predicted, but the true result is "truth".

It is often the case that when "truth" == "estimate", the cost is zero (no penalty for correct predictions).

If any combinations of the levels of truth are missing, their costs are assumed to be zero.

If NULL, equal costs are used, applying a cost of \emptyset to correct predictions, and a cost of 1 to incorrect predictions.

na_rm A logical value indicating whether NA values should be stripped before the

computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth

to consider as the "event". This argument is only applicable when estimator =

"binary". The default uses an internal helper that defaults to "first".

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For $_$ vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

estimate If truth is binary, a numeric vector of class probabilities corresponding to the

"relevant" class. Otherwise, a matrix with as many columns as factor levels of truth. *It is assumed that these are in the same order as the levels of* truth.

Details

As an example, suppose that there are three classes: "A", "B", and "C". Suppose there is a truly "A" observation with class probabilities A = 0.3 / B = 0.3 / C = 0.4. Suppose that, when the true result is class "A", the costs for each class were A = 0 / B = 5 / C = 10, penalizing the probability of incorrectly predicting "C" more than predicting "B". The cost for this prediction would be $0.3 \times 0 + 0.3 \times 5 + 0.4 \times 10$. This calculation is done for each sample and the individual costs are averaged.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For class_cost_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

See Also

```
Other class probability metrics: average_precision(), brier_class(), gain_capture(), mn_log_loss(), pr_auc(), roc_auc(), roc_aunp(), roc_aunu()
```

classification_cost 23

```
library(dplyr)
# -----
# Two class example
data(two_class_example)
# Assuming `Class1` is our "event", this penalizes false positives heavily
costs1 <- tribble(</pre>
 ~truth, ~estimate, ~cost,
"Class1", "Class2", 1,
 "Class2", "Class1", 2
)
# Assuming `Class1` is our "event", this penalizes false negatives heavily
costs2 <- tribble(</pre>
 ~truth, ~estimate, ~cost,
 "Class1", "Class2", 2,
 "Class2", "Class1", 1
)
classification_cost(two_class_example, truth, Class1, costs = costs1)
classification_cost(two_class_example, truth, Class1, costs = costs2)
# Multiclass
data(hpc_cv)
# Define cost matrix from Kuhn and Johnson (2013)
hpc_costs <- tribble(</pre>
 ~estimate, ~truth, ~cost,
 "VF",
            "VF",
                    0,
 "VF",
            "F",
                     1,
 "VF",
            "M",
                    5,
 "VF",
            "L",
                    10,
            "VF",
 "F",
                    1,
  "F",
            "F",
                    0,
 "F",
            "M",
                     5,
 "F",
            "L",
                     5,
            "VF",
 "M",
                     1,
            "F",
 "M",
                     1,
 "M",
            "M",
                     0,
 "M",
            "L",
                     1,
 "L",
            "VF",
                     1,
 "L",
            "F",
                     1,
 "L",
            "M",
                     1,
  "L",
            "L",
)
# You can use the col1:colN tidyselect syntax
hpc_cv %>%
```

24 concordance_survival

```
filter(Resample == "Fold01") %>%
  classification_cost(obs, VF:L, costs = hpc_costs)

# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  classification_cost(obs, VF:L, costs = hpc_costs)
```

concordance_survival Concordance index for right-censored data

Description

Compute the Concordance index for right-censored data

Usage

```
concordance_survival(data, ...)
## $3 method for class 'data.frame'
concordance_survival(
   data,
   truth,
   estimate,
   na_rm = TRUE,
   case_weights = NULL,
   ...
)

concordance_survival_vec(
   truth,
   estimate,
   na_rm = TRUE,
   case_weights = NULL,
   ...
)
```

Arguments

A data.frame containing the columns specified by truth and

Currently not used.

The column identifier for the true survival result (that is created using survival::Surv().).

This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, an survival::Surv() object.

concordance_survival 25

estimate	The column identifier for the predicted time, this should be a numeric variables.
	This should be an unquoted column name although this argument is passed by
	expression and supports quasiquotation (you can unquote column names). For
	_vec() functions, a numeric vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

The concordance index is defined as the proportion of all comparable pairs in which the predictions and outcomes are concordant.

Two observations are comparable if:

- 1. both of the observations experienced an event (at different times), or
- 2. the observation with the shorter observed survival time experienced an event, in which case the event-free subject "outlived" the other.

A pair is not comparable if they experienced events at the same time.

Concordance intuitively means that two samples were ordered correctly by the model. More specifically, two samples are concordant, if the one with a higher estimated risk score has a shorter actual survival time.

Larger values of the score are associated with better model performance.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For concordance_survival_vec(), a single numeric value (or NA).

Author(s)

Emil Hvitfeldt

References

Harrell, F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A, "Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors", Statistics in Medicine, 15(4), 361-87, 1996.

```
concordance_survival(
  data = lung_surv,
  truth = surv_obj,
  estimate = .pred_time
)
```

26 conf_mat

conf_mat

Confusion Matrix for Categorical Data

Description

Calculates a cross-tabulation of observed and predicted classes.

Usage

```
conf_mat(data, ...)
## S3 method for class 'data.frame'
conf_mat(
   data,
   truth,
   estimate,
   dnn = c("Prediction", "Truth"),
   case_weights = NULL,
   ...
)
## S3 method for class 'conf_mat'
tidy(x, ...)
```

Arguments

data A data frame or a base::table().
... Not used.

truth The column identifier for the true class results (that is a factor). This should be

an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() func-

tions, a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As

with truth this can be specified different ways but the primary method is to use

an unquoted variable name. For _vec() functions, a factor vector.

dnn A character vector of dimnames for the table.

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

x A conf_mat object.

Details

For conf_mat() objects, a broom tidy() method has been created that collapses the cell counts by cell into a data frame for easy manipulation.

conf_mat 27

There is also a summary() method that computes various classification metrics at once. See summary.conf_mat()

There is a ggplot2::autoplot() method for quickly visualizing the matrix. Both a heatmap and mosaic type is implemented.

The function requires that the factors have exactly the same levels.

Value

conf_mat() produces an object with class conf_mat. This contains the table and other objects.
tidy.conf_mat() generates a tibble with columns name (the cell identifier) and value (the cell count).

When used on a grouped data frame, conf_mat() returns a tibble containing columns for the groups along with conf_mat, a list-column where each element is a conf_mat object.

See Also

summary.conf_mat() for computing a large number of metrics from one confusion matrix.

```
library(dplyr)
data("hpc_cv")
# The confusion matrix from a single assessment set (i.e. fold)
cm <- hpc_cv %>%
  filter(Resample == "Fold01") %>%
  conf_mat(obs, pred)
# Now compute the average confusion matrix across all folds in
# terms of the proportion of the data contained in each cell.
# First get the raw cell counts per fold using the `tidy` method
library(tidyr)
cells_per_resample <- hpc_cv %>%
  group_by(Resample) %>%
  conf_mat(obs, pred) %>%
  mutate(tidied = lapply(conf_mat, tidy)) %>%
  unnest(tidied)
# Get the totals per resample
counts_per_resample <- hpc_cv %>%
  group_by(Resample) %>%
  summarize(total = n()) %>%
  left_join(cells_per_resample, by = "Resample") %>%
  # Compute the proportions
  mutate(prop = value / total) %>%
  group_by(name) %>%
  # Average
  summarize(prop = mean(prop))
counts_per_resample
```

28 demographic_parity

```
# Now reshape these into a matrix
mean_cmat <- matrix(counts_per_resample$prop, byrow = TRUE, ncol = 4)
rownames(mean_cmat) <- levels(hpc_cv$obs)
colnames(mean_cmat) <- levels(hpc_cv$obs)

round(mean_cmat, 3)

# The confusion matrix can quickly be visualized using autoplot()
library(ggplot2)

autoplot(cm, type = "mosaic")
autoplot(cm, type = "heatmap")</pre>
```

demographic_parity

Demographic parity

Description

Demographic parity is satisfied when a model's predictions have the same predicted positive rate across groups. A value of 0 indicates parity across groups. Note that this definition does not depend on the true outcome; the truth argument is included in outputted metrics for consistency.

demographic_parity() is calculated as the difference between the largest and smallest value of detection_prevalence() across groups.

Demographic parity is sometimes referred to as group fairness, disparate impact, or statistical parity. See the "Measuring Disparity" section for details on implementation.

Usage

```
demographic_parity(by)
```

Arguments

by

The column identifier for the sensitive feature. This should be an unquoted column name referring to a column in the un-preprocessed data.

Value

This function outputs a yardstick *fairness metric* function. Given a grouping variable by, demographic_parity() will return a yardstick metric function that is associated with the data-variable grouping by and a post-processor. The outputted function will first generate a set of detection_prevalence metric values by group before summarizing across groups using the post-processing function.

The outputted function only has a data frame method and is intended to be used as part of a metric set.

demographic_parity 29

Measuring Disparity

By default, this function takes the difference in range of detection_prevalence .estimates across groups. That is, the maximum pair-wise disparity between groups is the return value of demographic_parity()'s .estimate.

For finer control of group treatment, construct a context-aware fairness metric with the new_groupwise_metric()
function by passing a custom aggregate function:

```
# the actual default `aggregate` is:
diff_range <- function(x, ...) {diff(range(x$.estimate))}

demographic_parity_2 <-
   new_groupwise_metric(
    fn = detection_prevalence,
    name = "demographic_parity_2",
    aggregate = diff_range
)</pre>
```

In aggregate(), x is the metric_set() output with detection_prevalence values for each group, and ... gives additional arguments (such as a grouping level to refer to as the "baseline") to pass to the function outputted by demographic_parity_2() for context.

References

Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., & Wallach, H. (2018). "A Reductions Approach to Fair Classification." Proceedings of the 35th International Conference on Machine Learning, in Proceedings of Machine Learning Research. 80:60-69.

Verma, S., & Rubin, J. (2018). "Fairness definitions explained". In Proceedings of the international workshop on software fairness (pp. 1-7).

Bird, S., Dudík, M., Edgar, R., Horn, B., Lutz, R., Milan, V., ... & Walker, K. (2020). "Fairlearn: A toolkit for assessing and improving fairness in AI". Microsoft, Tech. Rep. MSR-TR-2020-32.

See Also

Other fairness metrics: equal_opportunity(), equalized_odds()

```
library(dplyr)
data(hpc_cv)
head(hpc_cv)

# evaluate `demographic_parity()` by Resample
m_set <- metric_set(demographic_parity(Resample))
# use output like any other metric set
hpc_cv %>%
```

30 detection_prevalence

```
m_set(truth = obs, estimate = pred)

# can mix fairness metrics and regular metrics
m_set_2 <- metric_set(sens, demographic_parity(Resample))

hpc_cv %>%
    m_set_2(truth = obs, estimate = pred)
```

Description

Detection prevalence is defined as the number of *predicted* positive events (both true positive and false positive) divided by the total number of predictions.

Usage

```
detection_prevalence(data, ...)
## S3 method for class 'data.frame'
detection_prevalence(
  data,
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
)
detection_prevalence_vec(
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
)
```

Arguments

data

Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.

detection_prevalence 31

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be

an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() func-

tions, a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As

with truth this can be specified different ways but the primary method is to use

an unquoted variable name. For _vec() functions, a factor vector.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the

type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the

computation proceeds.

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

event_level A single string. Either "first" or "second" to specify which level of truth

to consider as the "event". This argument is only applicable when estimator =

"binary". The default uses an internal helper that defaults to "first".

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For detection_prevalence_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

Author(s)

Max Kuhn

32 developer-helpers

See Also

```
Other class metrics: accuracy(), bal_accuracy(), f_meas(), j_index(), kap(), mcc(), npv(), ppv(), precision(), recall(), sens(), spec()
```

Examples

```
# Two class
data("two_class_example")
detection_prevalence(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  detection_prevalence(obs, pred)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  detection_prevalence(obs, pred)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  detection_prevalence(obs, pred, estimator = "macro_weighted")
# Vector version
detection_prevalence_vec(
  two_class_example$truth,
  two_class_example$predicted
# Making Class2 the "relevant" level
detection_prevalence_vec(
  two_class_example$truth,
  two\_class\_example\$predicted,
  event_level = "second"
)
```

developer-helpers

Developer helpers

Description

Helpers to be used alongside check_metric, yardstick_remove_missing and metric summarizers when creating new metrics. See Custom performance metrics for more information.

developer-helpers 33

Usage

```
dots_to_estimate(data, ...)
get_weights(data, estimator)

finalize_estimator(
    X,
    estimator = NULL,
    metric_class = "default",
    call = caller_env()
)

finalize_estimator_internal(
    metric_dispatcher,
    X,
    estimator,
    call = caller_env()
)

validate_estimator(estimator, estimator_override = NULL, call = caller_env())
```

Arguments

A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.

estimator Either NULL for auto-selection, or a single character for the type of estimator to

use.

x The column used to autoselect the estimator. This is generally the truth column, but can also be a table if your metric has table methods.

anni, but can also be a table if your metric has table methods.

metric_class A single character of the name of the metric to autoselect the estimator for. This should match the method name created for finalize_estimator_internal().

The execution environment of a currently running function, e.g. caller_env(). The function will be mentioned in error messages as the source of the error. See

the call argument of abort() for more information.

metric_dispatcher

call

A simple dummy object with the class provided to metric_class. This is created and passed along for you.

estimator_override

A character vector overriding the default allowed estimator list of c("binary", "macro", "micro", "macro_weighted"). Set this if your classification estimator does not support all of these methods.

34 developer-helpers

Dots -> Estimate

[Deprecated]

dots_to_estimate() is useful with class probability metrics that take ... rather than estimate as an argument. It constructs either a single name if 1 input is provided to ... or it constructs a quosure where the expression constructs a matrix of as many columns as are provided to These are eventually evaluated in the summarise() call in metric-summarizers and evaluate to either a vector or a matrix for further use in the underlying vector functions.

Weight Calculation

get_weights() accepts a confusion matrix and an estimator of type "macro", "micro", or "macro_weighted" and returns the correct weights. It is useful when creating multiclass metrics.

Estimator Selection

finalize_estimator() is the engine for auto-selection of estimator based on the type of x. Generally x is the truth column. This function is called from the vector method of your metric.

finalize_estimator_internal() is an S3 generic that you should extend for your metric if it does not implement *only* the following estimator types: "binary", "macro", "micro", and "macro_weighted". If your metric does support all of these, the default version of finalize_estimator_internal() will autoselect estimator appropriately. If you need to create a method, it should take the form: finalize_estimator_internal.metric_name. Your method for finalize_estimator_internal() should do two things:

- 1. If estimator is NULL, autoselect the estimator based on the type of x and return a single character for the estimator.
- 2. If estimator is not NULL, validate that it is an allowed estimator for your metric and return it.

If you are using the default for finalize_estimator_internal(), the estimator is selected using the following heuristics:

- 1. If estimator is not NULL, it is validated and returned immediately as no auto-selection is needed.
- 2. If x is a:
 - factor Then "binary" is returned if it has 2 levels, otherwise "macro" is returned.
 - numeric Then "binary" is returned.
 - table Then "binary" is returned if it has 2 columns, otherwise "macro" is returned. This is useful if you have table methods.
 - matrix Then "macro" is returned.

Estimator Validation

validate_estimator() is called from your metric specific method of finalize_estimator_internal() and ensures that a user provided estimator is of the right format and is one of the allowed values.

See Also

metric-summarizers check_metric yardstick_remove_missing

equalized_odds 35

equalized_odds

Equalized odds

Description

Equalized odds is satisfied when a model's predictions have the same false positive, true positive, false negative, and true negative rates across protected groups. A value of 0 indicates parity across groups.

By default, this function takes the maximum difference in range of sens() and spec() .estimates across groups. That is, the maximum pair-wise disparity in sens() or spec() between groups is the return value of equalized_odds()'s .estimate.

Equalized odds is sometimes referred to as conditional procedure accuracy equality or disparate mistreatment.

See the "Measuring disparity" section for details on implementation.

Usage

```
equalized_odds(by)
```

Arguments

by

The column identifier for the sensitive feature. This should be an unquoted column name referring to a column in the un-preprocessed data.

Value

This function outputs a yardstick *fairness metric* function. Given a grouping variable by, equalized_odds() will return a yardstick metric function that is associated with the data-variable grouping by and a post-processor. The outputted function will first generate a set of sens() and spec() metric values by group before summarizing across groups using the post-processing function.

The outputted function only has a data frame method and is intended to be used as part of a metric set.

Measuring Disparity

For finer control of group treatment, construct a context-aware fairness metric with the new_groupwise_metric() function by passing a custom aggregate function:

```
# see yardstick:::max_positive_rate_diff for the actual `aggregate()`
diff_range <- function(x, ...) {diff(range(x$.estimate))}

equalized_odds_2 <-
new_groupwise_metric(
   fn = metric_set(sens, spec),
   name = "equalized_odds_2",
   aggregate = diff_range
)</pre>
```

36 equal_opportunity

In aggregate(), x is the metric_set() output with sens() and spec() values for each group, and ... gives additional arguments (such as a grouping level to refer to as the "baseline") to pass to the function outputted by equalized_odds_2() for context.

References

Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., & Wallach, H. (2018). "A Reductions Approach to Fair Classification." Proceedings of the 35th International Conference on Machine Learning, in Proceedings of Machine Learning Research. 80:60-69.

