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Abstract—In [1] we argued that the complex dynamic be-
havior of automotive software systems, in particular engine
management, in combination with emerging multi-core execution
platforms, significantly increased the problem space for timing
analysis methods. As a result, the risk of divergence between
academic research and industrial practice is currently increasing.

Therefore, we now provide a concrete automotive benchmark,
a full blown performance model of a modern engine management
system based on [1], with a goal to challenge existing timing
analysis approaches with respect to their expressiveness and
precision.

I. CHALLENGE

In short, the challenge consists in determining tight end-to-
end latency bounds for a set of given cause-effect chains in
a full blown engine management software. For this purpose,
an Amalthea [2] performance model of the software can
be downloaded at the FMTV challenge website by mid of
December.

As mentioned above, the dynamic behavior of a engine man-
agement software is quite complex and contains mechanisms
that explore the limits of existing approaches:

« preemptive and cooperative priority based scheduling

¢ periodic, sporadic, and engine synchronous tasks

o multi-core platform with distributed cause-effect chains

including cross-core communication

« label (i.e. data) placement dependent execution times of

runnables

The provided Amalthea model contains a hardware model of
a simplified microcontroller architecture with four symmetric
cores (see Figure 1). The cores are interconnected by a
crossbar (full connectivity, FIFO arbitration at memories).
The system-wide frequency is 200 MHz. Furthermore, initial
mappings (runnable to task, task to core) are specified.

Each core CORE, is connected to a local memory
LRAM,. Additionally, there exist a global memory GRAM
that is shared among all cores. The specified runnable execu-
tion times assume that code is executed directly from core-
exclusive flashes without contention. In contrast, access to
labels including memory arbitration effects are not included
in the execution times. Initially, all labels are assumed to
be stored in the global memory. The following symmetric
memory access times are assumed:

o Reading from and writing to the global memory: 9 cycles

o Reading from and writing to the core local memory: 1

cycle

o Reading from and writing to the local memory of a

different core: 9 cycles

The memory access model assumes that runnables read all
required labels at the beginning of their execution, afterwards
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Fig. 1. Microcontroller architecture used in the challenge

the calculation takes place, before all labels are written back.
Local RAMs are single-ported, such that concurrent accesses
to the same memory lead to contention, and are arbitrated
according to the FIFO policy.

Obviously, solving the intertwined problem of scheduling
including the effects of memory accesses to the execution
times is very hard. Therefore several separate challenges are
formulated:

« calculate tight end-to-end latencies ignoring memory ac-
cesses and arbitration

« calculate tight end-to-end latencies including memory
access and arbitration accesses

o optimize end-to-end latencies by mapping the labels
among the local and global memories

II. APPROACHES

Figure 2 visualizes different approaches that are addressed
by the challenge presented in this paper. Two Pareto-fronts
show the general trade-off between accuracy and effort of the
different approaches.

The first Pareto-front converges towards the the actual
worst-case coming from formal and, thus, conservative ap-
proximations. Here, compositional timing analysis methods,
on the one hand, are very efficient in terms of computational
complexity and modeling efforts, but usually lead to overes-
timated worst-case bounds, especially for distributed systems.
Formal method like timed automata, on the other hand, scale
badly to large systems due to the underlying exponential nature
of model checking.

The second Pareto-front shows simulation-based approach
that optimistically underestimate the worst-case. Here, the
challenge lies in finding stimuli for the system under simu-
lation, leading to values that are close to the worst-case since



enumerating and simulating all possible situation is infeasible
from a practical point-of-view.

In a nutshell, novel methods should improve state-of-the-art
and not be dominated by any method on the Pareto-front. That
means, either improve in terms of accuracy or reduce effort.

A. Formal Approaches

Classical real-time scheduling [3], [4] considers tasks on
a single processor and their schedulability, taking into ac-
count execution times, release times, and deadlines. These
approaches use problem-specific formalizations to model sys-
tems and cannot be applied directly to distributed systems
with heterogeneous components, schedulers and protocols.
An extension of the classical approaches towards distributed
systems is known as holistic scheduling [5], [6]. Here, the
equations of the specific scheduling approaches are com-
bined by introducing dependency formalizations. Due to the
quickly growing complexity of this approach, its applicability
is limited by the fast increasing number of equations and
dependencies that are introduced with each component in the
system.

In contrast to holistic scheduling, compositional approaches
promise a better extensibility by relying on components that
exchange information via event streams [7], [8], [9]. These
event streams capture properties like periodic behavior or jitter
while end-to-end latencies can be determined by adding delays
along the entire data flow. These compositional approaches can
deliver relatively tight latencies, but further reduction of the
inherent over-approximations of the determined latencies are
obliviously limited by the information in the event streams.

Of course a system might be modeled using timed automata
such that the resulting end-to-end latencies are exact when
applying model checking. However, as the approaches scale
exponentially, they are generally integrated as components into
compositional approaches [10].

B. Simulative Approaches

In contrast to the formal approaches, simulative approaches
do not require an abstraction of the model and can therefore
be easily extended with new components, schedulers, and
protocols. Without the need to abstract the model, simulative
approaches are theoretically capable of determining the exact
latency values without any over-approximation. However, de-
termining the right stimuli for the simulation that will result
in the actual worst-case latency is extremely difficult, and
therefore usually randomized inputs are chosen. It is obvious
that with a longer runtime of simulative approaches, the
undesirable under-approximation can be reduced.

Due to their good usability and simple integration, simula-
tion tools like TIMING ARCHITECTS [11], CHRONSIM [12],
or TRACEANALYZER [13] enjoy great popularity in industry.
Nevertheless, for safety critical application it can be dangerous
to rely on simulative approaches as they do not guarantee to
capture the actual worst-case even if a certain safety margin is
added to the observed worst-case after extensive simulations.

C. Hybrid Approaches

Finally, hybrid approaches that combine simulations and
formal approaches might be considered. These approaches
might use traces of simulations for the input of formal methods
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Fig. 2. Illustration of different approaches with respect to accuracy and effort.

to deliver a worst-case that is larger than the simulation
result and at the same time lower than a purely analytically
determined value. Another approach to mix the two views of
simulation and formal approach is the consideration of typical
worst-case analysis [14]. Here, a so-called typical worst-case is
determined that is only violated by a strictly bounded number
of occurrences in a given time window. This approach is
very useful in specific scenarios where occasional deadline
violations do not affect the correct behavior of the system.
As a result, this approach is applied in combination with the
domain knowledge of the underlying system, e.g., a control
application.
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