statistics-0.16.2.1: A library of statistical types, data, and functions
Copyright(C) 2012 Edward Kmett
LicenseBSD-style (see the file LICENSE)
MaintainerEdward Kmett <ekmett@gmail.com>
Stabilityprovisional
PortabilityDeriveDataTypeable
Safe HaskellNone
LanguageHaskell2010

Statistics.Distribution.Beta

Description

 
Synopsis

Documentation

data BetaDistribution Source #

The beta distribution

Instances

Instances details
FromJSON BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

parseJSON :: Value -> Parser BetaDistribution

parseJSONList :: Value -> Parser [BetaDistribution]

omittedField :: Maybe BetaDistribution

ToJSON BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Data BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BetaDistribution -> c BetaDistribution

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BetaDistribution

toConstr :: BetaDistribution -> Constr

dataTypeOf :: BetaDistribution -> DataType

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c BetaDistribution)

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BetaDistribution)

gmapT :: (forall b. Data b => b -> b) -> BetaDistribution -> BetaDistribution

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BetaDistribution -> r

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BetaDistribution -> r

gmapQ :: (forall d. Data d => d -> u) -> BetaDistribution -> [u]

gmapQi :: Int -> (forall d. Data d => d -> u) -> BetaDistribution -> u

gmapM :: Monad m => (forall d. Data d => d -> m d) -> BetaDistribution -> m BetaDistribution

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BetaDistribution -> m BetaDistribution

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BetaDistribution -> m BetaDistribution

Generic BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Associated Types

type Rep BetaDistribution 
Instance details

Defined in Statistics.Distribution.Beta

type Rep BetaDistribution = D1 ('MetaData "BetaDistribution" "Statistics.Distribution.Beta" "statistics-0.16.2.1-GC0UmpORwJ8SU4BdSiJEf" 'False) (C1 ('MetaCons "BD" 'PrefixI 'True) (S1 ('MetaSel ('Just "bdAlpha") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double) :*: S1 ('MetaSel ('Just "bdBeta") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double)))
Read BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Show BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

showsPrec :: Int -> BetaDistribution -> ShowS

show :: BetaDistribution -> String

showList :: [BetaDistribution] -> ShowS

Binary BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Eq BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

ContDistr BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

density :: BetaDistribution -> Double -> Double Source #

logDensity :: BetaDistribution -> Double -> Double Source #

quantile :: BetaDistribution -> Double -> Double Source #

complQuantile :: BetaDistribution -> Double -> Double Source #

ContGen BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

genContVar :: StatefulGen g m => BetaDistribution -> g -> m Double Source #

Distribution BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

cumulative :: BetaDistribution -> Double -> Double Source #

complCumulative :: BetaDistribution -> Double -> Double Source #

Entropy BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

entropy :: BetaDistribution -> Double Source #

MaybeEntropy BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

maybeEntropy :: BetaDistribution -> Maybe Double Source #

MaybeMean BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

maybeMean :: BetaDistribution -> Maybe Double Source #

MaybeVariance BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

maybeVariance :: BetaDistribution -> Maybe Double Source #

maybeStdDev :: BetaDistribution -> Maybe Double Source #

Mean BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

Methods

mean :: BetaDistribution -> Double Source #

Variance BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

type Rep BetaDistribution Source # 
Instance details

Defined in Statistics.Distribution.Beta

type Rep BetaDistribution = D1 ('MetaData "BetaDistribution" "Statistics.Distribution.Beta" "statistics-0.16.2.1-GC0UmpORwJ8SU4BdSiJEf" 'False) (C1 ('MetaCons "BD" 'PrefixI 'True) (S1 ('MetaSel ('Just "bdAlpha") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double) :*: S1 ('MetaSel ('Just "bdBeta") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double)))

Constructor

betaDistr Source #

Arguments

:: Double

Shape parameter alpha

-> Double

Shape parameter beta

-> BetaDistribution 

Create beta distribution. Both shape parameters must be positive.

betaDistrE Source #

Arguments

:: Double

Shape parameter alpha

-> Double

Shape parameter beta

-> Maybe BetaDistribution 

Create beta distribution. Both shape parameters must be positive.

improperBetaDistr Source #

Arguments

:: Double

Shape parameter alpha

-> Double

Shape parameter beta

-> BetaDistribution 

Create beta distribution. Both shape parameters must be non-negative. So it allows to construct improper beta distribution which could be used as improper prior.

improperBetaDistrE Source #

Arguments

:: Double

Shape parameter alpha

-> Double

Shape parameter beta

-> Maybe BetaDistribution 

Create beta distribution. Both shape parameters must be non-negative. So it allows to construct improper beta distribution which could be used as improper prior.

Accessors

bdAlpha :: BetaDistribution -> Double Source #

Alpha shape parameter

bdBeta :: BetaDistribution -> Double Source #

Beta shape parameter