Verma, S., & Rubin, J. (2018). "Fairness definitions explained". In Proceedings of the international workshop on software fairness (pp. 1-7).

Bird, S., Dudík, M., Edgar, R., Horn, B., Lutz, R., Milan, V., ... & Walker, K. (2020). "Fairlearn: A toolkit for assessing and improving fairness in AI". Microsoft, Tech. Rep. MSR-TR-2020-32.

See Also

Other fairness metrics: demographic_parity(), equal_opportunity()

Examples

```
library(dplyr)

data(hpc_cv)

head(hpc_cv)

# evaluate `equalized_odds()` by Resample
m_set <- metric_set(equalized_odds(Resample))

# use output like any other metric set
hpc_cv %>%
    m_set(truth = obs, estimate = pred)

# can mix fairness metrics and regular metrics
m_set_2 <- metric_set(sens, equalized_odds(Resample))

hpc_cv %>%
    m_set_2(truth = obs, estimate = pred)
```

equal_opportunity

Equal opportunity

Description

Equal opportunity is satisfied when a model's predictions have the same true positive and false negative rates across protected groups. A value of 0 indicates parity across groups.

equal_opportunity() is calculated as the difference between the largest and smallest value of sens() across groups.

equal_opportunity 37

Equal opportunity is sometimes referred to as equality of opportunity.

See the "Measuring Disparity" section for details on implementation.

Usage

```
equal_opportunity(by)
```

Arguments

by

The column identifier for the sensitive feature. This should be an unquoted column name referring to a column in the un-preprocessed data.

Value

This function outputs a yardstick *fairness metric* function. Given a grouping variable by, equal_opportunity() will return a yardstick metric function that is associated with the data-variable grouping by and a post-processor. The outputted function will first generate a set of sens metric values by group before summarizing across groups using the post-processing function.

The outputted function only has a data frame method and is intended to be used as part of a metric set.

Measuring Disparity

By default, this function takes the difference in range of sens .estimates across groups. That is, the maximum pair-wise disparity between groups is the return value of equal_opportunity()'s .estimate.

For finer control of group treatment, construct a context-aware fairness metric with the new_groupwise_metric() function by passing a custom aggregate function:

```
# the actual default `aggregate` is:
diff_range <- function(x, ...) {diff(range(x$.estimate))}
equal_opportunity_2 <-
new_groupwise_metric(
   fn = sens,
   name = "equal_opportunity_2",
   aggregate = diff_range
)</pre>
```

In aggregate(), x is the metric_set() output with sens values for each group, and ... gives additional arguments (such as a grouping level to refer to as the "baseline") to pass to the function outputted by equal_opportunity_2() for context.

References

Hardt, M., Price, E., & Srebro, N. (2016). "Equality of opportunity in supervised learning". Advances in neural information processing systems, 29.

Verma, S., & Rubin, J. (2018). "Fairness definitions explained". In Proceedings of the international workshop on software fairness (pp. 1-7).

Bird, S., Dudík, M., Edgar, R., Horn, B., Lutz, R., Milan, V., ... & Walker, K. (2020). "Fairlearn: A toolkit for assessing and improving fairness in AI". Microsoft, Tech. Rep. MSR-TR-2020-32.

See Also

Other fairness metrics: demographic_parity(), equalized_odds()

Examples

```
library(dplyr)

data(hpc_cv)

head(hpc_cv)

# evaluate 'equal_opportunity()' by Resample
m_set <- metric_set(equal_opportunity(Resample))

# use output like any other metric set
hpc_cv %>%
    m_set(truth = obs, estimate = pred)

# can mix fairness metrics and regular metrics
m_set_2 <- metric_set(sens, equal_opportunity(Resample))

hpc_cv %>%
    m_set_2(truth = obs, estimate = pred)
```

f_meas

F Measure

Description

These functions calculate the f_meas() of a measurement system for finding relevant documents compared to reference results (the truth regarding relevance). Highly related functions are recall() and precision().

Usage

```
f_meas(data, ...)
## S3 method for class 'data.frame'
f_meas(
    data,
    truth,
    estimate,
    beta = 1,
```

f_meas 39

```
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...
)

f_meas_vec(
    truth,
    estimate,
    beta = 1,
    estimator = NULL,
    na_rm = TRUE,
    case_weights = NULL,
    event_level = yardstick_event_level(),
...
)
```

Arguments

data Either a data. frame containing the columns specified by the truth and estimate

arguments, or a table/matrix where the true class results should be in the

columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be

an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() func-

tions, a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As

with truth this can be specified different ways but the primary method is to use

an unquoted variable name. For _vec() functions, a factor vector.

beta A numeric value used to weight precision and recall. A value of 1 is traditionally

used and corresponds to the harmonic mean of the two values but other values

weight recall beta times more important than precision.

estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the

type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate.

na_rm A logical value indicating whether NA values should be stripped before the

computation proceeds.

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

event_level A single string. Either "first" or "second" to specify which level of truth

to consider as the "event". This argument is only applicable when estimator =

"binary". The default uses an internal helper that defaults to "first".

40 f_meas

Details

The measure "F" is a combination of precision and recall (see below).

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For f_meas_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

	Reference	
Predicted	Relevant	Irrelevant
Relevant	A	В
Irrelevant	C	D

The formulas used here are:

$$recall = A/(A+C)$$

$$precision = A/(A+B)$$

$$F_{meas} = (1+\beta^2)*precision*recall/((\beta^2*precision) + recall)$$

See the references for discussions of the statistics.

Author(s)

Max Kuhn

f_meas 41

References

Buckland, M., & Gey, F. (1994). The relationship between Recall and Precision. *Journal of the American Society for Information Science*, 45(1), 12-19.

Powers, D. (2007). Evaluation: From Precision, Recall and F Factor to ROC, Informedness, Markedness and Correlation. Technical Report SIE-07-001, Flinders University

See Also

```
Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), j_index(), kap(), mcc(), npv(), ppv(), precision(), recall(), sens(), spec()

Other relevance metrics: precision(), recall()
```

```
# Two class
data("two_class_example")
f_meas(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  f_meas(obs, pred)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  f_meas(obs, pred)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  f_meas(obs, pred, estimator = "macro_weighted")
# Vector version
f_meas_vec(
  two_class_example$truth,
  two_class_example$predicted
# Making Class2 the "relevant" level
f_meas_vec(
  two_class_example$truth,
  two_class_example$predicted,
  event_level = "second"
)
```

42 gain_capture

gain_capture

Gain capture

Description

gain_capture() is a measure of performance similar to an AUC calculation, but applied to a gain curve.

Usage

```
gain_capture(data, ...)
## S3 method for class 'data.frame'
gain_capture(
  data,
  truth,
  estimator = NULL,
  na_rm = TRUE,
  event_level = yardstick_event_level(),
  case_weights = NULL
)
gain_capture_vec(
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  event_level = yardstick_event_level(),
  case_weights = NULL,
)
```

Arguments

data

A data. frame containing the columns specified by truth and

. . .

A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.

truth

The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.

gain_capture 43

estimator	One of "binary", "macro", or "macro_weighted" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other two are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on truth.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
estimate	If truth is binary, a numeric vector of class probabilities corresponding to the "relevant" class. Otherwise, a matrix with as many columns as factor levels of truth. It is assumed that these are in the same order as the levels of truth.

Details

gain_capture() calculates the area *under* the gain curve, but *above* the baseline, and then divides that by the area *under* a perfect gain curve, but *above* the baseline. It is meant to represent the amount of potential gain "captured" by the model.

The gain_capture() metric is identical to the *accuracy ratio* (*AR*), which is also sometimes called the *gini coefficient*. These two are generally calculated on a cumulative accuracy profile curve, but this is the same as a gain curve. See the Engelmann reference for more information.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For gain_capture_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

44 gain_capture

Author(s)

Max Kuhn

References

Engelmann, Bernd & Hayden, Evelyn & Tasche, Dirk (2003). "Measuring the Discriminative Power of Rating Systems," Discussion Paper Series 2: Banking and Financial Studies 2003,01, Deutsche Bundesbank.

See Also

```
gain_curve() to compute the full gain curve.
Other class probability metrics: average_precision(), brier_class(), classification_cost(),
mn_log_loss(), pr_auc(), roc_auc(), roc_aunp(), roc_aunu()
```

```
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
gain_capture(two_class_example, truth, Class1)
# ------
# Multiclass example
# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 gain_capture(obs, VF:L)
# Change the first level of `obs` from `"VF"` to `"M"` to alter the
# event of interest. The class probability columns should be supplied
# in the same order as the levels.
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 mutate(obs = relevel(obs, "M")) %>%
```

gain_curve 45

```
gain_capture(obs, M, VF:L)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  gain_capture(obs, VF:L)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  gain_capture(obs, VF:L, estimator = "macro_weighted")
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
  filter(Resample == "Fold01")
gain_capture_vec(
   truth = fold1$obs,
   matrix(
     c(fold1$VF, fold1$F, fold1$M, fold1$L),
     ncol = 4
   )
)
# Visualize gain_capture()
# Visually, this represents the area under the black curve, but above the
# 45 degree line, divided by the area of the shaded triangle.
library(ggplot2)
autoplot(gain_curve(two_class_example, truth, Class1))
```

gain_curve

Gain curve

Description

gain_curve() constructs the full gain curve and returns a tibble. See gain_capture() for the relevant area under the gain curve. Also see lift_curve() for a closely related concept.

Usage

```
gain_curve(data, ...)
## S3 method for class 'data.frame'
gain_curve(
   data,
   truth,
```

gain_curve

```
na_rm = TRUE,
event_level = yardstick_event_level(),
case_weights = NULL
)
```

Arguments

data	A data.frame containing the columns specified by truth and
•••	A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

There is a ggplot2::autoplot() method for quickly visualizing the curve. This works for binary and multiclass output, and also works with grouped data (i.e. from resamples). See the examples.

The greater the area between the gain curve and the baseline, the better the model.

Gain curves are identical to CAP curves (cumulative accuracy profile). See the Engelmann reference for more information on CAP curves.

Value

A tibble with class gain_df or gain_grouped_df having columns:

- .n The index of the current sample.
- .n_events The index of the current *unique* sample. Values with repeated estimate values are given identical indices in this column.
- .percent_tested The cumulative percentage of values tested.
- .percent_found The cumulative percentage of true results relative to the total number of true results.

gain_curve 47

If using the case_weights argument, all of the above columns will be weighted. This makes the most sense with frequency weights, which are integer weights representing the number of times a particular observation should be repeated.

Gain and Lift Curves

The motivation behind cumulative gain and lift charts is as a visual method to determine the effectiveness of a model when compared to the results one might expect without a model. As an example, without a model, if you were to advertise to a random 10% of your customer base, then you might expect to capture 10% of the of the total number of positive responses had you advertised to your entire customer base. Given a model that predicts which customers are more likely to respond, the hope is that you can more accurately target 10% of your customer base and capture >10% of the total number of positive responses.

The calculation to construct gain curves is as follows:

- 1. truth and estimate are placed in descending order by the estimate values (estimate here is a single column supplied in . . .).
- 2. The cumulative number of samples with true results relative to the entire number of true results are found. This is the y-axis in a gain chart.

Multiclass

If a multiclass truth column is provided, a one-vs-all approach will be taken to calculate multiple curves, one per level. In this case, there will be an additional column, .level, identifying the "one" column in the one-vs-all calculation.

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Author(s)

Max Kuhn

References

Engelmann, Bernd & Hayden, Evelyn & Tasche, Dirk (2003). "Measuring the Discriminative Power of Rating Systems," Discussion Paper Series 2: Banking and Financial Studies 2003,01, Deutsche Bundesbank.

See Also

Compute the relevant area under the gain curve with gain_capture().

Other curve metrics: lift_curve(), pr_curve(), roc_curve()

48 hpc_cv

Examples

```
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
gain_curve(two_class_example, truth, Class1)
# ------
# `autoplot()`
library(ggplot2)
library(dplyr)
# Use autoplot to visualize
# The top left hand corner of the grey triangle is a "perfect" gain curve
autoplot(gain_curve(two_class_example, truth, Class1))
# Multiclass one-vs-all approach
# One curve per level
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 gain_curve(obs, VF:L) %>%
 autoplot()
# Same as above, but will all of the resamples
# The resample with the minimum (farthest to the left) "perfect" value is
# used to draw the shaded region
hpc_cv %>%
 group_by(Resample) %>%
 gain_curve(obs, VF:L) %>%
 autoplot()
```

hpc_cv

Multiclass Probability Predictions

Description

Multiclass Probability Predictions

huber_loss 49

Details

This data frame contains the predicted classes and class probabilities for a linear discriminant analysis model fit to the HPC data set from Kuhn and Johnson (2013). These data are the assessment sets from a 10-fold cross-validation scheme. The data column columns for the true class (obs), the class prediction (pred) and columns for each class probability (columns VF, F, M, and L). Additionally, a column for the resample indicator is included.

Value

```
hpc_cv a data frame
```

Source

Kuhn, M., Johnson, K. (2013) Applied Predictive Modeling, Springer

Examples

```
data(hpc_cv)
str(hpc_cv)

# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section in any classification function (such as `?pr_auc`) to see how
# to change this.
levels(hpc_cv$obs)
```

huber_loss

Huber loss

Description

Calculate the Huber loss, a loss function used in robust regression. This loss function is less sensitive to outliers than rmse(). This function is quadratic for small residual values and linear for large residual values.

Usage

```
huber_loss(data, ...)
## S3 method for class 'data.frame'
huber_loss(
   data,
   truth,
   estimate,
   delta = 1,
   na_rm = TRUE,
   case_weights = NULL,
   ...
```

50 huber_loss

```
huber_loss_vec(
   truth,
   estimate,
   delta = 1,
   na_rm = TRUE,
   case_weights = NULL,
   ...
)
```

Arguments

data A data.frame containing the columns specified by the truth and estimate

arguments.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be an

unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a

numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with

truth this can be specified different ways but the primary method is to use an

unquoted variable name. For _vec() functions, a numeric vector.

delta A single numeric value. Defines the boundary where the loss function transi-

tions from quadratic to linear. Defaults to 1.

na_rm A logical value indicating whether NA values should be stripped before the

computation proceeds.

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For huber_loss_vec(), a single numeric value (or NA).

Author(s)

James Blair

References

Huber, P. (1964). Robust Estimation of a Location Parameter. Annals of Statistics, 53 (1), 73-101.

huber_loss_pseudo 51

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), iic(), mae(), mape(), msd(), poisson_log_loss(), rmse(), smape()
```

Examples

```
# Supply truth and predictions as bare column names
huber_loss(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
  replicate(
   n = times,
   expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
  group_by(resample) %>%
  huber_loss(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))
```

huber_loss_pseudo

Psuedo-Huber Loss

Description

Calculate the Pseudo-Huber Loss, a smooth approximation of huber_loss(). Like huber_loss(), this is less sensitive to outliers than rmse().

52 huber_loss_pseudo

Usage

```
huber_loss_pseudo(data, ...)
## S3 method for class 'data.frame'
huber_loss_pseudo(
 data,
  truth,
 estimate,
 delta = 1,
 na_rm = TRUE,
 case_weights = NULL,
)
huber_loss_pseudo_vec(
  truth,
 estimate,
 delta = 1,
 na_rm = TRUE,
 case_weights = NULL,
)
```

Arguments

data	A data.frame containing the columns specified by the truth and estimate arguments.
	Not currently used.
truth	The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.
estimate	The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.
delta	A single numeric value. Defines the boundary where the loss function transitions from quadratic to linear. Defaults to 1.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

huber_loss_pseudo 53

For grouped data frames, the number of rows returned will be the same as the number of groups. For huber_loss_pseudo_vec(), a single numeric value (or NA).

Author(s)

James Blair

References

Huber, P. (1964). Robust Estimation of a Location Parameter. *Annals of Statistics*, 53 (1), 73-101. Hartley, Richard (2004). Multiple View Geometry in Computer Vision. (Second Edition). Page 619.

See Also

```
Other numeric metrics: ccc(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), smape()
```

```
# Supply truth and predictions as bare column names
huber_loss_pseudo(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
  replicate(
   n = times,
   expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
  group_by(resample) %>%
  huber_loss_pseudo(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))
```

54 iic

iic Index of ideality of correlation	
--------------------------------------	--

Description

Calculate the index of ideality of correlation. This metric has been studied in QSPR/QSAR models as a good criterion for the predictive potential of these models. It is highly dependent on the correlation coefficient as well as the mean absolute error.

Note the application of IIC is useless under two conditions:

- When the negative mean absolute error and positive mean absolute error are both zero.
- When the outliers are symmetric. Since outliers are context dependent, please use your own checks to validate whether this restriction holds and whether the resulting IIC has interpretative value.

The IIC is seen as an alternative to the traditional correlation coefficient and is in the same units as the original data.

Usage

```
iic(data, ...)
## S3 method for class 'data.frame'
iic(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
iic_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data	A data.frame containing the columns specified by the truth and estimate arguments.
	Not currently used.
truth	The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.
estimate	The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

iic 55

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data frames, the number of rows returned will be the same as the number of groups. For iic_vec(), a single numeric value (or NA).

