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Chapter 1

Introduction

A numerical semigroup is a subset of the set N of nonnegative integers that is closed under addition,
contains 0 and whose complement in N is finite. The smallest positive integer belonging to a numerical
semigroup is its multiplicity.

Let S be a numerical semigroup and A be a subset of S. We say that A is a system of generators
of S if S = {k1a1 + · · ·+ knan | n,k1, . . . ,kn ∈ N,a1, . . . ,an ∈ A}. The set A is a minimal system of
generators of S if no proper subset of A is a system of generators of S.

Every numerical semigroup has a unique minimal system of generators. This is a data that can
be used in order to uniquely define a numerical semigroup. Observe that since the complement of a
numerical semigroup in the set of nonnegative integers is finite, this implies that the greatest common
divisor of the elements of a numerical semigroup is 1, and the same condition must be fulfilled by its
minimal system of generators (or by any of its systems of generators).

Given a numerical semigroup S and a nonzero element s in it, one can consider for every inte-
ger i ranging from 0 to s− 1, the smallest element in S congruent with i modulo s, say w(i) (this
element exists since the complement of S in N is finite). Clearly w(0) = 0. The set Ap(S,s) =
{w(0),w(1), . . . ,w(s− 1)} is called the Apéry set of S with respect to s. Note that a nonnegative in-
teger x congruent with i modulo s belongs to S if and only if w(i) ≤ x. Thus the pair (s,Ap(S,s))
fully determines the numerical semigroup S (and can be used to easily solve the membership problem
to S). This set is in fact one of the most powerfull tools known for numerical semigroups, and it is
used almost everywhere in the computation of components and invariants associated to a numerical
semigroup. Usually the element s is taken to be the multiplicity, since in this way the resulting Apéry
set is the smallest possible.

A gap of a numerical semigroup S is a nonnegative integer not belonging to S. The set of gaps of
S is usually denoted by H(S), and clearly determines uniquely S. Note that if x is a gap of S, then so
are all the nonnegative integers dividing it. Thus in order to describe S we do not need to know all its
gaps, but only those that are maximal with respect to the partial order induced by division in N. These
gaps are called fundamental gaps.

The largest nonnegative integer not belonging to a numerical semigroup S is the Frobenius number
of S. If S is the set of nonnegative integers, then clearly its Frobenius number is −1, otherwise
its Frobenius number coincides with the maximum of the gaps (or fundamental gaps) of S. The
Frobenius number plus one is known as the conductor of the semigroup. In this package we refer to
the elements in the semigroup that are less than or equal to the conductor as small elements of the
semigroup. Observe that from the definition, if S is a numerical semigroup with Frobenius number f ,
then f +N \ {0} ⊆ S. An integer z is a pseudo-Frobenius number of S if z+ S \ {0} ⊆ S. Thus the
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Frobenius number of S is one of its pseudo-Frobenius numbers. The type of a numerical semigroup is
the cardinality of the set of its pseudo-Frobenius numbers.

The number of numerical semigroups having a given Frobenius number is finite. The elements
in this set of numerical semigroups that are maximal with respect to set inclusion are precisely those
numerical semigroups that cannot be expressed as intersection of two other numerical semigroups
containing them properly, and thus they are known as irreducible numerical semigroups. Clearly,
every numerical semigroup is the intersection of (finitely many) irreducible numerical semigroups.

A numerical semigroup S with Frobenius number f is symmetric if for every integer x, either x ∈ S
or f − x ∈ S. The set of irreducible numerical semigroups with odd Frobenius number coincides with
the set of symmetric numerical semigroups. The numerical semigroup S is pseudo-symmetric if f is
even and for every integer x not equal to f/2 either x ∈ S or f − x ∈ S. The set of irreducible nu-
merical semigroups with even Frobenius number is precisely the set of pseudo-symmetric numerical
semigroups. These two classes of numerical semigroups have been widely studied in the literature due
to their nice applications in Algebraic Geometry. This is probably one of the main reasons that made
people turn their attention on numerical semigroups again in the last decades. Symmetric numerical
semigroups can be also characterized as those with type one, and pseudo-symmetric numerical semi-
groups are those numerical semigroups with type two and such that its pseudo-Frobenius numbers are
its Frobenius number and its Frobenius number divided by two.

Another class of numerical semigroups that catched the attention of researchers working on Al-
gebraic Geometry and Commutative Ring Theory is the class of numerical semigroups with maximal
embedding dimension. The embedding dimension of a numerical semigroup is the cardinality of its
minimal system of generators. It can be shown that the embedding dimension is at most the multi-
plicity of the numerical semigroup. Thus maximal embedding dimension numerical semigroups are
those numerical semigroups for which their embedding dimension and multiplicity coincide. These
numerical semigroups have nice maximal properties, not only (of course) related to their embed-
ding dimension, but also by means of their presentations. Among maximal embedding dimension
there are two classes of numerical semigroups that have been studied due to the connections with the
equivalence of algebroid branches. A numerical semigroup S is Arf if for every x ≥ y ≥ z ∈ S, then
x+y− z ∈ S; and it is saturated if the following condition holds: if s,s1, . . . ,sr ∈ S are such that si ≤ s
for all i ∈ {1, . . . ,r} and z1, . . . ,zr ∈ Z are such that z1s1 + · · ·+ zrsr ≥ 0, then s+ z1s1 + · · ·+ zrsr ∈ S.

If we look carefully inside the set of fundamental gaps of a numerical semigroup, we see that there
are some fulfilling the condition that if they are added to the given numerical semigroup, then the
resulting set is again a numerical semigroup. These elements are called special gaps of the numerical
semigroup. A numerical semigroup other than the set of nonnegative integers is irreducible if and only
if it has only a special gap.

The inverse operation to the one described in the above paragraph is that of removing an element
of a numerical semigroup. If we want the resulting set to be a numerical semigroup, then the only
thing we can remove is a minimal generator.

Let a,b,c,d be positive integers such that a/b < c/d, and let I = [a/b,c/d]. Then the set S(I) =
N∩

⋃
n≥0 nI is a numerical semigroup. This class of numerical semigroups coincides with that of

sets of solutions to equations of the form Ax mod B ≤Cx with A,B,C positive integers. A numerical
semigroup in this class is said to be proportionally modular.

A sequence of positive rational numbers a1/b1 < · · · < an/bn with ai,bi positive integers is a
Bézout sequence if ai+1bi −aibi+1 = 1 for all i ∈ {1, . . . ,n−1}. If a/b = a1/b1 < · · ·< an/bn = c/d,
then S([a/b,c/d]) = ⟨a1, . . . ,an⟩. Bézout sequences are not only interesting for this fact, they have
shown to be a major tool in the study of proportionally modular numerical semigroups.
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If S is a numerical semigroup and k is a positive integer, then the set S/k = {x ∈ N | kx ∈ S} is a
numerical semigroup, known as the quotient S by k.

Let m be a positive integer. A subadditive function with period m is a map f : N → N such that
f (0) = 0, f (x+ y) ≤ f (x)+ f (y) and f (x+m) = f (x). If f is a subadditive function with period
m, then the set M f = {x ∈ N | f (x) ≤ x} is a numerical semigroup. Moreover, every numerical
semigroup is of this form. Thus a numerical semigroup can be given by a subadditive function with a
given period. If S is a numerical semigroup and s∈ S,s ̸= 0, and Ap(S,s) = {w(0),w(1), . . . ,w(s−1)},
then f (x) = w(x mod s) is a subadditive function with period s such that M f = S.

Let S be a numerical semigroup generated by {n1, . . . ,nk}. Then we can define the following mor-
phism (called sometimes the factorization morphism) by ϕ :Nk → S, ϕ(a1, . . . ,ak) = a1n1+ · · ·+aknk.
If σ is the kernel congruence of ϕ (that is, aσb if ϕ(a) = ϕ(b)), then S is isomorphic to Nk/σ . A
presentation for S is a system of generators (as a congruence) of σ . If {n1, . . . ,np} is a minimal system
of generators, then a minimal presentation is a presentation such that none of its proper subsets is a
presentation. Minimal presentations of numerical semigroups coincide with presentations with min-
imal cardinality, though in general these two concepts are not the same for an arbitrary commutative
semigroup.

A set I of integers is an ideal relative to a numerical semigroup S provided that I +S ⊆ I and that
there exists d ∈ S such that d + I ⊆ S. If I ⊆ S, we simply say that I is an ideal of S. If I and J are
relative ideals of S, then so is I − J = {z ∈ Z | z+ J ⊆ I}, and it is tightly related to the operation ":"
of ideals in a commutative ring.

In this package we have implemented the functions needed to deal with the elements exposed in
this introduction.

Many of the algorithms, and the necessary background to understand them, can be found in the
monographs [RGS99a], [RGS09] and [AGS16b]. Some examples in these books have been illustrated
with the help of this package. So the reader can also find there more examples on the usage of the
functions implemented here.

This package was presented in [DGSM06]. For a survey of the features of this package, see
[DGS16].



Chapter 2

Numerical Semigroups

This chapter describes how to create numerical semigroups in GAP and perform some basic tests.

