statistics-0.16.2.1: A library of statistical types, data, and functions
Copyright(c) 2020 Ximin Luo
LicenseBSD3
Maintainerinfinity0@pwned.gg
Stabilityexperimental
Portabilityportable
Safe HaskellNone
LanguageHaskell2010

Statistics.Distribution.Lognormal

Contents

Description

The log normal distribution. This is a continuous probability distribution that describes data whose log is clustered around a mean. For example, the multiplicative product of many independent positive random variables.

Synopsis

Documentation

data LognormalDistribution Source #

The lognormal distribution.

Instances

Instances details
FromJSON LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

ToJSON LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Data LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LognormalDistribution -> c LognormalDistribution

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LognormalDistribution

toConstr :: LognormalDistribution -> Constr

dataTypeOf :: LognormalDistribution -> DataType

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LognormalDistribution)

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LognormalDistribution)

gmapT :: (forall b. Data b => b -> b) -> LognormalDistribution -> LognormalDistribution

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LognormalDistribution -> r

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LognormalDistribution -> r

gmapQ :: (forall d. Data d => d -> u) -> LognormalDistribution -> [u]

gmapQi :: Int -> (forall d. Data d => d -> u) -> LognormalDistribution -> u

gmapM :: Monad m => (forall d. Data d => d -> m d) -> LognormalDistribution -> m LognormalDistribution

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LognormalDistribution -> m LognormalDistribution

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LognormalDistribution -> m LognormalDistribution

Generic LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Associated Types

type Rep LognormalDistribution 
Instance details

Defined in Statistics.Distribution.Lognormal

type Rep LognormalDistribution = D1 ('MetaData "LognormalDistribution" "Statistics.Distribution.Lognormal" "statistics-0.16.2.1-GC0UmpORwJ8SU4BdSiJEf" 'True) (C1 ('MetaCons "LND" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 NormalDistribution)))
Read LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Show LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Methods

showsPrec :: Int -> LognormalDistribution -> ShowS

show :: LognormalDistribution -> String

showList :: [LognormalDistribution] -> ShowS

Binary LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Eq LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

ContDistr LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Methods

density :: LognormalDistribution -> Double -> Double Source #

logDensity :: LognormalDistribution -> Double -> Double Source #

quantile :: LognormalDistribution -> Double -> Double Source #

complQuantile :: LognormalDistribution -> Double -> Double Source #

ContGen LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Methods

genContVar :: StatefulGen g m => LognormalDistribution -> g -> m Double Source #

Distribution LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Methods

cumulative :: LognormalDistribution -> Double -> Double Source #

complCumulative :: LognormalDistribution -> Double -> Double Source #

Entropy LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

MaybeEntropy LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Methods

maybeEntropy :: LognormalDistribution -> Maybe Double Source #

MaybeMean LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Methods

maybeMean :: LognormalDistribution -> Maybe Double Source #

MaybeVariance LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Mean LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Methods

mean :: LognormalDistribution -> Double Source #

Variance LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

FromSample LognormalDistribution Double Source #

Variance is estimated using maximum likelihood method (biased estimation) over the log of the data.

Returns Nothing if sample contains less than one element or variance is zero (all elements are equal)

Instance details

Defined in Statistics.Distribution.Lognormal

Methods

fromSample :: Vector v Double => v Double -> Maybe LognormalDistribution Source #

type Rep LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

type Rep LognormalDistribution = D1 ('MetaData "LognormalDistribution" "Statistics.Distribution.Lognormal" "statistics-0.16.2.1-GC0UmpORwJ8SU4BdSiJEf" 'True) (C1 ('MetaCons "LND" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 NormalDistribution)))

Constructors

lognormalDistr Source #

Arguments

:: Double

Mu

-> Double

Sigma

-> LognormalDistribution 

Create log normal distribution from parameters.

lognormalDistrErr Source #

Arguments

:: Double

Mu

-> Double

Sigma

-> Either String LognormalDistribution 

Create log normal distribution from parameters.

lognormalDistrMeanStddevErr Source #

Arguments

:: Double

Mu

-> Double

Sigma

-> Either String LognormalDistribution 

Create log normal distribution from mean and standard deviation.

lognormalStandard :: LognormalDistribution Source #

Standard log normal distribution with mu 0 and sigma 1.

Mean is sqrt e and variance is (e - 1) * e.