Author(s)

Joyce Cahoon

References

Toropova, A. and Toropov, A. (2017). "The index of ideality of correlation. A criterion of predictability of QSAR models for skin permeability?" *Science of the Total Environment*. 586: 466-472.

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), mae(), mape(), mse(), mse(), mse(), smape()
```

```
# Supply truth and predictions as bare column names
iic(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
 replicate(
   n = times,
   expr = sample_n(solubility_test, size, replace = TRUE),
   simplify = FALSE
 ),
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
 group_by(resample) %>%
 iic(solubility, prediction)
metric_results
```

 j_{index}

```
# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))
```

j_index

J-index

Description

Youden's J statistic is defined as:

```
sens() + spec() - 1
```

A related metric is Informedness, see the Details section for the relationship.

Usage

```
j_index(data, ...)
## S3 method for class 'data.frame'
j_index(
 data,
  truth,
 estimate,
 estimator = NULL,
 na_rm = TRUE,
 case_weights = NULL,
 event_level = yardstick_event_level(),
)
j_index_vec(
  truth,
  estimate,
 estimator = NULL,
 na_rm = TRUE,
 case_weights = NULL,
  event_level = yardstick_event_level(),
)
```

Arguments

data

Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.

. . .

Not currently used.

j_index 57

truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
estimate	The column identifier for the predicted class results (that is also factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector.
estimator	One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".

Details

The value of the J-index ranges from [0, 1] and is 1 when there are no false positives and no false negatives.

The binary version of J-index is equivalent to the binary concept of Informedness. Macro-weighted J-index is equivalent to multiclass informedness as defined in Powers, David M W (2011), equation (42).

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For j_index_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

58 j_index

Author(s)

Max Kuhn

References

Youden, W.J. (1950). "Index for rating diagnostic tests". Cancer. 3: 32-35.

Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Score to ROC, Informedness, Markedness and Correlation". Journal of Machine Learning Technologies. 2 (1): 37-63.

See Also

```
Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), kap(), mcc(), npv(), ppv(), precision(), recall(), sens(), spec()
```

```
# Two class
data("two_class_example")
j_index(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  j_index(obs, pred)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  j_index(obs, pred)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  j_index(obs, pred, estimator = "macro_weighted")
# Vector version
j_index_vec(
  two_class_example$truth,
  two_class_example$predicted
# Making Class2 the "relevant" level
j_index_vec(
  two_class_example$truth,
  two_class_example$predicted,
  event_level = "second"
)
```

kap 59

kap Kappa

Description

Kappa is a similar measure to accuracy(), but is normalized by the accuracy that would be expected by chance alone and is very useful when one or more classes have large frequency distributions.

Usage

```
kap(data, ...)
## S3 method for class 'data.frame'
kap(
  data,
  truth,
  estimate,
 weighting = "none",
  na_rm = TRUE,
  case_weights = NULL,
)
kap_vec(
  truth,
  estimate,
 weighting = "none",
 na_rm = TRUE,
  case_weights = NULL,
)
```

Arguments

data Either a data. frame containing the columns specified by the truth and estimate

arguments, or a table/matrix where the true class results should be in the columns of the table.

... Not currently used.

truth The column identifier for the true class results (that is a factor). This should be

an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() function of a transfer of the column names o

tions, a factor vector.

estimate The column identifier for the predicted class results (that is also factor). As

with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector.

60 kap

weighting A weighting to apply when computing the scores. One of: "none", "linear",

or "quadratic". Linear and quadratic weighting penalizes mis-predictions that are "far away" from the true value. Note that distance is judged based on the ordering of the levels in truth and estimate. It is recommended to provide ordered factors for truth and estimate to explicitly code the ordering, but this

is not required.

In the binary case, all 3 weightings produce the same value, since it is only ever

possible to be 1 unit away from the true value.

na_rm A logical value indicating whether NA values should be stripped before the

computation proceeds.

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For kap_vec(), a single numeric value (or NA).

Multiclass

Kappa extends naturally to multiclass scenarios. Because of this, macro and micro averaging are not implemented.

Author(s)

Max Kuhn

Jon Harmon

References

Cohen, J. (1960). "A coefficient of agreement for nominal scales". *Educational and Psychological Measurement*. 20 (1): 37-46.

Cohen, J. (1968). "Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit". *Psychological Bulletin*. 70 (4): 213-220.

See Also

```
Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(), mcc(), npv(), ppv(), precision(), recall(), sens(), spec()
```

```
library(dplyr)
data("two_class_example")
data("hpc_cv")
```

lift_curve 61

```
# Two class
kap(two_class_example, truth, predicted)

# Multiclass
# kap() has a natural multiclass extension
hpc_cv %>%
   filter(Resample == "Fold01") %>%
   kap(obs, pred)

# Groups are respected
hpc_cv %>%
   group_by(Resample) %>%
   kap(obs, pred)
```

lift_curve

Lift curve

Description

lift_curve() constructs the full lift curve and returns a tibble. See gain_curve() for a closely related concept.

Usage

```
lift_curve(data, ...)
## S3 method for class 'data.frame'
lift_curve(
  data,
    truth,
    ...,
    na_rm = TRUE,
    event_level = yardstick_event_level(),
    case_weights = NULL
)
```

Arguments

truth

data A data. frame containing the columns specified by truth and

A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.

The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions of a transfer of the column names of a transfer of the column names of the column names of a transfer of the column names of the c

tions, a factor vector.

62 lift_curve

na_rm A logical value indicating whether NA values should be stripped before the computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".

case_weights The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

There is a ggplot2::autoplot() method for quickly visualizing the curve. This works for binary and multiclass output, and also works with grouped data (i.e. from resamples). See the examples.

Value

A tibble with class lift_df or lift_grouped_df having columns:

- .n The index of the current sample.
- .n_events The index of the current *unique* sample. Values with repeated estimate values are given identical indices in this column.
- .percent_tested The cumulative percentage of values tested.
- .lift First calculate the cumulative percentage of true results relative to the total number of true results. Then divide that by .percent_tested.

If using the case_weights argument, all of the above columns will be weighted. This makes the most sense with frequency weights, which are integer weights representing the number of times a particular observation should be repeated.

Gain and Lift Curves

The motivation behind cumulative gain and lift charts is as a visual method to determine the effectiveness of a model when compared to the results one might expect without a model. As an example, without a model, if you were to advertise to a random 10% of your customer base, then you might expect to capture 10% of the of the total number of positive responses had you advertised to your entire customer base. Given a model that predicts which customers are more likely to respond, the hope is that you can more accurately target 10% of your customer base and capture >10% of the total number of positive responses.

The calculation to construct lift curves is as follows:

- 1. truth and estimate are placed in descending order by the estimate values (estimate here is a single column supplied in . . .).
- 2. The cumulative number of samples with true results relative to the entire number of true results are found.
- 3. The cumulative % found is divided by the cumulative % tested to construct the lift value. This ratio represents the factor of improvement over an uninformed model. Values >1 represent a valuable model. This is the y-axis of the lift chart.

lift_curve 63

Multiclass

If a multiclass truth column is provided, a one-vs-all approach will be taken to calculate multiple curves, one per level. In this case, there will be an additional column, .level, identifying the "one" column in the one-vs-all calculation.

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Author(s)

Max Kuhn

See Also

Other curve metrics: gain_curve(), pr_curve(), roc_curve()

```
# ------
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
lift_curve(two_class_example, truth, Class1)
# `autoplot()`
library(ggplot2)
library(dplyr)
# Use autoplot to visualize
autoplot(lift_curve(two_class_example, truth, Class1))
# Multiclass one-vs-all approach
# One curve per level
hpc_cv %>%
 filter(Resample == "Fold01") %>%
```

64 mae

```
lift_curve(obs, VF:L) %>%
  autoplot()

# Same as above, but will all of the resamples
hpc_cv %>%
  group_by(Resample) %>%
  lift_curve(obs, VF:L) %>%
  autoplot()
```

lung_surv

Survival Analysis Results

Description

Survival Analysis Results

Details

These data contain plausible results from applying predictive survival models to the lung data set using the censored package.

Value

```
lung_surv a data frame
```

Examples

```
data(lung_surv)
str(lung_surv)
# `surv_obj` is a `Surv()` object
```

mae

Mean absolute error

Description

Calculate the mean absolute error. This metric is in the same units as the original data.

Usage

```
mae(data, ...)
## S3 method for class 'data.frame'
mae(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
mae_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

mae 65

Arguments

data	A data.frame containing the columns specified by the truth and estimate arguments.
• • •	Not currently used.
truth	The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.
estimate	The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data frames, the number of rows returned will be the same as the number of groups.

For mae_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mape(), mse(), mpe(), msd(), poisson_log_loss(), rmse(), smape()
```

```
# Supply truth and predictions as bare column names
mae(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

# create 10 resamples
solubility_resampled <- bind_rows(</pre>
```

mape mape

```
replicate(
    n = times,
    expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
),
    .id = "resample"
)

# Compute the metric by group
metric_results <- solubility_resampled %>%
    group_by(resample) %>%
    mae(solubility, prediction)

metric_results

# Resampled mean estimate
metric_results %>%
    summarise(avg_estimate = mean(.estimate))
```

mape

Mean absolute percent error

Description

Calculate the mean absolute percentage error. This metric is in relative units.

Usage

```
mape(data, ...)
## S3 method for class 'data.frame'
mape(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
mape_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data A data.frame containing the columns specified by the truth and estimate arguments.

......

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be an

unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a

numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with

truth this can be specified different ways but the primary method is to use an

unquoted variable name. For _vec() functions, a numeric vector.

mape 67

na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a
	<pre>numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().</pre>

Details

Note that a value of Inf is returned for mape() when the observed value is negative.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data frames, the number of rows returned will be the same as the number of groups. For mape_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), smape()
```

```
# Supply truth and predictions as bare column names
mape(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
  replicate(
   n = times,
   expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
```

68 mase

```
group_by(resample) %>%
  mape(solubility, prediction)

metric_results

# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))
```

mase

Mean absolute scaled error

Description

Calculate the mean absolute scaled error. This metric is *scale independent* and *symmetric*. It is generally used for comparing forecast error in time series settings. Due to the time series nature of this metric, it is necessary to order observations in ascending order by time.

Usage

```
mase(data, ...)
## S3 method for class 'data.frame'
mase(
 data,
  truth,
  estimate,
 m = 1L
 mae_train = NULL,
  na_rm = TRUE,
  case_weights = NULL,
)
mase_vec(
  truth,
  estimate,
 m = 1L
 mae_train = NULL,
 na_rm = TRUE,
  case_weights = NULL,
)
```

Arguments

data

A data.frame containing the columns specified by the truth and estimate arguments.

mase 69

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be an

unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a

numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with

truth this can be specified different ways but the primary method is to use an

unquoted variable name. For _vec() functions, a numeric vector.

m An integer value of the number of lags used to calculate the in-sample seasonal

naive error. The default is used for non-seasonal time series. If each observation was at the daily level and the data showed weekly seasonality, then m=7L would

be a reasonable choice for a 7-day seasonal naive calculation.

mae_train A numeric value which allows the user to provide the in-sample seasonal naive

mean absolute error. If this value is not provided, then the out-of-sample seasonal naive mean absolute error will be calculated from truth and will be used

instead.

na_rm A logical value indicating whether NA values should be stripped before the

computation proceeds.

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

mase() is different from most numeric metrics. The original implementation of mase() calls for using the *in-sample* naive mean absolute error to compute scaled errors with. It uses this instead of the out-of-sample error because there is a chance that the out-of-sample error cannot be computed when forecasting a very short horizon (i.e. the out of sample size is only 1 or 2). However, yardstick only knows about the out-of-sample truth and estimate values. Because of this, the out-of-sample error is used in the computation by default. If the in-sample naive mean absolute error is required and known, it can be passed through in the mae_train argument and it will be used instead. If the in-sample data is available, the naive mean absolute error can easily be computed with mae(data, truth, lagged_truth).

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For mase_vec(), a single numeric value (or NA).

Author(s)

Alex Hallam

References

Rob J. Hyndman (2006). ANOTHER LOOK AT FORECAST-ACCURACY METRICS FOR INTERMITTENT DEMAND. *Foresight*, 4, 46.

70 mcc

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mpe(), msd(), poisson_log_loss(), rmse(), smape()
```

Examples

```
# Supply truth and predictions as bare column names
mase(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
  replicate(
   n = times,
    expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
  ),
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
  group_by(resample) %>%
  mase(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))
```

 \mbox{mcc}

Matthews correlation coefficient

Description

Matthews correlation coefficient

mcc 71

Usage

```
mcc(data, ...)
## S3 method for class 'data.frame'
mcc(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
mcc_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table. Not currently used. truth The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector. estimate The column identifier for the predicted class results (that is also factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector. A logical value indicating whether NA values should be stripped before the na_rm computation proceeds.

computation proceeds.

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For mcc_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

mcc() has a known multiclass generalization and that is computed automatically if a factor with more than 2 levels is provided. Because of this, no averaging methods are provided.

72 metric-summarizers

Author(s)

Max Kuhn

References

Giuseppe, J. (2012). "A Comparison of MCC and CEN Error Measures in Multi-Class Prediction". *PLOS ONE*. Vol 7, Iss 8, e41882.

See Also

```
Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(), kap(), npv(), ppv(), precision(), recall(), sens(), spec()
```

Examples

```
library(dplyr)
data("two_class_example")
data("hpc_cv")

# Two class
mcc(two_class_example, truth, predicted)

# Multiclass
# mcc() has a natural multiclass extension
hpc_cv %>%
    filter(Resample == "Fold01") %>%
    mcc(obs, pred)

# Groups are respected
hpc_cv %>%
    group_by(Resample) %>%
    mcc(obs, pred)
```

metric-summarizers

Developer function for summarizing new metrics

Description

```
numeric_metric_summarizer(), class_metric_summarizer(), prob_metric_summarizer(), curve_metric_summarizer(), dynamic_survival_metric_summarizer(), and static_survival_metric_summarizer are useful alongside check_metric and yardstick_remove_missing for implementing new custom metrics. These functions call the metric function inside dplyr::summarise() or dplyr::reframe() for curve_metric_summarizer(). See Custom performance metrics for more information.
```

metric-summarizers 73

Usage

```
numeric_metric_summarizer(
  name,
  fn,
  data,
  truth,
  estimate,
  na_rm = TRUE,
  case_weights = NULL,
  fn_options = list(),
  error_call = caller_env()
)
class_metric_summarizer(
  name,
  fn,
  data,
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  event_level = NULL,
  case_weights = NULL,
  fn_options = list(),
  error_call = caller_env()
)
prob_metric_summarizer(
  name,
  fn,
  data,
  truth,
  estimator = NULL,
  na_rm = TRUE,
  event_level = NULL,
  case_weights = NULL,
  fn_options = list(),
  error_call = caller_env()
)
curve_metric_summarizer(
  name,
  fn,
  data,
  truth,
```

74 metric-summarizers

```
...,
  estimator = NULL,
  na_rm = TRUE,
  event_level = NULL,
  case_weights = NULL,
  fn_options = list(),
 error_call = caller_env()
)
dynamic_survival_metric_summarizer(
  name,
  fn,
  data,
  truth,
  na_rm = TRUE,
  case_weights = NULL,
  fn_options = list(),
  error_call = caller_env()
static_survival_metric_summarizer(
  name,
  fn,
  data,
  truth,
  estimate,
  ...,
  na_rm = TRUE,
  case_weights = NULL,
  fn_options = list(),
  error_call = caller_env()
)
curve_survival_metric_summarizer(
  name,
  fn,
  data,
  truth,
 na_rm = TRUE,
  case_weights = NULL,
  fn_options = list(),
 error_call = caller_env()
)
```

metric-summarizers 75

Arguments

name	A single character representing the name of the metric to use in the tibble output. This will be modified to include the type of averaging if appropriate.
fn	The vector version of your custom metric function. It generally takes truth, estimate, na_rm, and any other extra arguments needed to calculate the metric.
data	The data frame with truth and estimate columns passed in from the data frame version of your metric function that called numeric_metric_summarizer(), class_metric_summarizer(), prob_metric_summarizer(), curve_metric_summarizer(), dynamic_survival_metric_summarizer().
truth	The unquoted column name corresponding to the truth column.
estimate	Generally, the unquoted column name corresponding to the estimate column. For metrics that take multiple columns through like class probability metrics, this is a result of dots_to_estimate().
	These dots are for future extensions and must be empty.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds. The removal is executed in yardstick_remove_missing().
case_weights	For metrics supporting case weights, an unquoted column name corresponding to case weights can be passed here. If not NULL, the case weights will be passed on to fn as the named argument case_weights.
fn_options	A named list of metric specific options. These are spliced into the metric function call using !!! from rlang. The default results in nothing being spliced into the call.
error_call	The execution environment of a currently running function, e.g. caller_env(). The function will be mentioned in error messages as the source of the error. See the call argument of abort() for more information.
estimator	This can either be NULL for the default auto-selection of averaging ("binary" or "macro"), or a single character to pass along to the metric implementation describing the kind of averaging to use.
event_level	This can either be NULL to use the default event_level value of the fn or a single string of either "first" or "second" to pass along describing which level should be considered the "event".

Details

numeric_metric_summarizer(), class_metric_summarizer(), prob_metric_summarizer(), curve_metric_summarizer(), dynamic_survival_metric_summarizer(), and dynamic_survival_metric_summarizer are generally called from the data frame version of your metric function. It knows how to call your metric over grouped data frames and returns a tibble consistent with other metrics.

See Also

check_metric yardstick_remove_missing finalize_estimator() dots_to_estimate()

76 metrics

metrics

General Function to Estimate Performance

Description

This function estimates one or more common performance estimates depending on the class of truth (see **Value** below) and returns them in a three column tibble. If you wish to modify the metrics used or how they are used see metric_set().

Usage