2.1 Generating Numerical Semigroups

We recall some definitions from Chapter 1.
A numerical semigroup is a subset of the set N of nonnegative integers that is closed under addi-

tion, contains 0 and whose complement in N is finite.
We refer to the elements in a numerical semigroup that are less than or equal to the conductor as

small elements of the semigroup.
A gap of a numerical semigroup S is a nonnegative integer not belonging to S. The fundamental

gaps of S are those gaps that are maximal with respect to the partial order induced by division in N.
Given a numerical semigroup S and a nonzero element s in it, one can consider for every inte-

ger i ranging from 0 to s− 1, the smallest element in S congruent with i modulo s, say w(i) (this
element exists since the complement of S in N is finite). Clearly w(0) = 0. The set Ap(S,s) =
{w(0),w(1), . . . ,w(s−1)} is called the Apéry set of S with respect to s.

Let a,b,c,d be positive integers such that a/b < c/d, and let I = [a/b,c/d]. Then the set S(I) =
N∩

⋃
n≥0 nI is a numerical semigroup. This class of numerical semigroups coincides with that of sets

of solutions to equations of the form Ax mod B ≤ Cx with A,B,C positive integers. A numerical
semigroup in this class is said to be proportionally modular. If C = 1, then it is said to be modular.

There are different ways to specify a numerical semigroup S, namely, by its generators; by its
gaps, its fundamental or special gaps by its Apéry set, just to name some. In this section we describe
functions that may be used to specify, in one of these ways, a numerical semigroup in GAP.

2.1.1 NumericalSemigroup (by generators)

▷ NumericalSemigroup([String, ]List) (function)

▷ NumericalSemigroupByGenerators(List) (function)

List is a list of nonnegative integers with greatest common divisor equal to one. These integers
may be given as a list or by a sequence of individual elements. The output is the numerical semigroup
spanned by List.

String does not need to be present. When it is present, it must be "generators".

10
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Example
gap> s1 := NumericalSemigroup(3,5,7);
<Numerical semigroup with 3 generators>
gap> s2 := NumericalSemigroup([3,5,7]);
<Numerical semigroup with 3 generators>
gap> s3 := NumericalSemigroupByGenerators(3,5,7);
<Numerical semigroup with 3 generators>
gap> s4 := NumericalSemigroupByGenerators([3,5,7]);
<Numerical semigroup with 3 generators>
gap> s5 := NumericalSemigroup("generators",3,5,7);
<Numerical semigroup with 3 generators>
gap> s6 := NumericalSemigroup("generators",[3,5,7]);
<Numerical semigroup with 3 generators>
gap> s1=s2;s2=s3;s3=s4;s4=s5;s5=s6;
true
true
true
true
true

2.1.2 NumericalSemigroupBySubAdditiveFunction

▷ NumericalSemigroupBySubAdditiveFunction(List) (function)

▷ NumericalSemigroup(String, List) (function)

A periodic subadditive function with period m is given through the list of images of the integers
from 1 to m, [Ros07]. The image of m has to be 0. The output is the numerical semigroup determined
by this subadditive function.

In the second form, String must be "subadditive".
Example

gap> s := NumericalSemigroupBySubAdditiveFunction([5,4,2,0]);
<Numerical semigroup>
gap> t := NumericalSemigroup("subadditive",[5,4,2,0]);;
gap> s=t;
true

2.1.3 NumericalSemigroupByAperyList

▷ NumericalSemigroupByAperyList(List) (function)

▷ NumericalSemigroup(String, List) (function)

List is an Apéry list. The output is the numerical semigroup whose Apéry set with respect to the
length of given list is List.

In the second form, String must be "apery".
Example

gap> s:=NumericalSemigroup(3,11);;
gap> ap := AperyListOfNumericalSemigroupWRTElement(s,20);
[ 0, 21, 22, 3, 24, 25, 6, 27, 28, 9, 30, 11, 12, 33, 14, 15, 36, 17, 18, 39 ]
gap> t:=NumericalSemigroupByAperyList(ap);;
gap> r := NumericalSemigroup("apery",ap);;



numericalsgps-- a package for numerical semigroups 12

gap> s=t;t=r;
true
true

2.1.4 NumericalSemigroupBySmallElements

▷ NumericalSemigroupBySmallElements(List) (function)

▷ NumericalSemigroup(String, List) (function)

List is the set of small elements of a numerical semigroup, that is, the set of all elements not
greater than the conductor. The output is the numerical semigroup with this set of small elements.
When no such semigroup exists, an error is returned.

In the second form, String must be "elements".
Example

gap> s:=NumericalSemigroup(3,11);;
gap> se := SmallElements(s);
[ 0, 3, 6, 9, 11, 12, 14, 15, 17, 18, 20 ]
gap> t := NumericalSemigroupBySmallElements(se);;
gap> r := NumericalSemigroup("elements",se);;
gap> s=t;t=r;
true
true
gap> e := [ 0, 3, 6, 9, 11, 14, 15, 17, 18, 20 ];
[ 0, 3, 6, 9, 11, 14, 15, 17, 18, 20 ]
gap> NumericalSemigroupBySmallElements(e);
Error, The argument does not represent a numerical semigroup called from
<function "NumericalSemigroupBySmallElements">( <arguments> )
called from read-eval loop at line 35 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk>

2.1.5 NumericalSemigroupByGaps

▷ NumericalSemigroupByGaps(List) (function)

▷ NumericalSemigroup(String, List) (function)

List is the set of gaps of a numerical semigroup. The output is the numerical semigroup with this
set of gaps. When no semigroup exists with the given set as set of gaps, an error is returned.

In the second form, String must be "gaps".
Example

gap> g := [ 1, 2, 4, 5, 7, 8, 10, 13, 16 ];;
gap> s := NumericalSemigroupByGaps(g);;
gap> t := NumericalSemigroup("gaps",g);;
gap> s=t;
true
gap> h := [ 1, 2, 5, 7, 8, 10, 13, 16 ];;
gap> NumericalSemigroupByGaps(h);
Error, The argument does not represent the gaps of a numerical semigroup called
from
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<function "NumericalSemigroupByGaps">( <arguments> )
called from read-eval loop at line 34 of *stdin*

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk>

2.1.6 NumericalSemigroupByFundamentalGaps

▷ NumericalSemigroupByFundamentalGaps(List) (function)

▷ NumericalSemigroup(String, List) (function)

List is the set of fundamental gaps of a numerical semigroup, [RGSGGJM04]. The output is the
numerical semigroup determined by these gaps. When the given set contains elements (which will be
gaps) that are not fundamental gaps, they are silently removed.

In the second form, String must be "fundamentalgaps".
Example

gap> fg := [ 11, 14, 17, 20, 23, 26, 29, 32, 35 ];;
gap> NumericalSemigroupByFundamentalGaps(fg);
<Numerical semigroup>
gap> NumericalSemigroup("fundamentalgaps",fg);
<Numerical semigroup>
gap> last=last2;
true
gap> gg := [ 11, 17, 20, 22, 23, 26, 29, 32, 35 ];; #22 is not fundamental
gap> NumericalSemigroup("fundamentalgaps",fg);
<Numerical semigroup>

2.1.7 NumericalSemigroupByAffineMap

▷ NumericalSemigroupByAffineMap(a, b, c) (function)

▷ NumericalSemigroup(String, a, b, c) (function)

Given three nonnegative integers a , b and c , with a,c > 0 and gcd(b,c) = 1, this function returns
the least (with respect to set order inclusion) numerical semigroup containing c and closed under the
map x 7→ ax+b. The procedure is explained in [Ugo17].

In the second form, String must be "affinemap".
Example

gap> s:=NumericalSemigroupByAffineMap(3,1,3);
<Numerical semigroup with 3 generators>
gap> SmallElements(s);
[ 0, 3, 6, 9, 10, 12, 13, 15, 16, 18 ]
gap> t:=NumericalSemigroup("affinemap",3,1,3);;
gap> s=t;
true

2.1.8 ModularNumericalSemigroup

▷ ModularNumericalSemigroup(a, b) (function)

▷ NumericalSemigroup(String, a, b) (function)
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Given two positive integers a and b , this function returns a modular numerical semigroup satisfy-
ing ax mod b ≤ x, [RGSUB05].

In the second form, String must be "modular".
Example

gap> ModularNumericalSemigroup(3,7);
<Modular numerical semigroup satisfying 3x mod 7 <= x >
gap> NumericalSemigroup("modular",3,7);
<Modular numerical semigroup satisfying 3x mod 7 <= x >

2.1.9 ProportionallyModularNumericalSemigroup

▷ ProportionallyModularNumericalSemigroup(a, b, c) (function)

▷ NumericalSemigroup(String, a, b) (function)

Given three positive integers a , b and c , this function returns a proportionally modular numerical
semigroup satisfying ax mod b ≤ cx, [RAGGUB03].

