
Version 1.00 page 1 / 6

RS232 Communication protocol for AAG_CloudWatcher

Communication is always established by requesting information from device.

Request information

The request commands consist of 1 character followed by ! (exclamation mark) which is
interpreted by the AAG_CloudWatcher device as end-of-command. Note that the only
exception is the command that sets the Pulse Width modulation value.

Command Description
A! Get internal name
B! Get firmware version
C! Get values
D! Get internal errors
E! Get rain frequency
F! Get switch status
G! Set switch – open
H! Set switch – close

Pxxxx! Set PWM Value xxxx = value of PWM
(always 4 characters)

Exception in command length

Q! Get PWM value
S! Get Sky IR Temp
T! Get Sensor Temp
z! Reset RS232 buffer pointers

Received Information

The length of the information structure returned by the AAG_CloudWatcher device is
always a multiple of 15 characters string as follows:

 !XXyyyyyyyyyyyy

Characters Description Length
! Begin of information 1 byte
XX Information Nature 2 bytes
yyyyyyyyyyyy Information content related to

the Nature
12
bytes

NB: The quotes shown in 1st column of the table below are not present in the information

returned by AAG_CloudWatcher. They are shown to delimit the 2 characters and
show that the 2nd character is in most cases a space.

Version 1.00 page 2 / 6

Meaning of XX Description of yyyyyyyyyyyy
“1 “ Infra red temperature in hundredth of degree Celsius
“2 “ Infra red sensor temperature in hundredth of degree Celsius
“3 “ Analog0 output 0-1023 => 0 to full voltage (Ambient Temp NTC)
“4 “ Analog2 output 0-1023 => 0 to full voltage (LDR ambient light)
“5 “ Analog3 output 0-1023 => 0 to full voltage (Rain Sensor Temp NTC)
“6 “ Analog3 output 0-1023 => 0 to full voltage (Zener Voltage reference)
“E1” Number of internal errors reading infra red sensor: 1st address byte
“E2” Number of internal errors reading infra red sensor: command byte
“E3” Number of internal errors reading infra red sensor: 2nd address byte
“E4” Number of internal errors reading infra red sensor: PEC byte

NB: the error counters are reset after being read.
“N “ Internal Name
“V “ Firmware Version number
“Q “ PWM duty cycle
“R “ Rain frequency counter
“X “ Switch Opened
“Y “ Switch Closed

chr(XON)
+chr(32)

Handshaking XON (= 0x11) (= 17)

Detailed Description of Received Information

The AAG_CloudWatcher always returns information in blocks of 15 characters. The
meaning of the 15 character blocks are described in the above table.

However different commands will return different number of blocks as described in the
following table:

Sent Received
Command No of

Blocks
Total no.

of
characters

Block Content Meaning

A! 2 30 1st block: !N CloudWatcher
2nd block: !¶ 0�

1st block: Internal name
2nd block: Handshaking block

B! 2 30 1st block: !N 1.10
2nd block: !¶ 0

1st block: Firmware version
2nd block: Handshaking block

C! 5 75 1st block: !6 xxxx
2nd block: !3 xxxx
3rd block: !4 xxxx
4th block: !5 xxxx
5th block: !¶ 0

1st block: xxxx Zener voltage
2nd block: xxxx Ambient Temperature
3rd block: xxxx LDR voltage
4th block: xxxx Rain Sensor
Temperature
5th block: Handshaking block

D! 5 75 1st block: !E1 nnnnn
2nd block: !E2 nnnnn
3rd block: !E3 nnnnn
4th block: !E4 nnnnn
5th block: !¶ 0

1st block: nnnnn 1st address byte errors
2nd block: nnnnn Command byte errors
3rd block: nnnnn 2nd address byte errors
4th block: nnnnn PEC byte errors
5th block: Handshaking block

Version 1.00 page 3 / 6

E! 2 30 1st block: !R xxxx
2nd block: !¶ 0

1st block: xxxx Rain frequency
2nd block: Handshaking block

F! 2 30 1st block: !X
2nd block: !¶ 0
or
1st block: !Y
2nd block: !¶ 0

1st block: Switch Open
2nd block: Handshaking block
or
1st block: Switch Close
2nd block: Handshaking block

G! 2 30 1st block: !X
2nd block: !¶ 0

1st block: Switch Open
2nd block: Handshaking block

H! 2 30 1st block: !Y
2nd block: !¶ 0

1st block: Switch Close
2nd block: Handshaking block

Ppppp! 2 30 1st block: !Q pppp
2nd block: !¶ 0

1st block: PWM duty cycle
2nd block: Handshaking block

Q! 2 30 1st block: !Q pppp
2nd block: !¶ 0

1st block: pppp PWM duty cycle
2nd block: Handshaking block

S! 2 30 1st block: !1 ttttt
2nd block: !¶ 0

1st block: ttttt IR sky temperature
2nd block: Handshaking block

T! 2 30 1st block: !2 ttttt
2nd block: !¶ 0

1st block: ttttt IR sensor temperature
2nd block: Handshaking block

z! 1 15 1st block: !¶ 0 1st block: Handshaking block

NOTE: xxxx represents a value between 0 and 1023 which relates to the 10 bit
microprocessor D/A converter;