```
metrics(data, ...)
## S3 method for class 'data.frame'
metrics(data, truth, estimate, ..., na_rm = TRUE, options = list())
```

Arguments

data	\boldsymbol{A} data.frame containing the columns specified by truth, estimate, and \ldots
•••	A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.
truth	The column identifier for the true results (that is numeric or factor). This should be an unquoted column name although this argument is passed by expression and support quasiquotation (you can unquote column names).
estimate	The column identifier for the predicted results (that is also numeric or factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
options	[deprecated]
	No longer supported as of yardstick 1.0.0. If you pass something here it will be ignored with a warning.
	Previously, these were options passed on to pROC::roc(). If you need support for this, use the pROC package directly.

Value

A three column tibble.

- When truth is a factor, there are rows for accuracy() and the Kappa statistic (kap()).
- When truth has two levels and 1 column of class probabilities is passed to ..., there are rows for the two class versions of mn_log_loss() and roc_auc().

metric_set 77

• When truth has more than two levels and a full set of class probabilities are passed to ..., there are rows for the multiclass version of mn_log_loss() and the Hand Till generalization of roc_auc().

• When truth is numeric, there are rows for rmse(), rsq(), and mae().

See Also

```
metric_set()
```

Examples

```
# Accuracy and kappa
metrics(two_class_example, truth, predicted)

# Add on multinomal log loss and ROC AUC by specifying class prob columns
metrics(two_class_example, truth, predicted, Class1)

# Regression metrics
metrics(solubility_test, truth = solubility, estimate = prediction)

# Multiclass metrics work, but you cannot specify any averaging
# for roc_auc() besides the default, hand_till. Use the specific function
# if you need more customization
library(dplyr)

hpc_cv %>%
    group_by(Resample) %>%
    metrics(obs, pred, VF:L) %>%
    print(n = 40)
```

metric_set

Combine metric functions

Description

metric_set() allows you to combine multiple metric functions together into a new function that calculates all of them at once.

Usage

```
metric_set(...)
```

Arguments

... The bare names of the functions to be included in the metric set.

78 metric_set

Details

All functions must be either:

- Only numeric metrics
- A mix of class metrics or class prob metrics
- A mix of dynamic, integrated, and static survival metrics

For instance, rmse() can be used with mae() because they are numeric metrics, but not with accuracy() because it is a classification metric. But accuracy() can be used with roc_auc().

The returned metric function will have a different argument list depending on whether numeric metrics or a mix of class/prob metrics were passed in.

```
# Numeric metric set signature:
fn(
  data,
  truth,
  estimate,
 na_rm = TRUE,
 case_weights = NULL,
)
# Class / prob metric set signature:
fn(
  data,
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  event_level = yardstick_event_level(),
  case_weights = NULL
)
# Dynamic / integrated / static survival metric set signature:
fn(
  data,
  truth,
  . . . ,
 estimate,
 na_rm = TRUE,
  case\_weights = NULL
)
```

When mixing class and class prob metrics, pass in the hard predictions (the factor column) as the named argument estimate, and the soft predictions (the class probability columns) as bare column names or tidyselect selectors to

metric_set 79

When mixing dynamic, integrated, and static survival metrics, pass in the time predictions as the named argument estimate, and the survival predictions as bare column names or tidyselect selectors to

If metric_tweak() has been used to "tweak" one of these arguments, like estimator or event_level, then the tweaked version wins. This allows you to set the estimator on a metric by metric basis and still use it in a metric_set().

See Also

```
metrics()
```

```
library(dplyr)
# Multiple regression metrics
multi_metric <- metric_set(rmse, rsq, ccc)</pre>
# The returned function has arguments:
# fn(data, truth, estimate, na_rm = TRUE, ...)
multi_metric(solubility_test, truth = solubility, estimate = prediction)
# Groups are respected on the new metric function
class_metrics <- metric_set(accuracy, kap)</pre>
hpc_cv %>%
  group_by(Resample) %>%
  class_metrics(obs, estimate = pred)
# If you need to set options for certain metrics,
# do so by wrapping the metric and setting the options inside the wrapper,
# passing along truth and estimate as quoted arguments.
# Then add on the function class of the underlying wrapped function,
# and the direction of optimization.
ccc_with_bias <- function(data, truth, estimate, na_rm = TRUE, ...) {</pre>
  ccc(
    data = data,
    truth = !!rlang::enquo(truth),
    estimate = !!rlang::enquo(estimate),
    # set bias = TRUE
    bias = TRUE,
    na_rm = na_rm,
}
# Use `new_numeric_metric()` to formalize this new metric function
ccc_with_bias <- new_numeric_metric(ccc_with_bias, "maximize")</pre>
multi_metric2 <- metric_set(rmse, rsq, ccc_with_bias)</pre>
```

80 metric_tweak

```
multi_metric2(solubility_test, truth = solubility, estimate = prediction)

# ------
# A class probability example:

# Note that, when given class or class prob functions,
# metric_set() returns a function with signature:
# fn(data, truth, ..., estimate)
# to be able to mix class and class prob metrics.

# You must provide the `estimate` column by explicitly naming
# the argument

class_and_probs_metrics <- metric_set(roc_auc, pr_auc, accuracy)

hpc_cv %>%
    group_by(Resample) %>%
    class_and_probs_metrics(obs, VF:L, estimate = pred)
```

metric_tweak

Tweak a metric function

Description

metric_tweak() allows you to tweak an existing metric .fn, giving it a new .name and setting new optional argument defaults through It is similar to purrr::partial(), but is designed specifically for yardstick metrics.

metric_tweak() is especially useful when constructing a metric_set() for tuning with the tune package. After the metric set has been constructed, there is no way to adjust the value of any optional arguments (such as beta in f_meas()). Using metric_tweak(), you can set optional arguments to custom values ahead of time, before they go into the metric set.

Usage

```
metric_tweak(.name, .fn, ...)
```

Arguments

.name	A single string giving the name of the new metric. This will be used in the ".metric" column of the output.
.fn	An existing yardstick metric function to tweak.
	Name-value pairs specifying which optional arguments to override and the values to replace them with.

Arguments data, truth, and estimate are considered *protected*, and cannot be overridden, but all other optional arguments can be altered.

mn_log_loss 81

Details

The function returned from metric_tweak() only takes . . . as arguments, which are passed through to the original .fn. Passing data, truth, and estimate through by position should generally be safe, but it is recommended to pass any other optional arguments through by name to ensure that they are evaluated correctly.

Value

A tweaked version of . fn, updated to use new defaults supplied in

Examples

```
mase12 <- metric_tweak("mase12", mase, m = 12)

# Defaults to `m = 1`
mase(solubility_test, solubility, prediction)

# Updated to use `m = 12`. `mase12()` has this set already.
mase(solubility_test, solubility, prediction, m = 12)
mase12(solubility_test, solubility, prediction)

# This is most useful to set optional argument values ahead of time when
# using a metric set
mase10 <- metric_tweak("mase10", mase, m = 10)
metrics <- metric_set(mase, mase10, mase12)
metrics(solubility_test, solubility, prediction)</pre>
```

mn_log_loss

Mean log loss for multinomial data

Description

Compute the logarithmic loss of a classification model.

Usage

```
mn_log_loss(data, ...)
## S3 method for class 'data.frame'
mn_log_loss(
    data,
    truth,
    ...,
    na_rm = TRUE,
    sum = FALSE,
    event_level = yardstick_event_level(),
    case_weights = NULL
)
```

82 mn_log_loss

```
mn_log_loss_vec(
    truth,
    estimate,
    na_rm = TRUE,
    sum = FALSE,
    event_level = yardstick_event_level(),
    case_weights = NULL,
    ...
)
```

Arguments

data	A data.frame containing the columns specified by truth and
	A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
sum	A logical. Should the sum of the likelihood contributions be returned (instead of the mean value)?
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
estimate	If truth is binary, a numeric vector of class probabilities corresponding to the "relevant" class. Otherwise, a matrix with as many columns as factor levels of truth. It is assumed that these are in the same order as the levels of truth.

Details

Log loss is a measure of the performance of a classification model. A perfect model has a log loss of 0.

Compared with accuracy(), log loss takes into account the uncertainty in the prediction and gives a more detailed view into the actual performance. For example, given two input probabilities of .6 and .9 where both are classified as predicting a positive value, say, "Yes", the accuracy metric would interpret them as having the same value. If the true output is "Yes", log loss penalizes .6 because it is "less sure" of it's result compared to the probability of .9.

mn_log_loss 83

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data frames, the number of rows returned will be the same as the number of groups. For mn_log_loss_vec(), a single numeric value (or NA).

Multiclass

Log loss has a known multiclass extension, and is simply the sum of the log loss values for each class prediction. Because of this, no averaging types are supported.

Author(s)

Max Kuhn

See Also

```
Other class probability metrics: average_precision(), brier_class(), classification_cost(), gain_capture(), pr_auc(), roc_auc(), roc_aunp(), roc_aunu()
```

```
# Two class
data("two_class_example")
mn_log_loss(two_class_example, truth, Class1)
# Multiclass
library(dplyr)
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  mn_log_loss(obs, VF:L)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  mn_log_loss(obs, VF:L)
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
  filter(Resample == "Fold01")
mn_log_loss_vec(
  truth = fold1$obs,
 matrix(
   c(fold1$VF, fold1$F, fold1$M, fold1$L),
   ncol = 4
  )
```

84 mpe

```
# Supply `...` with quasiquotation
prob_cols <- levels(two_class_example$truth)
mn_log_loss(two_class_example, truth, Class1)
mn_log_loss(two_class_example, truth, !!prob_cols[1])</pre>
```

mpe

Mean percentage error

Description

Calculate the mean percentage error. This metric is in *relative units*. It can be used as a measure of the estimate's bias.

Note that if any truth values are 0, a value of: -Inf (estimate > 0), Inf (estimate < 0), or NaN (estimate == 0) is returned for mpe().

Usage

```
mpe(data, ...)
## S3 method for class 'data.frame'
mpe(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
mpe_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data	A data.frame containing the columns specified by the truth and estimate arguments.
	Not currently used.
truth	The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.
estimate	The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

mpe 85

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For mpe_vec(), a single numeric value (or NA).

Author(s)

Thomas Bierhance

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), msd(), poisson_log_loss(), rmse(), smape()
```

```
# `solubility_test$solubility` has zero values with corresponding
# `$prediction` values that are negative. By definition, this causes `Inf`
# to be returned from `mpe()`.
solubility_test[solubility_test$solubility == 0, ]
mpe(solubility_test, solubility, prediction)
# We'll remove the zero values for demonstration
solubility_test <- solubility_test[solubility_test$solubility != 0, ]</pre>
# Supply truth and predictions as bare column names
mpe(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
  replicate(
   n = times,
   expr = sample_n(solubility_test, size, replace = TRUE),
   simplify = FALSE
  .id = "resample"
# Compute the metric by group
metric_results <- solubility_resampled %>%
  group_by(resample) %>%
```

86 msd

```
mpe(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))
```

msd

Mean signed deviation

Description

Mean signed deviation (also known as mean signed difference, or mean signed error) computes the average differences between truth and estimate. A related metric is the mean absolute error (mae()).

Usage

```
msd(data, ...)
## S3 method for class 'data.frame'
msd(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
msd_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

 ${\tt case_weights}$

data	\boldsymbol{A} data.frame containing the columns specified by the truth and estimate arguments.
	Not currently used.
truth	The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.
estimate	The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.

The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

msd 87

Details

Mean signed deviation is rarely used, since positive and negative errors cancel each other out. For example, $msd_vec(c(100, -100), c(0, 0))$ would return a seemingly "perfect" value of 0, even though estimate is wildly different from truth. mae() attempts to remedy this by taking the absolute value of the differences before computing the mean.

This metric is computed as mean(truth - estimate), following the convention that an "error" is computed as observed - predicted. If you expected this metric to be computed as mean(estimate - truth), reverse the sign of the result.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For msd_vec(), a single numeric value (or NA).

Author(s)

Thomas Bierhance

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), poisson_log_loss(), rmse(), smape()
```

```
# Supply truth and predictions as bare column names
msd(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
  replicate(
    n = times,
    expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
```

88 new-metric

```
group_by(resample) %>%
  msd(solubility, prediction)

metric_results

# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))
```

new-metric

Construct a new metric function

Description

These functions provide convenient wrappers to create the three types of metric functions in yard-stick: numeric metrics, class metrics, and class probability metrics. They add a metric-specific class to fn and attach a direction attribute. These features are used by metric_set() and by tune when model tuning.

See Custom performance metrics for more information about creating custom metrics.

Usage

```
new_class_metric(fn, direction)
new_prob_metric(fn, direction)
new_numeric_metric(fn, direction)
new_dynamic_survival_metric(fn, direction)
new_integrated_survival_metric(fn, direction)
new_static_survival_metric(fn, direction)
```

Arguments

fn

A function. The metric function to attach a metric-specific class and direction attribute to.

direction

A string. One of:

- "maximize"
- "minimize"
- "zero"

```
new_groupwise_metric Create groupwise metrics
```

Description

Groupwise metrics quantify the disparity in value of a metric across a number of groups. Groupwise metrics with a value of zero indicate that the underlying metric is equal across groups. yard-stick defines several common fairness metrics using this function, such as demographic_parity(), equal_opportunity(), and equalized_odds().

Usage

```
new_groupwise_metric(fn, name, aggregate, direction = "minimize")
```

Arguments

fn A yardstick metric function or metric set.

name The name of the metric to place in the .metric column of the output.

aggregate A function to summarize the generated metric set results. The function takes

metric set results as the first argument and returns a single numeric giving the .estimate value as output. See the Value and Examples sections for example

uses.

direction A string. One of:

• "maximize"

• "minimize"

• "zero"

Details

Note that *all* yardstick metrics are group-aware in that, when passed grouped data, they will return metric values calculated for each group. When passed grouped data, groupwise metrics also return metric values for each group, but those metric values are calculated by first additionally grouping by the variable passed to by and then summarizing the per-group metric estimates across groups using the function passed as the aggregate argument. Learn more about grouping behavior in yardstick using vignette("grouping", "yardstick").

Value

This function is a function factory; it's output is itself a function. Further, the functions that this function outputs are also function factories. More explicitly, this looks like:

```
# a function with similar implementation to `demographic_parity()`:
diff_range <- function(x) {diff(range(x$.estimate))}
dem_parity <-
new_groupwise_metric(</pre>
```

```
fn = detection_prevalence,
name = "dem_parity",
aggregate = diff_range
)
```

The outputted dem_parity is a function that takes one argument, by, indicating the data-masked variable giving the sensitive feature.

When called with a by argument, dem_parity will return a yardstick metric function like any other:

```
dem_parity_by_gender <- dem_parity(gender)</pre>
```

Note that dem_parity doesn't take any arguments other than by, and thus knows nothing about the data it will be applied to other than that it ought to have a column with name "gender" in it.

The output dem_parity_by_gender is a metric function that takes the same arguments as the function supplied as fn, in this case detection_prevalence. It will thus interface like any other yard-stick function except that it will look for a "gender" column in the data it's supplied.

In addition to the examples below, see the documentation on the return value of fairness metrics like demographic_parity(), equal_opportunity(), or equalized_odds() to learn more about how the output of this function can be used.

Relevant Group Level

Additional arguments can be passed to the function outputted by the function that this function outputs. That is:

```
res_fairness <- new_groupwise_metric(...)
res_by <- res_fairness(by)
res_by(..., additional_arguments_to_aggregate = TRUE)</pre>
```

For finer control of how groups in by are treated, use the aggregate argument.