In the second form, String must be "propmodular".
Example

gap> ProportionallyModularNumericalSemigroup(3,7,12);
<Proportionally modular numerical semigroup satisfying 3x mod 7 <= 12x >
gap> NumericalSemigroup("propmodular",3,7,12);
<Proportionally modular numerical semigroup satisfying 3x mod 7 <= 12x >

When c = 1, the semigroup is seen as a modular numerical semigroup.
Example

gap> NumericalSemigroup("propmodular",67,98,1);
<Modular numerical semigroup satisfying 67x mod 98 <= x >

Numerical semigroups generated by an interval of positive integers are known to be proportion-
ally modular, and thus they are treated as such, since membership and other problems can be solved
efficiently for these semigroups.

2.1.10 NumericalSemigroupByInterval

▷ NumericalSemigroupByInterval(List) (function)

▷ NumericalSemigroup(String, List) (function)

The input is a list of rational numbers defining a closed interval. The output is the semigroup of
numerators of all rational numbers in this interval, [RAGGUB03].

String does not need to be present. When it is present, it must be "interval".
Example

gap> NumericalSemigroupByInterval(7/5,5/3);
<Proportionally modular numerical semigroup satisfying 25x mod 35 <= 4x >
gap> NumericalSemigroup("interval",[7/5,5/3]);
<Proportionally modular numerical semigroup satisfying 25x mod 35 <= 4x >
gap> SmallElements(last);
[ 0, 3, 5 ]
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2.1.11 NumericalSemigroupByOpenInterval

▷ NumericalSemigroupByOpenInterval(List) (function)

▷ NumericalSemigroup(String, List) (function)

The input is a list of rational numbers defining an open interval. The output is the semigroup of
numerators of all rational numbers in this interval, [RUB06].

String does not need to be present. When it is present, it must be "openinterval".
Example

gap> NumericalSemigroupByOpenInterval(7/5,5/3);
<Numerical semigroup>
gap> NumericalSemigroup("openinterval",[7/5,5/3]);
<Numerical semigroup>
gap> SmallElements(last);
[ 0, 3, 6, 8 ]

2.2 Some basic tests

This section describes some basic tests on numerical semigroups. The first described tests refer to
what the semigroup is currently known to be (not necessarily the way it was created). Then are
presented functions to test if a given list represents the small elements, gaps or the Apéry set (see 1)
of a numerical semigroup; to test if an integer belongs to a numerical semigroup and if a numerical
semigroup is a subsemigroup of another one.

2.2.1 IsNumericalSemigroup

▷ IsNumericalSemigroup(NS) (attribute)

▷ IsNumericalSemigroupByGenerators(NS) (attribute)

▷ IsNumericalSemigroupByInterval(NS) (attribute)

▷ IsNumericalSemigroupByOpenInterval(NS) (attribute)

▷ IsNumericalSemigroupBySubAdditiveFunction(NS) (attribute)

▷ IsNumericalSemigroupByAperyList(NS) (attribute)

▷ IsNumericalSemigroupBySmallElements(NS) (attribute)

▷ IsNumericalSemigroupByGaps(NS) (attribute)

▷ IsNumericalSemigroupByFundamentalGaps(NS) (attribute)

▷ IsProportionallyModularNumericalSemigroup(NS) (attribute)

▷ IsModularNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup and these attributes are available (their names should be self explana-
tory).

Example
gap> s:=NumericalSemigroup(3,7);
<Numerical semigroup with 2 generators>
gap> AperyListOfNumericalSemigroupWRTElement(s,30);;
gap> t:=NumericalSemigroupByAperyList(last);
<Numerical semigroup>
gap> IsNumericalSemigroupByGenerators(s);
true
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gap> IsNumericalSemigroupByGenerators(t);
false
gap> IsNumericalSemigroupByAperyList(s);
false
gap> IsNumericalSemigroupByAperyList(t);
true

2.2.2 RepresentsSmallElementsOfNumericalSemigroup

▷ RepresentsSmallElementsOfNumericalSemigroup(L) (attribute)

Tests if the list L (which has to be a set) may represent the “small" elements of a numerical
semigroup.

Example
gap> L:=[ 0, 3, 6, 9, 11, 12, 14, 15, 17, 18, 20 ];
[ 0, 3, 6, 9, 11, 12, 14, 15, 17, 18, 20 ]
gap> RepresentsSmallElementsOfNumericalSemigroup(L);
true
gap> L:=[ 6, 9, 11, 12, 14, 15, 17, 18, 20 ];
[ 6, 9, 11, 12, 14, 15, 17, 18, 20 ]
gap> RepresentsSmallElementsOfNumericalSemigroup(L);
false

2.2.3 RepresentsGapsOfNumericalSemigroup

▷ RepresentsGapsOfNumericalSemigroup(L) (attribute)

Tests if the list L may represent the gaps (see 1) of a numerical semigroup.
Example

gap> s:=NumericalSemigroup(3,7);
<Numerical semigroup with 2 generators>
gap> L:=GapsOfNumericalSemigroup(s);
[ 1, 2, 4, 5, 8, 11 ]
gap> RepresentsGapsOfNumericalSemigroup(L);
true
gap> L:=Set(List([1..21],i->RandomList([1..50])));
[ 2, 6, 7, 8, 10, 12, 14, 19, 24, 28, 31, 35, 42, 50 ]
gap> RepresentsGapsOfNumericalSemigroup(L);
false

2.2.4 IsAperyListOfNumericalSemigroup

▷ IsAperyListOfNumericalSemigroup(L) (function)

Tests whether a list L of integers may represent the Apéry list of a numerical semi-
group. It returns true when the periodic function represented by L is subadditive (see
RepresentsPeriodicSubAdditiveFunction (A.2.1)) and the remainder of the division of L[i] by
the length of L is i and returns false otherwise (the criterium used is the one explained in [Ros96b]).
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Example
gap> IsAperyListOfNumericalSemigroup([0,21,7,28,14]);
true

2.2.5 IsSubsemigroupOfNumericalSemigroup

▷ IsSubsemigroupOfNumericalSemigroup(S, T) (function)

S and T are numerical semigroups. Tests whether T is contained in S .
Example

gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> T:=NumericalSemigroup(2,3);
<Numerical semigroup with 2 generators>
gap> IsSubsemigroupOfNumericalSemigroup(T,S);
true
gap> IsSubsemigroupOfNumericalSemigroup(S,T);
false

2.2.6 IsSubset

▷ IsSubset(S, T) (attribute)

S is a numerical semigroup. T can be a numerical semigroup, in which case the function is just
a synonym of IsSubsemigroupOfNumericalSemigroup (2.2.5), or a list of integers, in which case
tests whether all elements of the list belong to S .

Example
gap> ns1 := NumericalSemigroup(5,7);;
gap> ns2 := NumericalSemigroup(5,7,11);;
gap> IsSubset(ns1,ns2);
false
gap> IsSubset(ns2,[5,15]);
true
gap> IsSubset(ns1,[5,11]);
false
gap> IsSubset(ns2,ns1);
true

2.2.7 BelongsToNumericalSemigroup

▷ BelongsToNumericalSemigroup(n, S) (operation)

▷ \in(n, S) (operation)

n is an integer and S is a numerical semigroup. Tests whether n belongs to S . \in(n,S) calls the
infix variant n in S, and both can be seen as a short for BelongsToNumericalSemigroup(n,S).
Several methods are implemented for membership, depending on the properties of S known. For
instance, there are methods if any of the following information is known: Apéry set, small elements,
defining (proportionally) modular Diophantine equation, fundamental gaps, gaps, generators.
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Example
gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> BelongsToNumericalSemigroup(15,S);
false
gap> 15 in S;
false
gap> SmallElementsOfNumericalSemigroup(S);
[ 0, 11, 12, 13, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 39, 43 ]
gap> BelongsToNumericalSemigroup(13,S);
true
gap> 13 in S;
true



Chapter 3

Basic operations with numerical
semigroups

This chapter describes some basic functions to deal with notable elements in a numerical semigroup.
A section including functions to test Wilf’s conjecture is also included in this chapter. We provide
some functions that allow to treat a numerical semigroup as a list, and thus easy the task to access to
its elements.

3.1 Invariants

In this section we present formulas to compute invariants and notable elements of a numerical semi-
group. Some tests depending on these invariants are provided here, like being an acute or an ordinary
numerical semigroup. We also present procedures to construct iterators from a numerical semigroup,
or to retrieve several elements from a numerical semigroup as if it were a list (with infinitely many
elements).

3.1.1 Multiplicity (for numerical semigroup)

▷ Multiplicity(NS) (attribute)

▷ MultiplicityOfNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup. Returns the multiplicity of NS , which is the smallest positive integer
belonging to NS . Depending on the information known about NS , different methods are implemented.
There are methods for the following cases: generators are known, Apéry set is known, it is a modular
numerical semigroup, or it is proportionally modular (and thus is defined by a closed interval [RV08]).