NOTE: nnnnn represents a positive integer;
NOTE: ttttt represents a positive integer which represents the temperature in

hundredth of degree Celsius, e.g. ttttt = 2456 => 24.56 ºC;
NOTE: pppp represents a value between 0 and 1023 which relates to the 10 bit

microprocessor PWM modulator;

NOTE: The handshaking block represented in the above table as “!¶ 0”

consists of 15 characters:
Pos Content

1 Exclamation mark = char 0x21 (hexadecimal) or 33 (decimal)
2 XON = char 0x11 (hexadecimal) or 17 (decimal)
3 Space = char 0x20 (hexadecimal) or 32 (decimal)
4 Space = char 0x20 (hexadecimal) or 32 (decimal)
5 Space = char 0x20 (hexadecimal) or 32 (decimal)
6 Space = char 0x20 (hexadecimal) or 32 (decimal)
7 Space = char 0x20 (hexadecimal) or 32 (decimal)
8 Space = char 0x20 (hexadecimal) or 32 (decimal)
9 Space = char 0x20 (hexadecimal) or 32 (decimal)

10 Space = char 0x20 (hexadecimal) or 32 (decimal)
11 Space = char 0x20 (hexadecimal) or 32 (decimal)
12 Space = char 0x20 (hexadecimal) or 32 (decimal)
13 Space = char 0x20 (hexadecimal) or 32 (decimal)
14 Space = char 0x20 (hexadecimal) or 32 (decimal)
15 ZERO = char 0x30 (hexadecimal) or 48 (decimal)

Version 1.00 page 4 / 6

Communication operational recommendations

The device firmware was developed using MikroBasic. The RS232 communications make
use of microprocessor interrupts. On the other hand the rain frequency is measured using an
internal counter and an interrupt microprocessor line.

To prevent a mix up in the microprocessor interrupts, I strongly suggest the following:

1. When communicating with the device send one command at a time and wait for the
respective reply, checking that the correct number of characters has been received;

2. Perform more than one single reading (say, 5) and apply a statistical analysis to the
values to exclude any outlier. I am using 5 readings and calculate the average value
(AVG) and standard deviation (STD). Any values that are outside the range AVG-
STD and AVG+STD are excluded. The final value is the average of the values
which were not excluded;

3. The rain frequency measurement is the one that takes more time - 280 ms
approximately;

4. The following reading cycle takes just less than 3 seconds to perform;

 Perform 5 times
 get IR temperature command “S!”
 get Ambient temperature command “T!”
 get Values command “C!”
 get Rain Frequency command “E!”
 loop
 get PWM value command “Q!”
 get IR errors command “D!”
 get SWITCH Status command “F!”

5. The Visual Basic 6 main program makes use of the RS232 control event to handle

the device replies, thus avoiding the program to wait for the end of the above cycle.
6. The algorithm that controls the heating cycles of the rain sensor is also programmed

in the Visual Basic 6 main program and not in the device microprocessor.

Version 1.00 page 5 / 6

Converting values sent by the device to meaningful units

1. The infrared temperature is converted to ºC by dividing it by 100;
2. The temperature of the infrared sensor is converted to ºC by dividing it by 100;
3. Pulse Width values are converted to % by

PWM = 100 * xxxx / 1023

where
xxxx = value sent by the device
PWM = pulse width as %

4. The internal supply voltage value is calculated from the Zener voltage value converted
to volts by:

Vs = 1023 * ZenerConstant / xxxx

where
xxxx = value sent by the device
Vs = internal supply voltage in V
ZenerConstant = 3

5. The ambient temperature is calculated in ºC by

If xxxx > 1022 Then xxxx = 1022
If xxxx < 1 Then xxxx = 1
r = AmbPullUpResistance / ((1023 / xxxx) - 1) 'resistance K ohms
r = Log(r / AmbResAt25)
TAmb = 1 / (r / AmbBeta + 1 / (ABSZERO + 25)) - ABSZERO

where
Log = The log function is the natural log (usually Ln)
xxxx = value sent by the device
TAmb = ambient temperature in ºC
AmbPullUpResistance = 9.9
AmbResAt25 = 10
AmbBeta = 3811
ABSZERO = 273.15
xxxx corresponds to the value sent by the device

6. LDR value is calculated in K ohms by

If xxxx > 1022 Then xxxx = 1022
If xxxx < 1 Then xxxx = 1
LDR = LDRPullupResistance / ((1023 / xxxx) - 1) 'resistance K ohms

where
xxxx = value sent by the device
LDR = LDR resistance in K ohms
LDRPullupResistance = 56

Version 1.00 page 6 / 6

7. Rain sensor temperature is calculated in ºC by

If xxxx > 1022 Then xxxx = 1022
If xxxx < 1 Then xxxx = 1
r = RainPullUpResistance / ((1023 / xxxx) - 1) 'resistance K ohms
r = Log(r / RainResAt25)
TRain = 1 / (r / RainBeta + 1 / (ABSZERO + 25)) – ABSZERO

where
Log = The log function is the natural log (usually Ln)
xxxx = value sent by the device
TRain = rain sensor temperature in ºC
RainPullUpResistance = 1
RainResAt25 = 1
RainBeta = 3450
ABSZERO = 273.15

8. Rain frequency is equal to the value sent by the device.