```
data(hpc_cv)

# `demographic_parity`, among other fairness metrics,
# is generated with `new_groupwise_metric()`:
diff_range <- function(x) {diff(range(x$.estimate))}
demographic_parity_ <-
    new_groupwise_metric(
    fn = detection_prevalence,
        name = "demographic_parity",
        aggregate = diff_range
)

m_set <- metric_set(demographic_parity_(Resample))

m_set(hpc_cv, truth = obs, estimate = pred)</pre>
```

npv 91

```
# the `post` argument can be used to accommodate a wide
# variety of parameterizations. to encode demographic
# parity as a ratio inside of a difference, for example:
ratio_range <- function(x, ...) {
  range <- range(x$.estimate)
  range[1] / range[2]
}

demographic_parity_ratio <-
  new_groupwise_metric(
  fn = detection_prevalence,
  name = "demographic_parity_ratio",
  aggregate = ratio_range
)</pre>
```

npv

Negative predictive value

Description

These functions calculate the npv() (negative predictive value) of a measurement system compared to a reference result (the "truth" or gold standard). Highly related functions are spec(), sens(), and ppv().

Usage

```
npv(data, ...)
## S3 method for class 'data.frame'
npv(
  data,
  truth,
  estimate,
  prevalence = NULL,
  estimator = NULL,
  na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
)
npv_vec(
  truth,
  estimate,
 prevalence = NULL,
  estimator = NULL,
  na_rm = TRUE,
```

92 npv

```
case_weights = NULL,
event_level = yardstick_event_level(),
...
)
```

Arguments

data	Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.
	Not currently used.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
estimate	The column identifier for the predicted class results (that is also factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector.
prevalence	A numeric value for the rate of the "positive" class of the data.
estimator	One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator =

"binary". The default uses an internal helper that defaults to "first".

Details

The positive predictive value (ppv()) is defined as the percent of predicted positives that are actually positive while the negative predictive value (npv()) is defined as the percent of negative positives that are actually negative.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For npv_vec(), a single numeric value (or NA).

npv 93

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

Reference	
Positive	Negative
A	В
C	D
	Positive A

The formulas used here are:

$$Sensitivity = A/(A+C)$$

$$Specificity = D/(B+D)$$

$$Prevalence = (A+C)/(A+B+C+D)$$

 $PPV = (Sensitivity*Prevalence) + ((1 - Specificity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) + (((1 - Sensitivity)*Prevalence) + ((Specificity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*Prevalence) + ((Specificity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*Prevalence) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence))) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence))) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Prevalence))) \\ ((1 - Sensitivity)*(1 - Prevalence)) + ((1 - Sensitivity)*(1 - Pr$

See the references for discussions of the statistics.

Author(s)

Max Kuhn

References

Altman, D.G., Bland, J.M. (1994) "Diagnostic tests 2: predictive values," *British Medical Journal*, vol 309, 102.

See Also

```
Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(), kap(), mcc(), ppv(), precision(), recall(), sens(), spec()

Other sensitivity metrics: ppv(), sens(), spec()
```

94 pathology

Examples

```
# Two class
data("two_class_example")
npv(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  npv(obs, pred)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  npv(obs, pred)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  npv(obs, pred, estimator = "macro_weighted")
# Vector version
npv_vec(
  two_class_example$truth,
  two_class_example$predicted
)
# Making Class2 the "relevant" level
npv_vec(
  two_class_example$truth,
  two_class_example$predicted,
  event_level = "second"
)
```

pathology

Liver Pathology Data

Description

Liver Pathology Data

Details

These data have the results of a *x*-ray examination to determine whether liver is abnormal or not (in the scan column) versus the more extensive pathology results that approximate the truth (in pathology).

poisson_log_loss 95

Value

```
pathology a data frame
```

Source

Altman, D.G., Bland, J.M. (1994) "Diagnostic tests 1: sensitivity and specificity," *British Medical Journal*, vol 308, 1552.

Examples

```
data(pathology)
str(pathology)
```

poisson_log_loss

Mean log loss for Poisson data

Description

Calculate the loss function for the Poisson distribution.

Usage

```
poisson_log_loss(data, ...)
## S3 method for class 'data.frame'
poisson_log_loss(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
poisson_log_loss_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data	A data.frame	containing the colu	umns specified by	the truth and	estimate

arguments.

... Not currently used.

truth The column identifier for the true counts (that is integer). This should be an

unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions,

an integer vector.

estimate The column identifier for the predicted results (that is also numeric). As with

truth this can be specified different ways but the primary method is to use an

unquoted variable name. For _vec() functions, a numeric vector.

na_rm A logical value indicating whether NA values should be stripped before the

computation proceeds.

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data frames, the number of rows returned will be the same as the number of groups.

For poisson_log_loss_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), rmse(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), rmse(), smape()
```

Examples

```
count_truth <- c(2L, 7L, 1L, 0L, 3L)
count_pred <- c(2.14, 5.35, 1.65, 1.56, 1.3, 2.71)
count_results <- dplyr::tibble(count = count_truth, pred = count_pred)
# Supply truth and predictions as bare column names
poisson_log_loss(count_results, count, pred)</pre>
```

ррν

Positive predictive value

Description

These functions calculate the ppv() (positive predictive value) of a measurement system compared to a reference result (the "truth" or gold standard). Highly related functions are spec(), sens(), and npv().

Usage

```
ppv(data, ...)
## S3 method for class 'data.frame'
ppv(
   data,
   truth,
   estimate,
   prevalence = NULL,
   estimator = NULL,
   na_rm = TRUE,
```

```
case_weights = NULL,
  event_level = yardstick_event_level(),
    ...
)

ppv_vec(
  truth,
  estimate,
  prevalence = NULL,
  estimator = NULL,
  case_weights = NULL,
  event_level = yardstick_event_level(),
    ...
)
```

Arguments

data	Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.
	Not currently used.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
estimate	The column identifier for the predicted class results (that is also factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector.
prevalence	A numeric value for the rate of the "positive" class of the data.
estimator	One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".

Details

The positive predictive value (ppv()) is defined as the percent of predicted positives that are actually positive while the negative predictive value (npv()) is defined as the percent of negative positives that are actually negative.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For ppv_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

	Reference	
Predicted	Positive	Negative
Positive	A	В
Negative	C	D

The formulas used here are:

$$Sensitivity = A/(A+C)$$

$$Specificity = D/(B+D)$$

$$Prevalence = (A+C)/(A+B+C+D)$$

$$PPV = (Sensitivity*Prevalence)/((Sensitivity*Prevalence)+((1-Specificity)*(1-Prevalence)))$$

$$NPV = (Specificity*(1-Prevalence))/(((1-Sensitivity)*Prevalence)+((Specificity)*(1-Prevalence)))$$

See the references for discussions of the statistics.

Author(s)

Max Kuhn

References

Altman, D.G., Bland, J.M. (1994) "Diagnostic tests 2: predictive values," *British Medical Journal*, vol 309, 102.

See Also

```
Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(), kap(), mcc(), npv(), precision(), recall(), sens(), spec()

Other sensitivity metrics: npv(), sens(), spec()
```

```
# Two class
data("two_class_example")
ppv(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  ppv(obs, pred)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  ppv(obs, pred)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  ppv(obs, pred, estimator = "macro_weighted")
# Vector version
ppv_vec(
  two_class_example$truth,
  two_class_example$predicted
)
# Making Class2 the "relevant" level
ppv_vec(
  two_class_example$truth,
  two_class_example$predicted,
  event_level = "second"
# But what if we think that Class 1 only occurs 40% of the time?
ppv(two_class_example, truth, predicted, prevalence = 0.40)
```

100 precision

precision

Precision

Description

These functions calculate the precision() of a measurement system for finding relevant documents compared to reference results (the truth regarding relevance). Highly related functions are recall() and f_meas().

Usage

```
precision(data, ...)
## S3 method for class 'data.frame'
precision(
  data,
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
)
precision_vec(
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
)
```

Arguments

data

Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.

. . .

Not currently used.

truth

The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.

precision 101

estimate	The column identifier for the predicted class results (that is also factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector.
estimator	One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".

Details

The precision is the percentage of predicted truly relevant results of the total number of predicted relevant results and characterizes the "purity in retrieval performance" (Buckland and Gey, 1994).

When the denominator of the calculation is 0, precision is undefined. This happens when both # true_positive = 0 and # false_positive = 0 are true, which mean that there were no predicted events. When computing binary precision, a NA value will be returned with a warning. When computing multiclass precision, the individual NA values will be removed, and the computation will procede, with a warning.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For precision_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

102 precision

Implementation

Suppose a 2x2 table with notation:

	Reference	
Predicted	Relevant	Irrelevant
Relevant	A	В
Irrelevant	C	D

The formulas used here are:

$$recall = A/(A+C)$$

$$precision = A/(A+B)$$

$$F_{meas} = (1+\beta^2) * precision * recall/((\beta^2 * precision) + recall)$$

See the references for discussions of the statistics.

Author(s)

Max Kuhn

References

Buckland, M., & Gey, F. (1994). The relationship between Recall and Precision. *Journal of the American Society for Information Science*, 45(1), 12-19.

Powers, D. (2007). Evaluation: From Precision, Recall and F Factor to ROC, Informedness, Markedness and Correlation. Technical Report SIE-07-001, Flinders University

See Also

```
Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(), kap(), mcc(), npv(), ppv(), recall(), sens(), spec()

Other relevance metrics: f_meas(), recall()
```

```
# Two class
data("two_class_example")
precision(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  precision(obs, pred)
```

pr_auc 103

```
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  precision(obs, pred)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  precision(obs, pred, estimator = "macro_weighted")
# Vector version
precision_vec(
  two_class_example$truth,
  two_class_example$predicted
)
# Making Class2 the "relevant" level
precision_vec(
  two_class_example$truth,
  two_class_example$predicted,
  event_level = "second"
)
```

pr_auc

Area under the precision recall curve

Description

pr_auc() is a metric that computes the area under the precision recall curve. See pr_curve() for the full curve.

Usage

```
pr_auc(data, ...)

## $3 method for class 'data.frame'
pr_auc(
    data,
    truth,
    ...,
    estimator = NULL,
    na_rm = TRUE,
    event_level = yardstick_event_level(),
    case_weights = NULL
)

pr_auc_vec(
    truth,
    estimate,
```

pr_auc

```
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
case_weights = NULL,
...
)
```

Arguments

data	A data.frame containing the columns specified by truth and
•••	A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
estimator	One of "binary", "macro", or "macro_weighted" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other two are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on truth.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
estimate	If truth is binary, a numeric vector of class probabilities corresponding to the "relevant" class. Otherwise, a matrix with as many columns as factor levels of truth. <i>It is assumed that these are in the same order as the levels of</i> truth.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For pr_auc_vec(), a single numeric value (or NA).

Multiclass

Macro and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

pr_auc 105

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Author(s)

Max Kuhn

See Also

```
pr_curve() for computing the full precision recall curve.

Other class probability metrics: average_precision(), brier_class(), classification_cost(),
gain_capture(), mn_log_loss(), roc_auc(), roc_aunp(), roc_aunu()
```

```
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
pr_auc(two_class_example, truth, Class1)
# Multiclass example
# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 pr_auc(obs, VF:L)
# Change the first level of `obs` from `"VF"` to `"M"` to alter the
# event of interest. The class probability columns should be supplied
# in the same order as the levels.
```

pr_curve

```
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  mutate(obs = relevel(obs, "M")) %>%
  pr_auc(obs, M, VF:L)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  pr_auc(obs, VF:L)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  pr_auc(obs, VF:L, estimator = "macro_weighted")
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
  filter(Resample == "Fold01")
pr_auc_vec(
  truth = fold1$obs,
  matrix(
    c(fold1$VF, fold1$F, fold1$M, fold1$L),
    ncol = 4
   )
)
```

pr_curve

Precision recall curve

Description

pr_curve() constructs the full precision recall curve and returns a tibble. See pr_auc() for the area under the precision recall curve.

Usage

```
pr_curve(data, ...)

## S3 method for class 'data.frame'
pr_curve(
  data,
  truth,
    ...,
  na_rm = TRUE,
  event_level = yardstick_event_level(),
  case_weights = NULL
)
```

pr_curve 107

Arguments

data	A data. frame containing the columns specified by truth and
	A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

pr_curve() computes the precision at every unique value of the probability column (in addition to infinity).

There is a ggplot2::autoplot() method for quickly visualizing the curve. This works for binary and multiclass output, and also works with grouped data (i.e. from resamples). See the examples.

Value

A tibble with class pr_df or pr_grouped_df having columns . threshold, recall, and precision.

Multiclass

If a multiclass truth column is provided, a one-vs-all approach will be taken to calculate multiple curves, one per level. In this case, there will be an additional column, .level, identifying the "one" column in the one-vs-all calculation.

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

108 pr_curve

Author(s)

Max Kuhn

See Also

Compute the area under the precision recall curve with pr_auc().

Other curve metrics: gain_curve(), lift_curve(), roc_curve()

```
# ------
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
pr_curve(two_class_example, truth, Class1)
# `autoplot()`
# Visualize the curve using ggplot2 manually
library(ggplot2)
library(dplyr)
pr_curve(two_class_example, truth, Class1) %>%
 ggplot(aes(x = recall, y = precision)) +
 geom_path() +
 coord_equal() +
 theme_bw()
# Or use autoplot
autoplot(pr_curve(two_class_example, truth, Class1))
# Multiclass one-vs-all approach
# One curve per level
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 pr_curve(obs, VF:L) %>%
 autoplot()
# Same as above, but will all of the resamples
hpc_cv %>%
 group_by(Resample) %>%
 pr_curve(obs, VF:L) %>%
 autoplot()
```

recall 109

recall Recall

Description

These functions calculate the recall() of a measurement system for finding relevant documents compared to reference results (the truth regarding relevance). Highly related functions are precision() and f_meas().

Usage

```
recall(data, ...)
## S3 method for class 'data.frame'
recall(
  data,
  truth,
  estimate,
 estimator = NULL,
 na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
)
recall_vec(
  truth,
 estimate,
 estimator = NULL,
 na_rm = TRUE,
 case_weights = NULL,
 event_level = yardstick_event_level(),
)
```

Arguments

data

Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.

. . .

Not currently used.

truth

The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.

110 recall

estimate The column identifier for the predicted class results (that is also factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector. estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate. A logical value indicating whether NA values should be stripped before the na_rm computation proceeds. case_weights The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights(). A single string. Either "first" or "second" to specify which level of truth event_level to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".

Details

The recall (aka sensitivity) is defined as the proportion of relevant results out of the number of samples which were actually relevant. When there are no relevant results, recall is not defined and a value of NA is returned.

When the denominator of the calculation is 0, recall is undefined. This happens when both # true_positive = 0 and # false_negative = 0 are true, which mean that there were no true events. When computing binary recall, a NA value will be returned with a warning. When computing multiclass recall, the individual NA values will be removed, and the computation will procede, with a warning.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For recall_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

recall 111

Implementation

Suppose a 2x2 table with notation:

	Reference	
Predicted	Relevant	Irrelevant
Relevant	A	В
Irrelevant	C	D

The formulas used here are:

$$recall = A/(A+C)$$

$$precision = A/(A+B)$$

$$F_{meas} = (1+\beta^2) * precision * recall/((\beta^2 * precision) + recall)$$

See the references for discussions of the statistics.

Author(s)

Max Kuhn

References

Buckland, M., & Gey, F. (1994). The relationship between Recall and Precision. *Journal of the American Society for Information Science*, 45(1), 12-19.

Powers, D. (2007). Evaluation: From Precision, Recall and F Factor to ROC, Informedness, Markedness and Correlation. Technical Report SIE-07-001, Flinders University

See Also

```
Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(), kap(), mcc(), npv(), ppv(), precision(), sens(), spec()

Other relevance metrics: f_meas(), precision()
```

```
# Two class
data("two_class_example")
recall(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  recall(obs, pred)
```

112 rmse

```
# Groups are respected
hpc_cv %>%
 group_by(Resample) %>%
 recall(obs, pred)
# Weighted macro averaging
hpc_cv %>%
 group_by(Resample) %>%
 recall(obs, pred, estimator = "macro_weighted")
# Vector version
recall_vec(
 two_class_example$truth,
 two_class_example$predicted
# Making Class2 the "relevant" level
recall_vec(
 two_class_example$truth,
 two_class_example$predicted,
 event_level = "second"
)
```

rmse

Root mean squared error

Description

Calculate the root mean squared error. rmse() is a metric that is in the same units as the original data.

Usage

```
rmse(data, ...)
## S3 method for class 'data.frame'
rmse(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
rmse_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data $\hspace{1cm} A \hspace{1cm} \text{data.frame containing the columns specified by the truth and estimate}$

arguments.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be an

unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a

numeric vector.

rmse 113

The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.

A logical value indicating whether NA values should be stripped before the computation proceeds.

Case_weights

The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data frames, the number of rows returned will be the same as the number of groups.