Example
gap> NumericalSemigroup(3,5);
<Numerical semigroup with 2 generators>
gap> Multiplicity(last);
3
gap> S := NumericalSemigroup("modular", 7,53);
<Modular numerical semigroup satisfying 7x mod 53 <= x >
gap> MultiplicityOfNumericalSemigroup(S);
8

19
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3.1.2 Generators (for numerical semigroup)

▷ Generators(S) (attribute)

▷ GeneratorsOfNumericalSemigroup(S) (attribute)

▷ MinimalGenerators(S) (attribute)

▷ MinimalGeneratingSystemOfNumericalSemigroup(S) (attribute)

▷ MinimalGeneratingSystem(S) (attribute)

S is a numerical semigroup. GeneratorsOfNumericalSemigroup returns a set of gen-
erators of S, which may not be minimal. The shorter name Generators may be used.
MinimalGeneratingSystemOfNumericalSemigroup returns the minimal set of generators of S. The
shorter names MinimalGenerators or MinimalGeneratingSystem may be used.

Example
gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> Generators(S);
[ 11, 12, 13, 32, 53 ]
gap> S := NumericalSemigroup(3, 5, 53);
<Numerical semigroup with 3 generators>
gap> GeneratorsOfNumericalSemigroup(S);
[ 3, 5, 53 ]
gap> MinimalGenerators(S);
[ 3, 5 ]
gap> MinimalGeneratingSystemOfNumericalSemigroup(S);
[ 3, 5 ]
gap> MinimalGeneratingSystem(S)=MinimalGeneratingSystemOfNumericalSemigroup(S);
true
gap> s := NumericalSemigroup(3,5,7,15);
<Numerical semigroup with 4 generators>
gap> HasGenerators(s);
true
gap> HasMinimalGenerators(s);
false
gap> MinimalGenerators(s);
[ 3, 5, 7 ]
gap> Generators(s);
[ 3, 5, 7, 15 ]

3.1.3 EmbeddingDimension (for numerical semigroup)

▷ EmbeddingDimension(NS) (attribute)

▷ EmbeddingDimensionOfNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup. It returns the cardinality of its minimal generating system.
Example

gap> s := NumericalSemigroup(3,5,7,15);
<Numerical semigroup with 4 generators>
gap> EmbeddingDimension(s);
3
gap> EmbeddingDimensionOfNumericalSemigroup(s);
3
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3.1.4 SmallElements (for numerical semigroup)

▷ SmallElements(NS) (attribute)

▷ SmallElementsOfNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup. It returns the list of small elements of NS. Of course, the time
consumed to return a result may depend on the way the semigroup is given.

Example
gap> SmallElements(NumericalSemigroup(3,5,7));
[ 0, 3, 5 ]
gap> SmallElementsOfNumericalSemigroup(NumericalSemigroup(3,5,7));
[ 0, 3, 5 ]

3.1.5 Length (for numerical semigroup)

▷ Length(NS) (attribute)

NS is a numerical semigroup. It returns the number of small elements of NS below the conduc-
tor. This corresponds with the length of the semigroup ring modulo the conductor ideal. See also
LengthOfGoodSemigroup (12.2.14).

Example
gap> Length(NumericalSemigroup(3,5,7));
2

3.1.6 FirstElementsOfNumericalSemigroup

▷ FirstElementsOfNumericalSemigroup(n, NS) (function)

NS is a numerical semigroup. It returns the list with the first n elements of NS.
Example

gap> FirstElementsOfNumericalSemigroup(2,NumericalSemigroup(3,5,7));
[ 0, 3 ]
gap> FirstElementsOfNumericalSemigroup(10,NumericalSemigroup(3,5,7));
[ 0, 3, 5, 6, 7, 8, 9, 10, 11, 12 ]

3.1.7 ElementsUpTo

▷ ElementsUpTo(NS, b) (function)

NS is a numerical semigroup, b a positve integer. It returns the set of elements of NS up to b .
Example

gap> ns := NumericalSemigroup(5,7);;
gap> SmallElements(ns);
[ 0, 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, 24 ]
gap> ElementsUpTo(ns,18);
[ 0, 5, 7, 10, 12, 14, 15, 17 ]
gap> ElementsUpTo(ns,27);
[ 0, 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, 24, 25, 26, 27 ]
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3.1.8 \[ \] (for numerical semigroups)

▷ \[ \](S, r) (operation)

S is a numerical semigroup and r is an integer. It returns the r-th element of S .
Example

gap> S := NumericalSemigroup(7,8,17);;
gap> S[53];
68

3.1.9 \{ \} (for numerical semigroups)

▷ \{ \}(S, ls) (operation)

S is a numerical semigroup and ls is a list of integers. It returns the list [S[r] : r in ls] .
Example

gap> S := NumericalSemigroup(7,8,17);;
gap> S{[1..5]};
[ 0, 7, 8, 14, 15 ]

3.1.10 NextElementOfNumericalSemigroup

▷ NextElementOfNumericalSemigroup(S, r) (operation)

S is a numerical semigroup and r is an integer. It returns the returns the least integer greater than
r belonging to S .

Example
gap> S := NumericalSemigroup(7,8,17);;
gap> NextElementOfNumericalSemigroup(S,9);
14
gap> NextElementOfNumericalSemigroup(16,S);
17
gap> NextElementOfNumericalSemigroup(S,FrobeniusNumber(S))=Conductor(S);
true

3.1.11 ElementNumber_NumericalSemigroup

▷ ElementNumber_NumericalSemigroup(S, r) (function)

▷ RthElementOfNumericalSemigroup(S, r) (operation)

S is a numerical semigroup and r is an integer. Both functions (which are like synonyms) return
the r-th element of S .

Example
gap> S := NumericalSemigroup(7,8,17);;
gap> ElementNumber_NumericalSemigroup(S,53);
68
gap> RthElementOfNumericalSemigroup(S,53);
68



numericalsgps-- a package for numerical semigroups 23

3.1.12 NumberElement_NumericalSemigroup

▷ NumberElement_NumericalSemigroup(S, r) (function)

S is a numerical semigroup and r is an integer. It returns the position of r in S (and fail if the
integer is not in the semigroup).

Example
gap> S := NumericalSemigroup(7,8,17);;
gap> NumberElement_NumericalSemigroup(S,68);
53

3.1.13 Iterator (for numerical semigroups)

▷ Iterator(S) (operation)

S is a numerical semigroup. It returns an iterator over S .
Example

gap> S := NumericalSemigroup(7,8,17);;
gap> iter:=Iterator(S);
<iterator>
gap> NextIterator(iter);
0
gap> NextIterator(iter);
7
gap> NextIterator(iter);
8

3.1.14 Difference (for numerical semigroups)

▷ Difference(S, T) (operation)

▷ DifferenceOfNumericalSemigroups(S, T) (function)

S, T are numerical semigroups. The output is the set S \T .
Example

gap> ns1 := NumericalSemigroup(5,7);;
gap> ns2 := NumericalSemigroup(7,11,12);;
gap> Difference(ns1,ns2);
[ 5, 10, 15, 17, 20, 27 ]
gap> Difference(ns2,ns1);
[ 11, 18, 23 ]
gap> DifferenceOfNumericalSemigroups(ns2,ns1);
[ 11, 18, 23 ]

3.1.15 AperyList (for numerical semigroup with respect to element)

▷ AperyList(S, n) (attribute)

▷ AperyListOfNumericalSemigroupWRTElement(S, n) (operation)
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S is a numerical semigroup and n is a positive element of S . Computes the Apéry list of S with
respect to n . It contains for every i ∈ {0, . . . ,n −1}, in the i+1th position, the smallest element in the
semigroup congruent with i modulo n .

Example
gap> S := NumericalSemigroup("modular", 5,53);;
gap> AperyList(S,12);
[ 0, 13, 26, 39, 52, 53, 54, 43, 32, 33, 22, 11 ]
gap> AperyListOfNumericalSemigroupWRTElement(S,12);
[ 0, 13, 26, 39, 52, 53, 54, 43, 32, 33, 22, 11 ]
gap> First(S,x-> x mod 12 =1);
13

3.1.16 AperyList (for numerical semigroup with respect to multiplicity)

▷ AperyList(S) (attribute)

▷ AperyListOfNumericalSemigroup(S) (attribute)

S is a numerical semigroup. It computes the Apéry list of S with respect to the multiplicity of S .
Example

gap> AperyList(NumericalSemigroup(5,7,11));
[ 0, 11, 7, 18, 14 ]
gap> S := NumericalSemigroup("modular", 5,53);;
gap> AperyListOfNumericalSemigroup(S);
[ 0, 12, 13, 25, 26, 38, 39, 51, 52, 53, 32 ]

3.1.17 AperyList (for numerical semigroup with respect to integer)

▷ AperyList(S, m) (attribute)

▷ AperyListOfNumericalSemigroupWRTInteger(S, m) (function)

S is a numerical semigroup and m is an integer. Computes the Apéry list of S with re-
spect to m , that is, the set of elements x in S such that x−m is not in S . If m is an element
in S , then the output of AperyListOfNumericalSemigroupWRTInteger, as sets, is the same
as AperyListOfNumericalSemigroupWRTElement, though without side effects, in the sense that
this information is no longer used by the package. The output of AperyList is the same as
AperyListOfNumericalSemigroupWRTInteger.