For rmse_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rpd(), rpiq(), rsq_trad(), rsq(), smape()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), smape()
```

```
# Supply truth and predictions as bare column names
rmse(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
 replicate(
   n = times,
    expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
 group_by(resample) %>%
```

```
rmse(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))
```

roc_auc

Area under the receiver operator curve

Description

roc_auc() is a metric that computes the area under the ROC curve. See roc_curve() for the full curve.

Usage

```
roc_auc(data, ...)
## S3 method for class 'data.frame'
roc_auc(
 data,
 truth,
  . . . ,
 estimator = NULL,
 na_rm = TRUE,
 event_level = yardstick_event_level(),
  case_weights = NULL,
  options = list()
)
roc_auc_vec(
  truth,
 estimate,
 estimator = NULL,
 na_rm = TRUE,
 event_level = yardstick_event_level(),
 case_weights = NULL,
 options = list(),
)
```

Arguments

data

A data. frame containing the columns specified by truth and

A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.

The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() func-

tions, a factor vector.

estimator One of "binary", "hand_till", "macro", or "macro_weighted" to specify

the type of averaging to be done. "binary" is only relevant for the two class case. The others are general methods for calculating multiclass metrics. The default will automatically choose "binary" if truth is binary, "hand_till" if truth has >2 levels and case_weights isn't specified, or "macro" if truth has >2 levels and case_weights is specified (in which case "hand_till" isn't

well-defined).

na_rm A logical value indicating whether NA values should be stripped before the

computation proceeds.

event_level A single string. Either "first" or "second" to specify which level of truth

to consider as the "event". This argument is only applicable when estimator =

"binary". The default uses an internal helper that defaults to "first".

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

options [deprecated]

No longer supported as of yardstick 1.0.0. If you pass something here it will be

ignored with a warning.

Previously, these were options passed on to pROC::roc(). If you need support

for this, use the pROC package directly.

estimate If truth is binary, a numeric vector of class probabilities corresponding to the

"relevant" class. Otherwise, a matrix with as many columns as factor levels of truth. *It is assumed that these are in the same order as the levels of* truth.

Details

truth

Generally, an ROC AUC value is between 0.5 and 1, with 1 being a perfect prediction model. If your value is between 0 and 0.5, then this implies that you have meaningful information in your model, but it is being applied incorrectly because doing the opposite of what the model predicts would result in an AUC > 0.5.

Note that you can't combine estimator = "hand_till" with case_weights.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For roc_auc_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

The default multiclass method for computing roc_auc() is to use the method from Hand, Till, (2001). Unlike macro-averaging, this method is insensitive to class distributions like the binary ROC AUC case. Additionally, while other multiclass techniques will return NA if any levels in truth occur zero times in the actual data, the Hand-Till method will simply ignore those levels in the averaging calculation, with a warning.

Macro and macro-weighted averaging are still provided, even though they are not the default. In fact, macro-weighted averaging corresponds to the same definition of multiclass AUC given by Provost and Domingos (2001).

Author(s)

Max Kuhn

References

Hand, Till (2001). "A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems". *Machine Learning*. Vol 45, Iss 2, pp 171-186.

Fawcett (2005). "An introduction to ROC analysis". *Pattern Recognition Letters*. 27 (2006), pp 861-874.

Provost, F., Domingos, P., 2001. "Well-trained PETs: Improving probability estimation trees", CeDER Working Paper #IS-00-04, Stern School of Business, New York University, NY, NY 10012.

See Also

```
roc_curve() for computing the full ROC curve.
```

```
Other class probability metrics: average_precision(), brier_class(), classification_cost(), gain_capture(), mn_log_loss(), pr_auc(), roc_aunp(), roc_aunu()
```

```
# ------
# Two class example

# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.

data(two_class_example)
```

```
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
roc_auc(two_class_example, truth, Class1)
# ------
# Multiclass example
# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 roc_auc(obs, VF:L)
# Change the first level of `obs` from `"VF"` to `"M"` to alter the
# event of interest. The class probability columns should be supplied
# in the same order as the levels.
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 mutate(obs = relevel(obs, "M")) %>%
 roc_auc(obs, M, VF:L)
# Groups are respected
hpc_cv %>%
 group_by(Resample) %>%
 roc_auc(obs, VF:L)
# Weighted macro averaging
hpc_cv %>%
 group_by(Resample) %>%
 roc_auc(obs, VF:L, estimator = "macro_weighted")
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
 filter(Resample == "Fold01")
roc_auc_vec(
  truth = fold1$obs,
  matrix(
    c(fold1$VF, fold1$F, fold1$M, fold1$L),
    ncol = 4
  )
)
```

118 roc_auc_survival

roc_auc_survival	Time-Dependent ROC AUC for Censored Data

Description

Compute the area under the ROC survival curve using predicted survival probabilities that corresponds to different time points.

Usage

```
roc_auc_survival(data, ...)
## S3 method for class 'data.frame'
roc_auc_survival(data, truth, ..., na_rm = TRUE, case_weights = NULL)
roc_auc_survival_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

O	
data	A data.frame containing the columns specified by truth and
•••	The column identifier for the survival probabilities this should be a list column of data.frames corresponding to the output given when predicting with censored model. This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, the dots are not used.
truth	The column identifier for the true survival result (that is created using survival::Surv().). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, an survival::Surv() object.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
estimate	A list column of data.frames corresponding to the output given when predicting with censored model. See the details for more information regarding format.

Details

This formulation takes survival probability predictions at one or more specific *evaluation times* and, for each time, computes the area under the ROC curve. To account for censoring, inverse probability of censoring weights (IPCW) are used in the calculations. See equation 7 of section 4.3 in Blanche *at al* (2013) for the details.

The column passed to ... should be a list column with one element per independent experiential unit (e.g. patient). The list column should contain data frames with several columns:

roc_auc_survival 119

- .eval_time: The time that the prediction is made.
- .pred_survival: The predicted probability of survival up to .eval_time
- .weight_censored: The case weight for the inverse probability of censoring.

The last column can be produced using parsnip::.censoring_weights_graf(). This corresponds to the weighting scheme of Graf *et al* (1999). The internal data set lung_surv shows an example of the format.

This method automatically groups by the .eval_time argument.

Larger values of the score are associated with better model performance.

Value

A tibble with columns .metric, .estimator, and .estimate.

For an ungrouped data frame, the result has one row of values. For a grouped data frame, the number of rows returned is the same as the number of groups.

For roc_auc_survival_vec(), a numeric vector same length as the input argument eval_time. (or NA).

Author(s)

Emil Hvitfeldt

References

Blanche, P., Dartigues, J.-F. and Jacqmin-Gadda, H. (2013), Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring. *Biom. J.*, 55: 687-704.

Graf, E., Schmoor, C., Sauerbrei, W. and Schumacher, M. (1999), Assessment and comparison of prognostic classification schemes for survival data. *Statist. Med.*, 18: 2529-2545.

See Also

Compute the ROC survival curve with roc_curve_survival().

Other dynamic survival metrics: brier_survival_integrated(), brier_survival()

```
library(dplyr)

lung_surv %>%
  roc_auc_survival(
    truth = surv_obj,
    .pred
)
```

120 roc_aunp

Area under the ROC curve of each class against the rest, using the a roc_aunp priori class distribution

Description

roc_aunp() is a multiclass metric that computes the area under the ROC curve of each class against the rest, using the a priori class distribution. This is equivalent to roc_auc(estimator = "macro_weighted").

Usage

```
roc_aunp(data, ...)
## S3 method for class 'data.frame'
roc_aunp(data, truth, ..., na_rm = TRUE, case_weights = NULL, options = list())
roc_aunp_vec(
  truth,
  estimate,
  na_rm = TRUE,
  case_weights = NULL,
  options = list(),
)
```

Arguments

data	A data.frame containing the columns specified by truth and
	A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. There should be as many columns as factor levels of truth.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
options	[deprecated]
	No longer supported as of yardstick 1.0.0. If you pass something here it will be

ignored with a warning. Previously, these were options passed on to pROC::roc(). If you need support for this, use the pROC package directly.

roc_aunp 121

estimate

A matrix with as many columns as factor levels of truth. *It is assumed that these are in the same order as the levels of* truth.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For roc_aunp_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

This multiclass method for computing the area under the ROC curve uses the a priori class distribution and is equivalent to roc_auc(estimator = "macro_weighted").

Author(s)

Julia Silge

References

Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). "An experimental comparison of performance measures for classification". *Pattern Recognition Letters*. 30 (1), pp 27-38.

See Also

roc_aunu() for computing the area under the ROC curve of each class against the rest, using the uniform class distribution.

```
Other class probability metrics: average_precision(), brier_class(), classification_cost(), gain_capture(), mn_log_loss(), pr_auc(), roc_auc(), roc_aunu()
```

```
# Multiclass example

# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(hpc_cv)

# You can use the col1:colN tidyselect syntax
library(dplyr)
```

roc_aunu

```
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 roc_aunp(obs, VF:L)
# Change the first level of `obs` from `"VF"` to `"M"` to alter the
# event of interest. The class probability columns should be supplied
# in the same order as the levels.
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 mutate(obs = relevel(obs, "M")) %>%
 roc_aunp(obs, M, VF:L)
# Groups are respected
hpc_cv %>%
 group_by(Resample) %>%
 roc_aunp(obs, VF:L)
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
 filter(Resample == "Fold01")
roc_aunp_vec(
 truth = fold1$obs,
 matrix(
   c(fold1$VF, fold1$F, fold1$M, fold1$L),
   ncol = 4
 )
)
```

roc_aunu

Area under the ROC curve of each class against the rest, using the uniform class distribution

Description

roc_aunu() is a multiclass metric that computes the area under the ROC curve of each class against the rest, using the uniform class distribution. This is equivalent to roc_auc(estimator = "macro").

Usage

```
roc_aunu(data, ...)
## S3 method for class 'data.frame'
roc_aunu(data, truth, ..., na_rm = TRUE, case_weights = NULL, options = list())
roc_aunu_vec(
   truth,
```

roc_aunu 123

```
estimate,
na_rm = TRUE,
case_weights = NULL,
options = list(),
...
)
```

Arguments

data	A data.frame containing the columns specified by truth and
	A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. There should be as many columns as factor levels of truth.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
options	[deprecated]
	No longer supported as of yardstick 1.0.0. If you pass something here it will be ignored with a warning.
	Previously, these were options passed on to pROC::roc(). If you need support for this, use the pROC package directly.
estimate	A matrix with as many columns as factor levels of truth. <i>It is assumed that these are in the same order as the levels of</i> truth.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For roc_aunu_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

124 roc_aunu

Multiclass

This multiclass method for computing the area under the ROC curve uses the uniform class distribution and is equivalent to roc_auc(estimator = "macro").

Author(s)

Julia Silge

References

Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). "An experimental comparison of performance measures for classification". *Pattern Recognition Letters*. 30 (1), pp 27-38.

See Also

roc_aunp() for computing the area under the ROC curve of each class against the rest, using the a priori class distribution.

```
Other class probability metrics: average_precision(), brier_class(), classification_cost(), gain_capture(), mn_log_loss(), pr_auc(), roc_auc(), roc_aunp()
```

```
# Multiclass example
# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  roc_aunu(obs, VF:L)
# Change the first level of `obs` from `"VF"` to `"M"` to alter the
# event of interest. The class probability columns should be supplied
# in the same order as the levels.
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  mutate(obs = relevel(obs, "M")) %>%
  roc_aunu(obs, M, VF:L)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  roc_aunu(obs, VF:L)
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
```

roc_curve 125

```
filter(Resample == "Fold01")

roc_aunu_vec(
   truth = fold1$obs,
   matrix(
     c(fold1$VF, fold1$F, fold1$M, fold1$L),
     ncol = 4
   )
)
```

roc_curve

Receiver operator curve

Description

roc_curve() constructs the full ROC curve and returns a tibble. See roc_auc() for the area under the ROC curve.

Usage

```
roc_curve(data, ...)
## S3 method for class 'data.frame'
roc_curve(
  data,
    truth,
    ...,
    na_rm = TRUE,
    event_level = yardstick_event_level(),
    case_weights = NULL,
    options = list()
)
```

Arguments

data	A data.frame containing the columns specified by truth and
	A set of unquoted column names or one or more dplyr selector functions to choose which variables contain the class probabilities. If truth is binary, only 1 column should be selected, and it should correspond to the value of event_level. Otherwise, there should be as many columns as factor levels of truth and the ordering of the columns should be the same as the factor levels of truth.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.

126 roc_curve

event_level A single string. Either "first" or "second" to specify which level of truth

to consider as the "event". This argument is only applicable when estimator =

"binary". The default uses an internal helper that defaults to "first".

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

options [deprecated]

No longer supported as of yardstick 1.0.0. If you pass something here it will be

ignored with a warning.

Previously, these were options passed on to pROC::roc(). If you need support

for this, use the pROC package directly.

Details

roc_curve() computes the sensitivity at every unique value of the probability column (in addition to infinity and minus infinity).

There is a ggplot2::autoplot() method for quickly visualizing the curve. This works for binary and multiclass output, and also works with grouped data (i.e. from resamples). See the examples.

Value

A tibble with class roc_df or roc_grouped_df having columns .threshold, specificity, and sensitivity.

Multiclass

If a multiclass truth column is provided, a one-vs-all approach will be taken to calculate multiple curves, one per level. In this case, there will be an additional column, .level, identifying the "one" column in the one-vs-all calculation.

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Author(s)

Max Kuhn

See Also

Compute the area under the ROC curve with roc_auc().

Other curve metrics: gain_curve(), lift_curve(), pr_curve()

roc_curve_survival 127

```
# ------
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
roc_curve(two_class_example, truth, Class1)
# ------
# `autoplot()`
# Visualize the curve using ggplot2 manually
library(ggplot2)
library(dplyr)
roc_curve(two_class_example, truth, Class1) %>%
 ggplot(aes(x = 1 - specificity, y = sensitivity)) +
 geom_path() +
 geom_abline(lty = 3) +
 coord_equal() +
 theme_bw()
# Or use autoplot
autoplot(roc_curve(two_class_example, truth, Class1))
## Not run:
# Multiclass one-vs-all approach
# One curve per level
hpc_cv %>%
 filter(Resample == "Fold01") %>%
 roc_curve(obs, VF:L) %>%
 autoplot()
# Same as above, but will all of the resamples
hpc_cv %>%
 group_by(Resample) %>%
 roc_curve(obs, VF:L) %>%
 autoplot()
## End(Not run)
```

128 roc_curve_survival

Description

Compute the ROC survival curve using predicted survival probabilities that corresponds to different time points.

Usage

```
roc_curve_survival(data, ...)
## S3 method for class 'data.frame'
roc_curve_survival(data, truth, ..., na_rm = TRUE, case_weights = NULL)
```

Arguments

data	A data.frame containing the columns specified by truth and
	The column identifier for the survival probabilities this should be a list column of data.frames corresponding to the output given when predicting with censored model. This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, the dots are not used.
truth	The column identifier for the true survival result (that is created using survival::Surv().). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, an survival::Surv() object.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

This formulation takes survival probability predictions at one or more specific *evaluation times* and, for each time, computes the ROC curve. To account for censoring, inverse probability of censoring weights (IPCW) are used in the calculations. See equation 7 of section 4.3 in Blanche *at al* (2013) for the details.

The column passed to . . . should be a list column with one element per independent experiential unit (e.g. patient). The list column should contain data frames with several columns:

- .eval_time: The time that the prediction is made.
- .pred_survival: The predicted probability of survival up to .eval_time
- .weight_censored: The case weight for the inverse probability of censoring.

The last column can be produced using parsnip::.censoring_weights_graf(). This corresponds to the weighting scheme of Graf *et al* (1999). The internal data set lung_surv shows an example of the format.

This method automatically groups by the .eval_time argument.

roc_curve_survival 129

Value

A tibble with class roc_survival_df, grouped_roc_survival_df having columns .threshold, sensitivity, specificity, and .eval_time.

Author(s)

Emil Hvitfeldt

References

Blanche, P., Dartigues, J.-F. and Jacqmin-Gadda, H. (2013), Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring. *Biom. J.*, 55: 687-704.

Graf, E., Schmoor, C., Sauerbrei, W. and Schumacher, M. (1999), Assessment and comparison of prognostic classification schemes for survival data. *Statist. Med.*, 18: 2529-2545.

See Also

Compute the area under the ROC survival curve with roc_auc_survival().

```
result <- roc_curve_survival(</pre>
 lung_surv,
 truth = surv_obj,
 .pred
)
result
# ------
# `autoplot()`
# Visualize the curve using ggplot2 manually
library(ggplot2)
library(dplyr)
result %>%
 mutate(.eval_time = format(.eval_time)) %>%
 ggplot(aes(
   x = 1 - specificity, y = sensitivity,
   group = .eval_time, col = .eval_time
 )) +
 geom\_step(direction = "hv") +
 geom_abline(lty = 3) +
 coord_equal() +
 theme_bw()
# Or use autoplot
autoplot(result)
```

130 rpd

Ratio of performance to deviation

Description

These functions are appropriate for cases where the model outcome is a numeric. The ratio of performance to deviation (rpd()) and the ratio of performance to inter-quartile (rpiq()) are both measures of consistency/correlation between observed and predicted values (and not of accuracy).

Usage

```
rpd(data, ...)
## S3 method for class 'data.frame'
rpd(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
rpd_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

8	
data	A data.frame containing the columns specified by the truth and estimate arguments.
	Not currently used.
truth	The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.
estimate	The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

In the field of spectroscopy in particular, the ratio of performance to deviation (RPD) has been used as the standard way to report the quality of a model. It is the ratio between the standard deviation of a variable and the standard error of prediction of that variable by a given model. However, its systematic use has been criticized by several authors, since using the standard deviation to represent the spread of a variable can be misleading on skewed dataset. The ratio of performance to interquartile has been introduced by Bellon-Maurel et al. (2010) to address some of these issues, and generalise the RPD to non-normally distributed variables.

rpd 131

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For rpd_vec(), a single numeric value (or NA).

Author(s)

Pierre Roudier

References

Williams, P.C. (1987) Variables affecting near-infrared reflectance spectroscopic analysis. In: Near Infrared Technology in the Agriculture and Food Industries. 1st Ed. P.Williams and K.Norris, Eds. Am. Cereal Assoc. Cereal Chem., St. Paul, MN.

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M. and McBratney, A., (2010). Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry, 29(9), pp.1073-1081.

See Also

```
The closely related inter-quartile metric: rpiq()
```

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpiq(), rsq_trad(), rsq(), smape()

Other consistency metrics: ccc(), rpiq(), rsq_trad(), rsq()
```

```
# Supply truth and predictions as bare column names
rpd(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
  replicate(
    n = times,
    expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
  group_by(resample) %>%
```

rpiq

```
rpd(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))
```

rpiq

Ratio of performance to inter-quartile

Description

These functions are appropriate for cases where the model outcome is a numeric. The ratio of performance to deviation (rpd()) and the ratio of performance to inter-quartile (rpiq()) are both measures of consistency/correlation between observed and predicted values (and not of accuracy).