Example
gap> s:=NumericalSemigroup(10,13,19,27);;
gap> AperyList(s,11);
[ 0, 10, 13, 19, 20, 23, 26, 27, 29, 32, 33, 36, 39, 42, 45, 46, 52, 55 ]
gap> AperyListOfNumericalSemigroupWRTInteger(s,11);
[ 0, 10, 13, 19, 20, 23, 26, 27, 29, 32, 33, 36, 39, 42, 45, 46, 52, 55 ]
gap> Length(last);
18
gap> AperyListOfNumericalSemigroupWRTInteger(s,10);
[ 0, 13, 19, 26, 27, 32, 38, 45, 51, 54 ]
gap> AperyListOfNumericalSemigroupWRTElement(s,10);
[ 0, 51, 32, 13, 54, 45, 26, 27, 38, 19 ]
gap> AperyList(s,10);
[ 0, 51, 32, 13, 54, 45, 26, 27, 38, 19 ]



numericalsgps-- a package for numerical semigroups 25

gap> Length(last);
10

3.1.18 AperyListOfNumericalSemigroupAsGraph

▷ AperyListOfNumericalSemigroupAsGraph(ap) (function)

ap is the Apéry list of a numerical semigroup. This function returns the adjacency list of the graph
(ap,E) where the edge u−> v is in E iff v−u is in ap. The 0 is ignored.

Example
gap> s:=NumericalSemigroup(3,7);;
gap> AperyListOfNumericalSemigroupWRTElement(s,10);
[ 0, 21, 12, 3, 14, 15, 6, 7, 18, 9 ]
gap> AperyListOfNumericalSemigroupAsGraph(last);
[ ,, [ 3, 6, 9, 12, 15, 18, 21 ],,, [ 6, 9, 12, 15, 18, 21 ],
[ 7, 14, 21 ],, [ 9, 12, 15, 18, 21 ],,, [ 12, 15, 18, 21 ],,
[ 14, 21 ], [ 15, 18, 21 ],,, [ 18, 21 ],,, [ 21 ] ]

3.1.19 KunzCoordinates (for a numerical semigroup and (optionally) an integer)

▷ KunzCoordinates(S[, m]) (operation)

▷ KunzCoordinatesOfNumericalSemigroup(S[, m]) (function)

S is a numerical semigroup, and m is a nonzero element of S . The second argument is optional,
and if missing it is assumed to be the multiplicity of S .

Then the Apéry set of m in S has the form [0,k1m+ 1, ...,km−1m+m− 1], and the output is the
(m−1)-uple [k1,k2, ...,km−1]

Example
gap> s:=NumericalSemigroup(3,5,7);
<Numerical semigroup with 3 generators>
gap> KunzCoordinates(s);
[ 2, 1 ]
gap> KunzCoordinatesOfNumericalSemigroup(s);
[ 2, 1 ]
gap> KunzCoordinates(s,5);
[ 1, 1, 0, 1 ]
gap> KunzCoordinatesOfNumericalSemigroup(s,5);
[ 1, 1, 0, 1 ]

3.1.20 KunzPolytope

▷ KunzPolytope(m) (function)

m is a positive integer.
The Kunz coordinates of the semigroups with multiplicity m are solutions of a system of inequali-

ties Ax ≥ b (see [RGSB02]). The output is the matrix (A|−b).
Example

gap> KunzPolytope(3);
[ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 2, -1, 0 ], [ -1, 2, 1 ] ]
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3.1.21 CocycleOfNumericalSemigroupWRTElement

▷ CocycleOfNumericalSemigroupWRTElement(S, m) (function)

S is a numerical semigroup, and m is a nonzero element of S . The output is the matrix h(i, j) =
(w(i)+w( j)−w((i+ j) mod m))/m, where w(i) is the smallest element in S congruent with i modulo
m (and thus it is in the Apéry set of m), [GSHKR17].

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> CocycleOfNumericalSemigroupWRTElement(s,3);
[ [ 0, 0, 0 ], [ 0, 3, 4 ], [ 0, 4, 1 ] ]

3.1.22 FrobeniusNumber (for numerical semigroup)

▷ FrobeniusNumber(NS) (attribute)

▷ FrobeniusNumberOfNumericalSemigroup(NS) (attribute)

The largest nonnegative integer not belonging to a numerical semigroup S is the Frobenius number
of S. If S is the set of nonnegative integers, then clearly its Frobenius number is −1, otherwise its
Frobenius number coincides with the maximum of the gaps (or fundamental gaps) of S.

NS is a numerical semigroup. It returns the Frobenius number of NS. Of course, the time consumed
to return a result may depend on the way the semigroup is given or on the knowledge already produced
on the semigroup.

Example
gap> FrobeniusNumber(NumericalSemigroup(3,5,7));
4
gap> FrobeniusNumberOfNumericalSemigroup(NumericalSemigroup(3,5,7));
4

3.1.23 Conductor (for numerical Semigroup)

▷ Conductor(NS) (attribute)

▷ ConductorOfNumericalSemigroup(NS) (attribute)

This is just a synonym of FrobeniusNumberOfNumericalSemigroup (NS)+1.
Example

gap> Conductor(NumericalSemigroup(3,5,7));
5
gap> ConductorOfNumericalSemigroup(NumericalSemigroup(3,5,7));
5

3.1.24 PseudoFrobenius

▷ PseudoFrobenius(S) (attribute)

▷ PseudoFrobeniusOfNumericalSemigroup(S) (attribute)

An integer z is a pseudo-Frobenius number of S if z+S\{0} ⊆ S.
S is a numerical semigroup. It returns the set of pseudo-Frobenius numbers of S .
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Example
gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> PseudoFrobenius(S);
[ 21, 40, 41, 42 ]
gap> PseudoFrobeniusOfNumericalSemigroup(S);
[ 21, 40, 41, 42 ]

3.1.25 Type (of a numerical semigroup)

▷ Type(NS) (operation)

▷ TypeOfNumericalSemigroup(NS) (attribute)

Stands for Length(PseudoFrobeniusOfNumericalSemigroup (NS)).
Example

gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> Type(S);
4
gap> TypeOfNumericalSemigroup(S);
4

3.1.26 Gaps (for numerical semigroup)

▷ Gaps(NS) (attribute)

▷ GapsOfNumericalSemigroup(NS) (attribute)

A gap of a numerical semigroup S is a nonnegative integer not belonging to S. NS is a numerical
semigroup. Both return the set of gaps of NS.

Example
gap> Gaps(NumericalSemigroup(5,7,11));
[ 1, 2, 3, 4, 6, 8, 9, 13 ]
gap> GapsOfNumericalSemigroup(NumericalSemigroup(3,5,7));
[ 1, 2, 4 ]

3.1.27 Weight (for numerical semigroup)

▷ Weight(NS) (attribute)

If l1 < · · ·< lg are the gaps of NS, then its (Weierstrass) weight is ∑
g
i=1(li − i).

Example
gap> Weight(NumericalSemigroup(4,5,6,7));
0
gap> Weight(NumericalSemigroup(4,5));
9
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3.1.28 Deserts

▷ Deserts(NS) (operation)

▷ DesertsOfNumericalSemigroup(NS) (function)

NS is a numerical semigroup. The output is the list with the runs of gaps of NS .
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> Deserts(s);
[ [ 1, 2 ], [ 4 ] ]
gap> DesertsOfNumericalSemigroup(s);
[ [ 1, 2 ], [ 4 ] ]

3.1.29 IsOrdinary (for numerical semigroups)

▷ IsOrdinary(NS) (property)

▷ IsOrdinaryNumericalSemigroup(NS) (property)

NS is a numerical semigroup. Dectects if the semigroup is ordinary, that is, with less than two
deserts.

This filter implies IsAcuteNumericalSemigroup (3.1.30).
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> IsOrdinary(s);
false

3.1.30 IsAcute (for numerical semigroups)

▷ IsAcute(NS) (property)

▷ IsAcuteNumericalSemigroup(NS) (property)

NS is a numerical semigroup. Dectects if the semigroup is acute, that is, it is either ordinary or its
last desert (the one with the Frobenius number) has less elements than the preceding one ([BA04]).

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> IsAcute(s);
true

3.1.31 Holes (for numerical semigroup)

▷ Holes(NS) (attribute)

▷ HolesOfNumericalSemigroup(S) (attribute)

S is a numerical semigroup. Returns the set of gaps x of S such that F(S)− x is also a gap, where
F(S) stands for the Frobenius number of S.

Example
gap> s:=NumericalSemigroup(3,5);;
gap> Holes(s);
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[ ]
gap> s:=NumericalSemigroup(3,5,7);;
gap> HolesOfNumericalSemigroup(s);
[ 2 ]

3.1.32 LatticePathAssociatedToNumericalSemigroup

▷ LatticePathAssociatedToNumericalSemigroup(S, p, q) (attribute)

S is a numerical semigroup and p,q are two coprime elements in S.
In this setting S is an oversemigroup of ⟨p,q⟩, and consequently every gap of S is a gap of ⟨p,q⟩. If

c is the conductor of ⟨p,q⟩, then every gap g of ⟨p,q⟩ can be written uniquely as g = c−1− (ap+bp)
for some nonnegative integers a,b. We say that (a,b) are the coordinates associated to g.