Usage

```
rpiq(data, ...)
## S3 method for class 'data.frame'
rpiq(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
rpiq_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data	A data.frame containing the columns specified by the truth and estimate arguments.
	Not currently used.
truth	The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.
estimate	The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

rpiq 133

Details

In the field of spectroscopy in particular, the ratio of performance to deviation (RPD) has been used as the standard way to report the quality of a model. It is the ratio between the standard deviation of a variable and the standard error of prediction of that variable by a given model. However, its systematic use has been criticized by several authors, since using the standard deviation to represent the spread of a variable can be misleading on skewed dataset. The ratio of performance to interquartile has been introduced by Bellon-Maurel et al. (2010) to address some of these issues, and generalise the RPD to non-normally distributed variables.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For rpd_vec(), a single numeric value (or NA).

Author(s)

Pierre Roudier

References

Williams, P.C. (1987) Variables affecting near-infrared reflectance spectroscopic analysis. In: Near Infrared Technology in the Agriculture and Food Industries. 1st Ed. P.Williams and K.Norris, Eds. Am. Cereal Assoc. Cereal Chem., St. Paul, MN.

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M. and McBratney, A., (2010). Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry, 29(9), pp.1073-1081.

See Also

```
The closely related deviation metric: rpd()

Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rsq_trad(), rsq(), smape()

Other consistency metrics: ccc(), rpd(), rsq_trad(), rsq()
```

```
# Supply truth and predictions as bare column names
rpd(solubility_test, solubility, prediction)

library(dplyr)

set.seed(1234)
size <- 100
times <- 10

# create 10 resamples
solubility_resampled <- bind_rows(</pre>
```

rsq

```
replicate(
    n = times,
    expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
),
    .id = "resample"
)

# Compute the metric by group
metric_results <- solubility_resampled %>%
    group_by(resample) %>%
    rpd(solubility, prediction)

metric_results

# Resampled mean estimate
metric_results %>%
    summarise(avg_estimate = mean(.estimate))
```

rsq

R squared

Description

Calculate the coefficient of determination using correlation. For the traditional measure of R squared, see rsq_trad().

Usage

```
rsq(data, ...)
## S3 method for class 'data.frame'
rsq(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
rsq_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data A data.frame containing the columns specified by the truth and estimate

arguments.

... Not currently used.

truth The column identifier for the true results (that is numeric). This should be an

unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a

numeric vector.

estimate The column identifier for the predicted results (that is also numeric). As with

truth this can be specified different ways but the primary method is to use an

unquoted variable name. For _vec() functions, a numeric vector.

rsq 135

na_rm A logical value indicating whether NA values should be stripped before the

computation proceeds.

case_weights The optional column identifier for case weights. This should be an unquoted col-

umn name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

The two estimates for the coefficient of determination, rsq() and rsq_trad(), differ by their formula. The former guarantees a value on (0, 1) while the latter can generate inaccurate values when the model is non-informative (see the examples). Both are measures of consistency/correlation and not of accuracy.

rsq() is simply the squared correlation between truth and estimate.

Because rsq() internally computes a correlation, if either truth or estimate are constant it can result in a divide by zero error. In these cases, a warning is thrown and NA is returned. This can occur when a model predicts a single value for all samples. For example, a regularized model that eliminates all predictors except for the intercept would do this. Another example would be a CART model that contains no splits.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For rsq_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn

References

Kvalseth. Cautionary note about \mathbb{R}^2 . American Statistician (1985) vol. 39 (4) pp. 279-285.

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), smape()

Other consistency metrics: ccc(), rpd(), rpiq(), rsq_trad()
```

```
# Supply truth and predictions as bare column names
rsq(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10</pre>
```

rsq_trad

```
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
 replicate(
   n = times,
    expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
 ),
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
 group_by(resample) %>%
 rsq(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
 summarise(avg_estimate = mean(.estimate))
\# With uninformitive data, the traditional version of R^2 can return
# negative values.
set.seed(2291)
solubility_test$randomized <- sample(solubility_test$prediction)</pre>
rsq(solubility_test, solubility, randomized)
rsq_trad(solubility_test, solubility, randomized)
# A constant `truth` or `estimate` vector results in a warning from
# a divide by zero error in the correlation calculation.
# `NA` will be returned in these cases.
truth \leftarrow c(1, 2)
estimate \leftarrow c(1, 1)
rsq_vec(truth, estimate)
```

rsq_trad

R squared - traditional

Description

Calculate the coefficient of determination using the traditional definition of R squared using sum of squares. For a measure of R squared that is strictly between (0, 1), see rsq().

Usage

```
rsq_trad(data, ...)
## S3 method for class 'data.frame'
rsq_trad(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
rsq_trad_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

rsq_trad 137

Arguments

data	A data.frame containing the columns specified by the truth and estimate arguments.
	Not currently used.
truth	The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector.
estimate	The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

The two estimates for the coefficient of determination, rsq() and rsq_trad(), differ by their formula. The former guarantees a value on (0, 1) while the latter can generate inaccurate values when the model is non-informative (see the examples). Both are measures of consistency/correlation and not of accuracy.

Value

```
A tibble with columns .metric, .estimator, and .estimate and 1 row of values. For grouped data frames, the number of rows returned will be the same as the number of groups. For rsq_trad_vec(), a single numeric value (or NA).
```

Author(s)

Max Kuhn

References

Kvalseth. Cautionary note about R^2 . American Statistician (1985) vol. 39 (4) pp. 279-285.

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq(), smape()

Other consistency metrics: ccc(), rpd(), rpiq(), rsq()
```

Examples

```
# Supply truth and predictions as bare column names
rsq_trad(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
 replicate(
   n = times,
   expr = sample_n(solubility_test, size, replace = TRUE),
   simplify = FALSE
 ),
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
 group_by(resample) %>%
 rsq_trad(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
 summarise(avg_estimate = mean(.estimate))
# With uninformitive data, the traditional version of R^2 can return
# negative values.
set.seed(2291)
solubility_test$randomized <- sample(solubility_test$prediction)</pre>
rsq(solubility_test, solubility, randomized)
rsq_trad(solubility_test, solubility, randomized)
```

sens

Sensitivity

Description

These functions calculate the sens() (sensitivity) of a measurement system compared to a reference result (the "truth" or gold standard). Highly related functions are spec(), ppv(), and npv().

Usage

```
sens(data, ...)
```

```
## S3 method for class 'data.frame'
sens(
  data,
  truth,
 estimate,
 estimator = NULL,
 na_rm = TRUE,
 case_weights = NULL,
 event_level = yardstick_event_level(),
)
sens_vec(
  truth,
  estimate,
 estimator = NULL,
 na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
)
sensitivity(data, ...)
## S3 method for class 'data.frame'
sensitivity(
 data,
  truth,
 estimate,
  estimator = NULL,
 na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
)
sensitivity_vec(
  truth,
 estimate,
 estimator = NULL,
 na_rm = TRUE,
  case_weights = NULL,
 event_level = yardstick_event_level(),
)
```

Arguments

data	Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.
	Not currently used.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
estimate	The column identifier for the predicted class results (that is also factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector.
estimator	One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".

Details

The sensitivity (sens()) is defined as the proportion of positive results out of the number of samples which were actually positive.

When the denominator of the calculation is 0, sensitivity is undefined. This happens when both # true_positive = 0 and # false_negative = 0 are true, which mean that there were no true events. When computing binary sensitivity, a NA value will be returned with a warning. When computing multiclass sensitivity, the individual NA values will be removed, and the computation will procede, with a warning.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For sens_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default

is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

	Reference	
Predicted	Positive	Negative
Positive	A	В
Negative	C	D

The formulas used here are:

$$Sensitivity = A/(A+C)$$

$$Specificity = D/(B+D)$$

$$Prevalence = (A+C)/(A+B+C+D)$$

$$PPV = (Sensitivity*Prevalence)/((Sensitivity*Prevalence)+((1-Specificity)*(1-Prevalence)))$$

NPV = (Specificity*(1-Prevalence))/(((1-Sensitivity)*Prevalence)+((Specificity)*(1-Prevalence)))

See the references for discussions of the statistics.

Author(s)

Max Kuhn

References

Altman, D.G., Bland, J.M. (1994) "Diagnostic tests 1: sensitivity and specificity," *British Medical Journal*, vol 308, 1552.

See Also

```
Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(), kap(), mcc(), npv(), ppv(), precision(), recall(), spec()

Other sensitivity metrics: npv(), ppv(), spec()
```

smape smape

Examples

```
# Two class
data("two_class_example")
sens(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  sens(obs, pred)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  sens(obs, pred)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  sens(obs, pred, estimator = "macro_weighted")
# Vector version
sens_vec(
  two_class_example$truth,
  two_class_example$predicted
)
# Making Class2 the "relevant" level
sens_vec(
  two_class_example$truth,
  two_class_example$predicted,
  event_level = "second"
)
```

smape

Symmetric mean absolute percentage error

Description

Calculate the symmetric mean absolute percentage error. This metric is in *relative units*.

Usage

```
smape(data, ...)
## S3 method for class 'data.frame'
smape(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

smape 143

```
smape_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
```

Arguments

data A data. frame containing the columns specified by the truth and estimate arguments. Not currently used. truth The column identifier for the true results (that is numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a numeric vector. estimate The column identifier for the predicted results (that is also numeric). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a numeric vector. A logical value indicating whether NA values should be stripped before the na_rm computation proceeds. case_weights The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a

numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().

Details

This implementation of smape() is the "usual definition" where the denominator is divided by two.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For smape_vec(), a single numeric value (or NA).

Author(s)

Max Kuhn, Riaz Hedayati

See Also

```
Other numeric metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse(), rpd(), rpiq(), rsq_trad(), rsq()

Other accuracy metrics: ccc(), huber_loss_pseudo(), huber_loss(), iic(), mae(), mape(), mase(), mpe(), msd(), poisson_log_loss(), rmse()
```

144 solubility_test

Examples

```
# Supply truth and predictions as bare column names
smape(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(</pre>
  replicate(
   n = times,
    expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
  ),
  .id = "resample"
# Compute the metric by group
metric_results <- solubility_resampled %>%
  group_by(resample) %>%
  smape(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))
```

solubility_test

Solubility Predictions from MARS Model

Description

Solubility Predictions from MARS Model

Details

For the solubility data in Kuhn and Johnson (2013), these data are the test set results for the MARS model. The observed solubility (in column solubility) and the model results (prediction) are contained in the data.

Value

```
solubility_test
a data frame
```

spec 145

Source

Kuhn, M., Johnson, K. (2013) Applied Predictive Modeling, Springer

Examples

```
data(solubility_test)
str(solubility_test)
```

spec

Specificity

Description

These functions calculate the spec() (specificity) of a measurement system compared to a reference result (the "truth" or gold standard). Highly related functions are sens(), ppv(), and npv().

Usage

```
spec(data, ...)
## S3 method for class 'data.frame'
spec(
 data,
  truth,
 estimate,
 estimator = NULL,
 na_rm = TRUE,
 case_weights = NULL,
 event_level = yardstick_event_level(),
)
spec_vec(
  truth,
 estimate,
 estimator = NULL,
 na_rm = TRUE,
 case_weights = NULL,
 event_level = yardstick_event_level(),
)
specificity(data, ...)
## S3 method for class 'data.frame'
specificity(
 data,
```

spec spec

```
truth,
    estimate,
    estimator = NULL,
    na_rm = TRUE,
    case_weights = NULL,
    event_level = yardstick_event_level(),
    ...
)

specificity_vec(
    truth,
    estimate,
    estimator = NULL,
    na_rm = TRUE,
    case_weights = NULL,
    event_level = yardstick_event_level(),
    ...
)
```

Arguments

data	Either a data. frame containing the columns specified by the truth and estimate arguments, or a table/matrix where the true class results should be in the columns of the table.
	Not currently used.
truth	The column identifier for the true class results (that is a factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For _vec() functions, a factor vector.
estimate	The column identifier for the predicted class results (that is also factor). As with truth this can be specified different ways but the primary method is to use an unquoted variable name. For _vec() functions, a factor vector.
estimator	One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate.
na_rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
case_weights	The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in data. For _vec() functions, a numeric vector, hardhat::importance_weights(), or hardhat::frequency_weights().
event_level	A single string. Either "first" or "second" to specify which level of truth to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".

Details

The specificity measures the proportion of negatives that are correctly identified as negatives.

spec 147

When the denominator of the calculation is 0, specificity is undefined. This happens when both # true_negative = 0 and # false_positive = 0 are true, which mean that there were no true negatives. When computing binary specificity, a NA value will be returned with a warning. When computing multiclass specificity, the individual NA values will be removed, and the computation will procede, with a warning.

Value

A tibble with columns .metric, .estimator, and .estimate and 1 row of values.

For grouped data frames, the number of rows returned will be the same as the number of groups.

For spec_vec(), a single numeric value (or NA).

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

Multiclass

Macro, micro, and macro-weighted averaging is available for this metric. The default is to select macro averaging if a truth factor with more than 2 levels is provided. Otherwise, a standard binary calculation is done. See vignette("multiclass", "yardstick") for more information.

Implementation

Suppose a 2x2 table with notation:

	Reference	
Predicted	Positive	Negative
Positive	A	В
Negative	C	D

The formulas used here are:

$$Sensitivity = A/(A+C)$$

$$Specificity = D/(B+D)$$

$$Prevalence = (A+C)/(A+B+C+D)$$

 $PPV = (Sensitivity*Prevalence) / ((Sensitivity*Prevalence) + ((1 - Specificity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*Prevalence) + ((Specificity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*Prevalence) + ((Specificity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*Prevalence) + (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*Prevalence) + (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*Prevalence) + (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity*(1 - Prevalence)) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity) / (((1 - Sensitivity)*(1 - Prevalence))) / (((1 - Sensitivity)*(1 - Prevalence))) \\ NPV = (Specificity) / (((1 - Sensitivity)*(1 - Prevalence))) / (((1 -$

See the references for discussions of the statistics.

148 spec

Author(s)

Max Kuhn

References

Altman, D.G., Bland, J.M. (1994) "Diagnostic tests 1: sensitivity and specificity," *British Medical Journal*, vol 308, 1552.

See Also

```
Other class metrics: accuracy(), bal_accuracy(), detection_prevalence(), f_meas(), j_index(), kap(), mcc(), npv(), ppv(), precision(), recall(), sens()

Other sensitivity metrics: npv(), ppv(), sens()
```

Examples

```
# Two class
data("two_class_example")
spec(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  spec(obs, pred)
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  spec(obs, pred)
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  spec(obs, pred, estimator = "macro_weighted")
# Vector version
spec_vec(
  two_class_example$truth,
  two_class_example$predicted
# Making Class2 the "relevant" level
spec_vec(
  two_class_example$truth,
  two_class_example$predicted,
  event_level = "second"
)
```

summary.conf_mat 149

summary.conf_mat

Summary Statistics for Confusion Matrices

Description

Various statistical summaries of confusion matrices are produced and returned in a tibble. These include those shown in the help pages for sens(), recall(), and accuracy(), among others.

Usage

```
## S3 method for class 'conf_mat'
summary(
  object,
  prevalence = NULL,
  beta = 1,
  estimator = NULL,
  event_level = yardstick_event_level(),
  ...
)
```

Arguments

object An object of class conf_mat(). A number in (0, 1) for the prevalence (i.e. prior) of the event. If left to the prevalence default, the data are used to derive this value. beta A numeric value used to weight precision and recall for f_meas(). estimator One of: "binary", "macro", "macro_weighted", or "micro" to specify the type of averaging to be done. "binary" is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose "binary" or "macro" based on estimate. A single string. Either "first" or "second" to specify which level of truth event_level to consider as the "event". This argument is only applicable when estimator = "binary". The default uses an internal helper that defaults to "first".

Value

. . .

A tibble containing various classification metrics.

Not currently used.

Relevant Level

There is no common convention on which factor level should automatically be considered the "event" or "positive" result when computing binary classification metrics. In yardstick, the default is to use the *first* level. To alter this, change the argument event_level to "second" to consider the *last* level of the factor the level of interest. For multiclass extensions involving one-vs-all comparisons (such as macro averaging), this option is ignored and the "one" level is always the relevant result.

two_class_example

See Also

```
conf_mat()
```

Examples

```
data("two_class_example")
cmat <- conf_mat(two_class_example, truth = "truth", estimate = "predicted")</pre>
summary(cmat)
summary(cmat, prevalence = 0.70)
library(dplyr)
library(tidyr)
data("hpc_cv")
# Compute statistics per resample then summarize
all_metrics <- hpc_cv %>%
  group_by(Resample) %>%
  conf_mat(obs, pred) %>%
  mutate(summary_tbl = lapply(conf_mat, summary)) %>%
  unnest(summary_tbl)
all_metrics %>%
  group_by(.metric) %>%
  summarise(
   mean = mean(.estimate, na.rm = TRUE),
   sd = sd(.estimate, na.rm = TRUE)
  )
```

two_class_example

Two Class Predictions

Description

Two Class Predictions

Details

These data are a test set form a model built for two classes ("Class1" and "Class2"). There are columns for the true and predicted classes and column for the probabilities for each class.