The output is a path in N2 such that the coordinates of the gaps of S correspond exactly with the
points in N2 that are between the path and the line ax+by = c−1. See [KW14].

Example
gap> s:=NumericalSemigroup(16,17,71,72);;
gap> LatticePathAssociatedToNumericalSemigroup(s,16,17);
[ [ 0, 14 ], [ 1, 13 ], [ 2, 12 ], [ 3, 11 ], [ 4, 10 ], [ 5, 9 ], [ 6, 8 ],

[ 7, 7 ], [ 8, 6 ], [ 9, 5 ], [ 10, 4 ], [ 11, 3 ], [ 12, 2 ], [ 13, 1 ],
[ 14, 0 ] ]

3.1.33 Genus (for numerical semigroup)

▷ Genus(NS) (attribute)

▷ GenusOfNumericalSemigroup(NS) (attribute)

NS is a numerical semigroup. It returns the number of gaps of NS.
Example

gap> s:=NumericalSemigroup(16,17,71,72);;
gap> Genus(s);
80
gap> GenusOfNumericalSemigroup(s);
80
gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> Genus(S);
26

3.1.34 FundamentalGaps (for numerical semigroup)

▷ FundamentalGaps(S) (attribute)

▷ FundamentalGapsOfNumericalSemigroup(S) (attribute)

S The fundamental gaps of S are those gaps that are maximal with respect to the partial order
induced by division in N. It returns the set of fundamental gaps of S .

Example
gap> FundamentalGaps(NumericalSemigroup(5,7,11));
[ 6, 8, 9, 13 ]
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gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> FundamentalGapsOfNumericalSemigroup(S);
[ 16, 17, 18, 19, 27, 28, 29, 30, 31, 40, 41, 42 ]
gap> GapsOfNumericalSemigroup(S);
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29,

30, 31, 40, 41, 42 ]
gap> Gaps(NumericalSemigroup(5,7,11));
[ 1, 2, 3, 4, 6, 8, 9, 13 ]

3.1.35 SpecialGaps (for numerical semigroup)

▷ SpecialGaps(S) (attribute)

▷ SpecialGapsOfNumericalSemigroup(S) (attribute)

The special gaps of a numerical semigroup S are those fundamental gaps such that if they are
added to the given numerical semigroup, then the resulting set is again a numerical semigroup. S is a
numerical semigroup. It returns the special gaps of S .

Example
gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> SpecialGaps(S);
[ 40, 41, 42 ]
gap> SpecialGapsOfNumericalSemigroup(S);
[ 40, 41, 42 ]

3.2 Wilf’s conjecture

Let S be a numerical semigroup, with conductor c and embedding dimension e. Denote by l the
cardinality of the set of elements in S smaller than c. Wilf in [Wil78] asked whether or not l/c≥ 1/e for
all numerical semigroups. In this section we give some functions to experiment with this conjecture,
as defined in [Eli18].

3.2.1 WilfNumber (for numerical semigroup)

▷ WilfNumber(S) (attribute)

▷ WilfNumberOfNumericalSemigroup(S) (attribute)

S is a numerical semigroup. Let c, e and l be the conductor, embedding dimension and number of
elements smaller than c in S . Returns el − c, which was conjetured by Wilf to be nonnegative.

Example
gap> s := NumericalSemigroup(13,25,37);;
gap> WilfNumber(s);
96
gap> l:=NumericalSemigroupsWithGenus(10);;
gap> Filtered(l, s->WilfNumber(s)<0);
[ ]
gap> Maximum(Set(l, s->WilfNumberOfNumericalSemigroup(s)));
70
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3.2.2 EliahouNumber (for numerical semigroup)

▷ EliahouNumber(S) (attribute)

▷ TruncatedWilfNumberOfNumericalSemigroup(S) (attribute)

S is a numerical semigroup. Let c, m, s and l be the conductor, multiplicity, number of generators
smaller than c, and number of elements smaller than c in S , respectively. Let q and r be the quotient
and nonpositive remainder of the division of c by m, that is, c = qm− r. Returns sl −qdq + r, where
dq corresponds with the number of integers in [c,c+m[ that are not minimal generators of S .

Example
gap> s:=NumericalSemigroupWithGivenElementsAndFrobenius([14,22,23],55);;
gap> EliahouNumber(s);
-1
gap> s:=NumericalSemigroup(5,7,9);;
gap> TruncatedWilfNumberOfNumericalSemigroup(s);
4

3.2.3 ProfileOfNumericalSemigroup

▷ ProfileOfNumericalSemigroup(S) (attribute)

S is a numerical semigroup. Let c and m be the conductor and multiplicity of S , respectively. Let q
and r be the quotient and nonpositive remainder of the division of c by m, that is, c = qm− r. Returns
a list of lists of integers, each list is the cardinality of S∩ [ jm− r,( j+1)m− r[ with j in [1..q-1].

Example
gap> s:=NumericalSemigroup(5,7,9);;
gap> ProfileOfNumericalSemigroup(s);
[ 2, 1 ]
gap> s:=NumericalSemigroupWithGivenElementsAndFrobenius([14,22,23],55);;
gap> ProfileOfNumericalSemigroup(s);
[ 3, 0, 0 ]

3.2.4 EliahouSlicesOfNumericalSemigroup

▷ EliahouSlicesOfNumericalSemigroup(S) (attribute)

S is a numerical semigroup. Let c and m be the conductor and multiplicity of S , respectively. Let q
and r be the quotient and nonpositive remainder of the division of c by m, that is, c = qm−r. Returns a
list of lists of integers, each list is the set S∩ [ jm− r,( j+1)m− r[ with j in [1..q]. So this is a partition
of the set of small elements of S (without 0 and c).

Example
gap> s:=NumericalSemigroup(5,7,9);;
gap> EliahouSlicesOfNumericalSemigroup(s);
[ [ 5, 7 ], [ 9, 10, 12 ] ]
gap> SmallElements(s);
[ 0, 5, 7, 9, 10, 12, 14 ]



Chapter 4

Presentations of Numerical Semigroups

In this chapter we explain how to compute a minimal presentation of a numerical semigroup. Re-
call that a minimal presentation is a minimal generating system of the kernel congruence of the fac-
torization map of the numerical semigroup. If S is a numerical semigroup minimally generated by
{n1, . . . ,ne}, then the factorization map is the epimorphism ϕ :Ne → S, (x1, . . . ,xe) 7→ x1n1+ . . .+xene;
its kernel is the congruence {(a,b) | ϕ(a) = ϕ(b)}.

The set of minimal generators is stored in a set, and so it may not be arranged as the user gave
them. This may affect the arrangement of the coordinates of the pairs in a minimal presentation, since
every coordinate is associated to a minimal generator.

4.1 Presentations of Numerical Semigroups

In this section we provide a way to compute minimal presentations of a numerical semigroup. These
presentations are constructed from some special elelements in the semigroup (Betti elemenents) whose
associated graphs are nonconnected. A generalization of these graphs are the simplicial complexes
called shaded sets of an element.

If the variable NumSgpsUseEliminationForMinimalPresentations is set to true, then mini-
mal presentations are computed via binomial ideals and elimination.

4.1.1 MinimalPresentation (for numerical semigroups)

▷ MinimalPresentation(S) (operation)

▷ MinimalPresentationOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is a list of lists with two elements. Each list of
two elements represents a relation between the minimal generators of the numerical semigroup.
If {{x1,y1}, . . . ,{xk,yk}} is the output and {m1, . . . ,mn} is the minimal system of generators of
the numerical semigroup, then {xi,yi} = {{ai1 , . . . ,ain},{bi1 , . . . ,bin}} and ai1m1 + · · ·+ ainmn =
bi1m1 + · · ·+binmn.

Any other relation among the minimal generators of the semigroup can be deduced from the ones
given in the output.

The algorithm implemented is described in [Ros96a] (see also [RGS99b]).
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> MinimalPresentation(s);

32
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[ [ [ 0, 0, 2 ], [ 3, 1, 0 ] ], [ [ 0, 1, 1 ], [ 4, 0, 0 ] ],
[ [ 0, 2, 0 ], [ 1, 0, 1 ] ] ]

gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 0, 2 ], [ 3, 1, 0 ] ], [ [ 0, 1, 1 ], [ 4, 0, 0 ] ],

[ [ 0, 2, 0 ], [ 1, 0, 1 ] ] ]

The first element in the list means that 1×3+1×7 = 2×5, and the others have similar meanings.

4.1.2 GraphAssociatedToElementInNumericalSemigroup

▷ GraphAssociatedToElementInNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n is an element in S .
The output is a pair. If {m1, . . . ,mn} is the set of minimal generators of S , then the first component

is the set of vertices of the graph associated to n in S , that is, the set {mi | n−mi ∈ S}, and the second
component is the set of edges of this graph, that is, {{mi,m j} | n− (mi +m j) ∈ S}.