Value

```
two_class_example a data frame
```

Examples

```
data(two_class_example)
str(two_class_example)

# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section in any classification function (such as `?pr_auc`) to see how
# to change this.
levels(hpc_cv$obs)
```

yardstick_remove_missing

Developer function for handling missing values in new metrics

Description

yardstick_remove_missing(), and yardstick_any_missing() are useful alongside the metric-summarizers functions for implementing new custom metrics. yardstick_remove_missing() removes any observations that contains missing values across, truth, estimate and case_weights. yardstick_any_missing() returns FALSE if there is any missing values in the inputs.

Usage

```
yardstick_remove_missing(truth, estimate, case_weights)
yardstick_any_missing(truth, estimate, case_weights)
```

Arguments

truth, estimate

Vectors of the same length.

case_weights

A vector of the same length as truth and estimate, or NULL if case weights are not being used.

See Also

metric-summarizers

Index

* accuracy metrics	rnd 130
* accuracy metrics ccc, 17	rpd, 130 rpiq, 132
huber_loss, 49	rsq, 134
huber_loss_pseudo, 51	rsq_trad, 136
iic, 54	* curve metrics
mae, 64	gain_curve, 45
mape, 66	lift_curve, 61
mase, 68	pr_curve, 106
mpe, 84	roc_curve, 125
msd, 86	* datasets
poisson_log_loss, 95	hpc_cv, 48
rmse, 112	lung_surv, 64
smape, 142	pathology, 94
* class metrics	solubility_test, 144
accuracy, 3	two_class_example, 150
$bal_accuracy, 8$	* dynamic survival metrics
detection_prevalence, 30	brier_survival, 13
f_meas, 38	brier_survival_integrated, 15
j_index, 56	roc_auc_survival, 118
kap, <u>59</u>	* fairness metrics
mcc, 70	demographic_parity, 28
mcc, 70	demographic_parity, 28
mcc, 70 npv, 91	demographic_parity, 28 equal_opportunity, 36
mcc, 70 npv, 91 ppv, 96	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35
mcc, 70 npv, 91 ppv, 96 precision, 100	<pre>demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics</pre>
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109	<pre>demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17</pre>
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49 huber_loss_pseudo, 51
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145 * class probability metrics	<pre>demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49 huber_loss_pseudo, 51 iic, 54</pre>
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145 * class probability metrics average_precision, 5	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49 huber_loss_pseudo, 51 iic, 54 mae, 64
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145 * class probability metrics average_precision, 5 brier_class, 11	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49 huber_loss_pseudo, 51 iic, 54 mae, 64 mape, 66
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145 * class probability metrics average_precision, 5 brier_class, 11 classification_cost, 21	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49 huber_loss_pseudo, 51 iic, 54 mae, 64 mape, 66 mase, 68
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145 * class probability metrics average_precision, 5 brier_class, 11 classification_cost, 21 gain_capture, 42	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49 huber_loss_pseudo, 51 iic, 54 mae, 64 mape, 66 mase, 68 mpe, 84
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145 * class probability metrics average_precision, 5 brier_class, 11 classification_cost, 21 gain_capture, 42 mn_log_loss, 81	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49 huber_loss_pseudo, 51 iic, 54 mae, 64 mape, 66 mase, 68 mpe, 84 msd, 86
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145 * class probability metrics average_precision, 5 brier_class, 11 classification_cost, 21 gain_capture, 42 mn_log_loss, 81 pr_auc, 103	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49 huber_loss_pseudo, 51 iic, 54 mae, 64 mape, 66 mase, 68 mpe, 84 msd, 86 poisson_log_loss, 95
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145 * class probability metrics average_precision, 5 brier_class, 11 classification_cost, 21 gain_capture, 42 mn_log_loss, 81 pr_auc, 103 roc_auc, 114	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49 huber_loss_pseudo, 51 iic, 54 mae, 64 mape, 66 mase, 68 mpe, 84 msd, 86 poisson_log_loss, 95 rmse, 112 rpd, 130
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145 * class probability metrics average_precision, 5 brier_class, 11 classification_cost, 21 gain_capture, 42 mn_log_loss, 81 pr_auc, 103 roc_auc, 114 roc_aunp, 120 roc_aunu, 122	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics
mcc, 70 npv, 91 ppv, 96 precision, 100 recall, 109 sens, 138 spec, 145 * class probability metrics average_precision, 5 brier_class, 11 classification_cost, 21 gain_capture, 42 mn_log_loss, 81 pr_auc, 103 roc_auc, 114 roc_aunp, 120	demographic_parity, 28 equal_opportunity, 36 equalized_odds, 35 * numeric metrics ccc, 17 huber_loss, 49 huber_loss_pseudo, 51 iic, 54 mae, 64 mape, 66 mase, 68 mpe, 84 msd, 86 poisson_log_loss, 95 rmse, 112 rpd, 130

smape, 142	<pre>check_static_survival_metric</pre>
* relevance metrics	(check_metric), 19
f_meas, 38	class_metric_summarizer
precision, 100	(metric-summarizers), 72
recall, 109	classification_cost, 7, 12, 21, 44, 83, 105,
* sensitivity metrics	116, 121, 124
npv, 91	classification_cost_vec
ppv, 96	<pre>(classification_cost), 21</pre>
sens, 138	concordance_survival, 24
spec, 145	<pre>concordance_survival_vec</pre>
* static survival metrics	(concordance_survival), 24
concordance_survival, 24	conf_mat, 26
* survival curve metrics	conf_mat(), 26, 149, 150
roc_curve_survival, 127	curve_metric_summarizer
	(metric-summarizers), 72
abort(), 20, 33, 75	<pre>curve_survival_metric_summarizer</pre>
accuracy, 3, 10, 32, 41, 58, 60, 72, 93, 99,	(metric-summarizers), 72
102, 111, 141, 148	
accuracy(), 59, 76, 82, 149	$demographic_parity, 28, 36, 38$
accuracy_vec (accuracy), 3	demographic_parity(),89,90
average_precision, 5, 12, 22, 44, 83, 105,	detection_prevalence, 4, 10, 30, 41, 58, 60,
116, 121, 124	72, 93, 99, 102, 111, 141, 148
average_precision_vec	$detection_prevalence(), 28$
(average_precision), 5	detection_prevalence_vec
(= 1 = 1 = 1 = 1 = 1 = 1)	(detection_prevalence), 30
bal_accuracy, 4, 8, 32, 41, 58, 60, 72, 93, 99,	developer-helpers, 32
102, 111, 141, 148	<pre>dots_to_estimate (developer-helpers), 32</pre>
bal_accuracy_vec (bal_accuracy), 8	<pre>dots_to_estimate(), 75</pre>
base::table(), 26	<pre>dynamic_survival_metric_summarizer</pre>
brier_class, 7, 11, 22, 44, 83, 105, 116, 121,	(metric-summarizers), 72
124	
brier_class_vec (brier_class), 11	equal_opportunity, 29, 36, 36
brier_survival, 13, 16, 119	equal_opportunity(), 89, 90
brier_survival_integrated, 14, 15, 119	equalized_odds, 29, 35, 38
brier_survival_integrated_vec	equalized_odds(), 89, 90
(brier_survival_integrated), 15	£ 4 10 22 29 59 60 72 03 00 102
brier_survival_vec (brier_survival), 13	f_meas, 4, 10, 32, 38, 58, 60, 72, 93, 99, 102,
51 161 _541 V1V41_V66 (51 161 _541 V1V41); 15	111, 141, 148
ccc, 17, <i>51</i> , <i>53</i> , <i>55</i> , <i>65</i> , <i>67</i> , <i>70</i> , <i>85</i> , <i>87</i> , <i>96</i> , <i>113</i> ,	f_meas(), 38, 80, 100, 109, 149
131, 133, 135, 137, 143	f_meas_vec (f_meas), 38
ccc(), 18	finalize_estimator (developer-helpers),
ccc_vec (ccc), 17	32
check_class_metric (check_metric), 19	finalize_estimator(), 75
check_dynamic_survival_metric	finalize_estimator_internal
(check_metric), 19	(developer-helpers), 32
check_metric, 19, 32, 34, 72, 75	gain_capture, 7, 12, 22, 42, 83, 105, 116,
check_numeric_metric (check_metric), 19	121, 124
check prob metric (check metric), 19	gain capture(). 45, 47
CHCCK_PLOD_IIIC CLIC LCHCCK IIIC CLIC/, 17	gail_captul c(/, TJ, T/

<pre>gain_capture_vec (gain_capture), 42</pre>	mae, 18, 51, 53, 55, 64, 67, 70, 85, 87, 96, 113,
gain_curve, 45, 63, 108, 126	131, 133, 135, 137, 143
gain_curve(), 44, 61	mae(), 77, 86, 87
<pre>get_weights (developer-helpers), 32</pre>	mae_vec (mae), 64
ggplot2::autoplot(), 27, 46, 62, 107, 126	mape, 18, 51, 53, 55, 65, 66, 70, 85, 87, 96, 113, 131, 133, 135, 137, 143
hardhat::frequency_weights(), 4, 6, 9, 11,	mape_vec (mape), 66
13, 15, 18, 22, 25, 26, 31, 39, 43, 46,	mase, 18, 51, 53, 55, 65, 67, 68, 85, 87, 96,
50, 52, 54, 57, 60, 62, 65, 67, 69, 71,	113, 131, 133, 135, 137, 143
82, 84, 86, 92, 95, 97, 101, 104, 107,	mase_vec (mase), 68
110, 113, 115, 118, 120, 123, 126,	mcc, 4, 10, 32, 41, 58, 60, 70, 93, 99, 102, 111,
128, 130, 132, 135, 137, 140, 143,	141, 148
146	mcc_vec (mcc), 70
hardhat::importance_weights(), 4, 6, 9,	metric summarizers, 32
11, 13, 15, 18, 22, 25, 26, 31, 39, 43,	metric-summarizers, 19, 20, 34, 72, 151
46, 50, 52, 54, 57, 60, 62, 65, 67, 69,	metric_set, 77
71, 82, 84, 86, 92, 95, 97, 101, 104,	metric_set(), 36, 76, 77, 80, 88
107, 110, 113, 115, 118, 120, 123,	metric_tweak, 80
126, 128, 130, 132, 135, 137, 140,	metrics, 76
143, 146	metrics(), 79
hpc_cv, 48	mn_log_loss, 7, 12, 22, 44, 81, 105, 116, 121,
huber_loss, 18, 49, 53, 55, 65, 67, 70, 85, 87,	124
96, 113, 131, 133, 135, 137, 143	mn_log_loss(), 76, 77
huber_loss(), <i>51</i>	mn_log_loss_vec(mn_log_loss), 81
huber_loss_pseudo, 18, 51, 51, 55, 65, 67,	mpe, 18, 51, 53, 55, 65, 67, 70, 84, 87, 96, 113,
	131, 133, 135, 137, 143
70, 85, 87, 96, 113, 131, 133, 135,	mpe_vec (mpe), 84
137, 143	msd, 18, 51, 53, 55, 65, 67, 70, 85, 86, 96, 113,
huber_loss_pseudo_vec	131, 133, 135, 137, 143
(huber_loss_pseudo), 51	msd_vec (msd), 86
huber_loss_vec (huber_loss), 49	
10 51 53 54 65 67 70 05 07 06 113	new-metric, 88
iic, 18, 51, 53, 54, 65, 67, 70, 85, 87, 96, 113,	<pre>new_class_metric(new-metric), 88</pre>
131, 133, 135, 137, 143	<pre>new_dynamic_survival_metric</pre>
iic_vec(iic), 54	(new-metric), 88
	<pre>new_groupwise_metric, 89</pre>
j_index, 4, 10, 32, 41, 56, 60, 72, 93, 99, 102,	$new_groupwise_metric(), 29, 35, 37$
111, 141, 148	<pre>new_integrated_survival_metric</pre>
j_index_vec(j_index), 56	(new-metric), 88
	<pre>new_numeric_metric (new-metric), 88</pre>
kap, 4, 10, 32, 41, 58, 59, 72, 93, 99, 102, 111,	<pre>new_prob_metric (new-metric), 88</pre>
141, 148	new_static_survival_metric
kap(), 76	(new-metric), 88
kap_vec (kap), 59	npv, 4, 10, 32, 41, 58, 60, 72, 91, 99, 102, 111,
	141, 148
lift_curve, 47, 61, 108, 126	npv(), 91, 92, 96, 97, 138, 145
lift_curve(), 45	npv_vec (npv), 91
lung, <i>64</i>	numeric_metric_summarizer
lung_surv, 64	(metric-summarizers), 72

<pre>parsnip::.censoring_weights_graf(), 14,</pre>	roc_aunu, 7, 12, 22, 44, 83, 105, 116, 121, 122
16, 119, 128	roc_aunu(), <i>121</i>
pathology, 94	roc_aunu_vec (roc_aunu), 122
poisson_log_loss, 18, 51, 53, 55, 65, 67, 70,	roc_curve, <i>47</i> , <i>63</i> , <i>108</i> , 125
85, 87, 95, 113, 131, 133, 135, 137,	roc_curve(), 114, 116
143	roc_curve_survival, 127
poisson_log_loss_vec	<pre>roc_curve_survival(), 119</pre>
(poisson_log_loss), 95	rpd, 18, 51, 53, 55, 65, 67, 70, 85, 87, 96, 113,
ppv, 4, 10, 32, 41, 58, 60, 72, 93, 96, 102, 111,	130, 133, 135, 137, 143
141, 148	rpd(), 130, 132, 133
ppv(), 91, 92, 96, 97, 138, 145	rpd_vec (rpd), 130
ppv_vec (ppv), 96	rpiq, 18, 51, 53, 55, 65, 67, 70, 85, 87, 96,
pr_auc, 7, 12, 22, 44, 83, 103, 116, 121, 124	113, 131, 132, 135, 137, 143
pr_auc(), 7, 106, 108	rpiq(), 130–132
pr_auc_vec (pr_auc), 103	rpiq_vec (rpiq), 132
pr_curve, 47, 63, 106, 126	rsq, 18, 51, 53, 55, 65, 67, 70, 85, 87, 96, 113.
pr_curve(), 5–7, 103, 105	131, 133, 134, 137, 143
precision, 4, 10, 32, 41, 58, 60, 72, 93, 99,	rsq(), 18, 77, 135–137
100, 111, 141, 148	
precision(), 38, 100, 109	rsq_trad, 18, 51, 53, 55, 65, 67, 70, 85, 87,
precision_vec (precision), 100	96, 113, 131, 133, 135, 136, 143
prob_metric_summarizer	rsq_trad(), 134, 135, 137
(metric-summarizers), 72	rsq_trad_vec (rsq_trad), 136
(metric-summarizers), 72	rsq_vec (rsq), 134
quasiquotation, 4, 6, 9, 11, 13, 15, 17, 21,	4 10 22 41 50 60 72 02 00 102
24–26, 31, 39, 42, 46, 50, 52, 54, 57,	sens, 4, 10, 32, 41, 58, 60, 72, 93, 99, 102,
59, 61, 65, 66, 69, 71, 76, 82, 84, 86,	111, 138, 148
92, 95, 97, 100, 104, 107, 109, 112,	sens(), 8, 35, 36, 56, 91, 96, 138, 145, 149
115, 118, 120, 123, 125, 128, 130,	sens_vec (sens), 138
132, 134, 137, 140, 143, 146	sensitivity (sens), 138
102,107,170,170,170	sensitivity_vec(sens), 138
recall, 4, 10, 32, 41, 58, 60, 72, 93, 99, 102,	smape, 18, 51, 53, 55, 65, 67, 70, 85, 87, 96,
109, 141, 148	<i>113</i> , <i>131</i> , <i>133</i> , <i>135</i> , <i>137</i> , 142
recall(), 38, 100, 109, 149	smape_vec(smape), 142
recall_vec (recall), 109	solubility_test, 144
rmse, 18, 51, 53, 55, 65, 67, 70, 85, 87, 96,	spec, 4, 10, 32, 41, 58, 60, 72, 93, 99, 102,
112, 131, 133, 135, 137, 143	<i>111, 141,</i> 145
rmse(), 18, 49, 51, 77	spec(), 8, 35, 36, 56, 91, 96, 138, 145
rmse_vec (rmse), 112	spec_vec (spec), 145
roc_auc, 7, 12, 22, 44, 83, 105, 114, 121, 124	specificity (spec), 145
roc_auc(), 76, 77, 125, 126	specificity_vec(spec), 145
	static_survival_metric_summarizer
roc_auc_survival, 14, 16, 118	(metric-summarizers), 72
roc_auc_survival(), 129	summary.conf_mat, 149
roc_auc_survival_vec	summary.conf_mat(), 27
(roc_auc_survival), 118	survival::Surv(), 13, 15, 24, 118, 128
roc_auc_vec (roc_auc), 114	Sui vivaiSui v(), 13, 13, 24, 110, 120
roc_aunp, 7, 12, 22, 44, 83, 105, 116, 120, 124	
roc_aunp(), <i>124</i>	tidy.conf_mat(conf_mat), 26
roc_aunp_vec (roc_aunp), 120	two_class_example, 150