This function is used to compute a minimal presentation of the numerical semigroup S , as ex-
plained in [Ros96a].

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> GraphAssociatedToElementInNumericalSemigroup(10,s);
[ [ 3, 5, 7 ], [ [ 3, 7 ] ] ]

4.1.3 BettiElements (of numerical semigroup)

▷ BettiElements(S) (operation)

▷ BettiElementsOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
The output is the set of elements in S whose associated graph is nonconnected [GSO10].

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> BettiElementsOfNumericalSemigroup(s);
[ 10, 12, 14 ]
gap> BettiElements(s);
[ 10, 12, 14 ]

4.1.4 IsMinimalRelationOfNumericalSemigroup

▷ IsMinimalRelationOfNumericalSemigroup(p, S) (function)

S is a numerical semigroup and p is a pair (a relation) of lists of integers. Determines if the pair p
is a minimal relation in a minimal presentation of S .

Example
gap> s:=NumericalSemigroup(4,6,9);;
gap> MinimalPresentation(s);
[ [ [ 0, 0, 2 ], [ 0, 3, 0 ] ], [ [ 0, 2, 0 ], [ 3, 0, 0 ] ] ]
gap> IsMinimalRelationOfNumericalSemigroup([[2,1,0],[0,0,2]],s);
false
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gap> IsMinimalRelationOfNumericalSemigroup([[3,1,0],[0,0,2]],s);
true

4.1.5 AllMinimalRelationsOfNumericalSemigroup

▷ AllMinimalRelationsOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the union of all minimal presentations of S . Notice that
if [x,y] is a minimal relator, then either [x,y] or [y,x] will be in the output, but not both.

Example
gap> s:=NumericalSemigroup(4,6,9);;
gap> MinimalPresentation(s);
[ [ [ 0, 0, 2 ], [ 0, 3, 0 ] ], [ [ 0, 2, 0 ], [ 3, 0, 0 ] ] ]
gap> AllMinimalRelationsOfNumericalSemigroup(s);
[ [ [ 0, 3, 0 ], [ 0, 0, 2 ] ], [ [ 3, 0, 0 ], [ 0, 2, 0 ] ], [ [ 3, 1, 0 ], [ 0, 0, 2 ] ] ]

4.1.6 DegreesOfPrimitiveElementsOfNumericalSemigroup

▷ DegreesOfPrimitiveElementsOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
The output is the set of elements s in S such that there exists a minimal solution to msg ·x−msg ·y=

0, such that x,y are factorizations of s, and msg is the minimal generating system of S . Betti elements
are primitive, but not the way around in general.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> DegreesOfPrimitiveElementsOfNumericalSemigroup(s);
[ 3, 5, 7, 10, 12, 14, 15, 21, 28, 35 ]

4.1.7 ShadedSetOfElementInNumericalSemigroup

▷ ShadedSetOfElementInNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n is an element in S .
The output is a simplicial complex C. If {m1, . . . ,mn} is the set of minimal generators of S , then

L ∈C if n−∑i∈L mi ∈ S ([SW86]).
This function is a generalization of the graph associated to n .

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> ShadedSetOfElementInNumericalSemigroup(10,s);
[ [ ], [ 3 ], [ 3, 7 ], [ 5 ], [ 7 ] ]

4.2 Binomial ideals associated to numerical semigroups

Let S be a numerical semigroup, and let K be a field. Let {n1, . . . ,ne} be a set of minimal generators of
S, and let K[x1, . . . ,xe] be the ring of polynomial in the indeterminates x1, . . . ,xe and with coefficients
in K. Let K[t] be the ring of polynomials in t with coefficients in K.
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Let ϕ : K[x1, . . . ,xe] → K[t] be the ring homomorphism determined by ϕ(xi) = tni for all i. The
image of this morphism is usually known as the semigroup ring associated to S. The kernel is the
(binomial) ideal associated to S. According to [Her70], from the exponents of the binomials in this
ideal we can recover a presentation of S and viceversa.

4.2.1 BinomialIdealOfNumericalSemigroup

▷ BinomialIdealOfNumericalSemigroup([K, ]S) (operation)

The argument K is optional; when it is not supplied, the field of rational numbers is taken as base
field. S is a numerical semigroup. The output is the binomial ideal associated to S .

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> BinomialIdealOfNumericalSemigroup(GF(2),s);
<two-sided ideal in GF(2)[x_1,x_2,x_3], (3 generators)>
gap> GeneratorsOfTwoSidedIdeal(last);
[ x_1^3*x_2+x_3^2, x_1^4+x_2*x_3, x_1*x_3+x_2^2 ]
gap> BinomialIdealOfNumericalSemigroup(s);
<two-sided ideal in Rationals[x_1,x_2,x_3], (3 generators)>
gap> GeneratorsOfTwoSidedIdeal(last);
[ -x_1^3*x_2+x_3^2, -x_1^4+x_2*x_3, -x_1*x_3+x_2^2 ]
gap> MinimalPresentation(s);
[ [ [ 0, 0, 2 ], [ 3, 1, 0 ] ], [ [ 0, 1, 1 ], [ 4, 0, 0 ] ],
[ [ 0, 2, 0 ], [ 1, 0, 1 ] ] ]

4.3 Uniquely Presented Numerical Semigroups

A numerical semigroup S is uniquely presented if for any two minimal presentations σ and τ and any
(a,b) ∈ σ , either (a,b) ∈ τ or (b,a) ∈ τ , that is, there is essentially a unique minimal presentation (up
to arrangement of the components of the pairs in it).

4.3.1 IsUniquelyPresented (for numerical semigroups)

▷ IsUniquelyPresented(S) (property)

▷ IsUniquelyPresentedNumericalSemigroup(S) (property)

S is a numerical semigroup.
The output is true if S has uniquely presented. The implementation is based on [GSO10].

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> IsUniquelyPresented(s);
true
gap> IsUniquelyPresentedNumericalSemigroup(s);
true
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4.3.2 IsGeneric (for numerical semigroups)

▷ IsGeneric(S) (property)

▷ IsGenericNumericalSemigroup(S) (property)

S is a numerical semigroup.
The output is true if S has a generic presentation, that is, in every minimal relation all generators

occur. These semigroups are uniquely presented (see [BGSG11]).
This filter implies IsUniquelyPresentedNumericalSemigroup (4.3.1).

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> IsGeneric(s);
true
gap> IsGenericNumericalSemigroup(s);
true



Chapter 5

Constructing numerical semigroups from
others

This chapter provides several functions to construct numerical semigroups from others (via intersec-
tions, quotients by an integer, removing or adding integers, etc.).

5.1 Adding and removing elements of a numerical semigroup

In this section we show how to construct new numerical semigroups from a given numerical semi-
group. Two dual operations are presented. The first one removes a minimal generator from a numerical
semigroup. The second adds a special gap to a semigroup (see [RGSGGJM03]).

5.1.1 RemoveMinimalGeneratorFromNumericalSemigroup

▷ RemoveMinimalGeneratorFromNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n is one if its minimal generators.
The output is the numerical semigroup S \{n} (see [RGSGGJM03]; S \{n} is a numerical semi-

group if and only if n is a minimal generator of S).
Example

gap> s:=NumericalSemigroup(3,5,7);
<Numerical semigroup with 3 generators>
gap> RemoveMinimalGeneratorFromNumericalSemigroup(7,s);
<Numerical semigroup with 3 generators>
gap> MinimalGeneratingSystemOfNumericalSemigroup(last);
[ 3, 5 ]

5.1.2 AddSpecialGapOfNumericalSemigroup

▷ AddSpecialGapOfNumericalSemigroup(g, S) (function)

S is a numerical semigroup and g is a special gap of S .
The output is the numerical semigroup S ∪{g} (see [RGSGGJM03], where it is explained why

this set is a numerical semigroup).

37
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Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> s2:=RemoveMinimalGeneratorFromNumericalSemigroup(5,s);
<Numerical semigroup with 3 generators>
gap> s3:=AddSpecialGapOfNumericalSemigroup(5,s2);
<Numerical semigroup>
gap> SmallElementsOfNumericalSemigroup(s) =
> SmallElementsOfNumericalSemigroup(s3);
true
gap> s=s3;
true

5.2 Intersections, sums, quotients, dilatations, numerical duplications
and multiples by integers

We provide functions to build numerical semigroups from others by means of intersections, quotients,
multiples and related constructions.

5.2.1 Intersection (for numerical semigroups)

▷ Intersection(S, T) (operation)

▷ IntersectionOfNumericalSemigroups(S, T) (function)

S and T are numerical semigroups. Computes the intersection of S and T (which is a numerical
semigroup).

Example
gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> T := NumericalSemigroup(2,17);
<Numerical semigroup with 2 generators>
gap> SmallElements(S);
[ 0, 11, 12, 13, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 39, 43 ]
gap> SmallElements(T);
[ 0, 2, 4, 6, 8, 10, 12, 14, 16 ]
gap> Intersection(S,T);
<Numerical semigroup>
gap> SmallElements(last);
[ 0, 12, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 39, 43 ]
gap> IntersectionOfNumericalSemigroups(S,T) = Intersection(S,T);
true

5.2.2 \+ (for numerical semigroups)

▷ \+(S, T) (operation)

S and T are numerical semigroups. Computes the sum of S and T (which is a numerical semi-
group).
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Example
gap> s:=NumericalSemigroup(4,9);;
gap> t:=NumericalSemigroup(6,7);;
gap> MinimalGenerators(s+t);
[ 4, 6, 7, 9 ]

5.2.3 QuotientOfNumericalSemigroup

▷ QuotientOfNumericalSemigroup(S, n) (function)

▷ \/(S, n) (operation)

S is a numerical semigroup and n is an integer. Computes the quotient of S by n , that is, the
set {x ∈ N | nx ∈ S}, which is again a numerical semigroup. S / n may be used as a short for
QuotientOfNumericalSemigroup(S, n).

Example
gap> s:=NumericalSemigroup(3,29);
<Numerical semigroup with 2 generators>
gap> SmallElements(s);
[ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 29, 30, 32, 33, 35, 36, 38,
39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56 ]
gap> t:=QuotientOfNumericalSemigroup(s,7);
<Numerical semigroup>
gap> SmallElements(t);
[ 0, 3, 5, 6, 8 ]
gap> u := s / 7;
<Numerical semigroup>
gap> SmallElements(u);
[ 0, 3, 5, 6, 8 ]

5.2.4 MultipleOfNumericalSemigroup

▷ MultipleOfNumericalSemigroup(S, a, b) (function)

S is a numerical semigroup, and a and b are positive integers. Computes aS∪{b,b+1,→}. If b
is smaller than ac, with c the conductor of S, then a warning is displayed.

Example
gap> N:=NumericalSemigroup(1);;
gap> s:=MultipleOfNumericalSemigroup(N,4,20);;
gap> SmallElements(s);
[ 0, 4, 8, 12, 16, 20 ]

5.2.5 NumericalDuplication

▷ NumericalDuplication(S, E, b) (function)

S is a numerical semigroup, and E and ideal of S , and b is a positive odd integer, so that 2S∪
(2E +b) is a numerical semigroup (this extends slightly the original definition where b was imposed
to be in S , [DS13]; now the condition imposed is E +E +b ⊆ S). Computes 2S∪ (2E +b).
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Example
gap> s:=NumericalSemigroup(3,5,7);
<Numerical semigroup with 3 generators>
gap> e:=6+s;
<Ideal of numerical semigroup>
gap> ndup:=NumericalDuplication(s,e,3);
<Numerical semigroup with 4 generators>
gap> SmallElements(ndup);
[ 0, 6, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24 ]

5.2.6 AsNumericalDuplication

▷ AsNumericalDuplication(T) (function)

T is a numerical semigroup. Detects whether or not T can be expressed as
NumericalDuplication(S,E,b), with E a proper ideal of S. Returns the list [S,E,b] if this is pos-
sible, and fail otherwise.

Notice that a numerical semigroup can be represented in different ways as a numerical duplication.
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> ndup:=NumericalDuplication(s,6+s,11);;
gap> asdup:=AsNumericalDuplication(ndup);
[ <Numerical semigroup with 3 generators>, <Ideal of numerical semigroup>, 3 ]
gap> ndup = CallFuncList(NumericalDuplication,asdup);
true

5.2.7 InductiveNumericalSemigroup

▷ InductiveNumericalSemigroup(a, b) (function)

a and b are lists of positive integers, with k the length of a and b , and such that b[i+1]≥ a[i]b[i]
(0 ≤ i ≤ k−1). Computes inductively S0 =N and Si+1 = a[i]Si∪{a[i]b[i],a[i]b[i]+1,→}, and returns
Sk.

Example
gap> s:=InductiveNumericalSemigroup([4,2],[5,23]);;
gap> SmallElements(s);
[ 0, 8, 16, 24, 32, 40, 42, 44, 46 ]

5.2.8 DilatationOfNumericalSemigroup

▷ DilatationOfNumericalSemigroup(S, a) (function)

S is a numerical semigroup, and a is a positive integer. If M is the maximal ideal of S , then a
must be in M−2M. Computes the numerical semigroup {0}∪{a+ s | s ∈ M}, see [BS19].

Example
gap> s:=NumericalSemigroup(3,4,5);;
gap> m:=MaximalIdeal(s);;
gap> SmallElements(m-2*m);
[ -3 ]
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gap> d:=DilatationOfNumericalSemigroup(s,3);
<Numerical semigroup>
gap> SmallElements(d);
[ 0, 6 ]

5.3 Constructing the set of all numerical semigroups containing a given
numerical semigroup

In order to construct the set of numerical semigroups containing a fixed numerical semigroup S, one
first constructs its unitary extensions, that is to say, the sets S∪{g} that are numerical semigroups
with g a positive integer. This is achieved by constructing the special gaps of the semigroup, and then
adding each of them to the numerical semigroup. Then we repeat the process for each of these new
numerical semigroups until we reach N.

These procedures are described in [RGSGGJM03].

5.3.1 OverSemigroups (of a numerical semigroup)

▷ OverSemigroups(s) (operation)

▷ OverSemigroupsNumericalSemigroup(s) (function)

s is a numerical semigroup. The output is the set of numerical semigroups containing it.
Example

gap> s := NumericalSemigroup(3,5,7);;
gap> OverSemigroups(s);
[ <The numerical semigroup N>, <Numerical semigroup with 2 generators>,

<Numerical semigroup with 3 generators>,
<Numerical semigroup with 3 generators> ]

gap> List(last,s->MinimalGenerators(s));
[ [ 1 ], [ 2, 3 ], [ 3 .. 5 ], [ 3, 5, 7 ] ]
gap> OverSemigroupsNumericalSemigroup(s) = OverSemigroups(s);
true

5.4 Constructing the set of numerical semigroups with given Frobenius
number

Finding the set of all numerical semigroups with a given Frobenius number is not accomplished via
over semigroups. In order to achieve this, we use fundamental gaps. If the multiplicity is fixed, then
the construction relies on the calculation of irreducible numerical semigroups with that Frobenius
number and multiplicity.

5.4.1 NumericalSemigroupsWithFrobeniusNumberFG

▷ NumericalSemigroupsWithFrobeniusNumberFG(f) (function)

f is an integer. The output is the set of numerical semigroups with Frobenius number f . The
algorithm implemented is given in [RGSGGJM04].
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Example
gap> Length(NumericalSemigroupsWithFrobeniusNumberFG(15));
200

5.4.2 NumericalSemigroupsWithFrobeniusNumberAndMultiplicity

▷ NumericalSemigroupsWithFrobeniusNumberAndMultiplicity(f, m) (function)

f and m are integers. The output is the set of numerical semigroups with Frobenius number f and
multiplicity m . The algorithm implemented is given in [BOR21].

Example
gap> Length(NumericalSemigroupsWithFrobeniusNumberAndMultiplicity(15,6));
28

5.4.3 NumericalSemigroupsWithFrobeniusNumber

▷ NumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer. As happens with the function NumericalSemigroupsWithFrobeniusNumberFG
(5.4.1), the output is the set of numerical semigroups with Frobenius number f . It makes use
of NumericalSemigroupsWithFrobeniusNumberAndMultiplicity (5.4.2) to compute the semi-
groups with the Frobenius number given for all the possible multiplicities.

Example
gap> Length(NumericalSemigroupsWithFrobeniusNumber(15));
200

5.4.4 NumericalSemigroupsWithFrobeniusNumberPC

▷ NumericalSemigroupsWithFrobeniusNumberPC(f) (function)

f is an integer. The output is the set of numerical semigroups with Frobenius number f . It relies
on pre-computed data, which is available for small values of f .

Example
gap> Length(NumericalSemigroupsWithFrobeniusNumberPC(15));
200

5.5 Constructing the set of numerical semigroups with given maximum
primitive

Finding the set of all numerical semigroups with a given maximum primitive.

5.5.1 NumericalSemigroupsWithMaxPrimitiveAndMultiplicity

▷ NumericalSemigroupsWithMaxPrimitiveAndMultiplicity(M, m) (function)

M and m are integers. The output is the set of numerical semigroups with maximum primitive M
and multiplicity m . The algorithm implemented is based on work by M. Delgado and Neeraj Kumar.
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Example
gap> Length(NumericalSemigroupsWithMaxPrimitiveAndMultiplicity(15,6));
27

5.5.2 NumericalSemigroupsWithMaxPrimitive

▷ NumericalSemigroupsWithMaxPrimitive(M) (function)

M is an integer. The output is the set of numerical semigroups with maximum primitive M . It
makes use of NumericalSemigroupsWithMaxPrimitiveAndMultiplicity (5.5.1) to compute the
semigroups with the given maximum primitive for all the possible multiplicities.

Example
gap> NumericalSemigroupsWithMaxPrimitive(5);
[ <Numerical semigroup with 2 generators>,

<Numerical semigroup with 2 generators>,
<Numerical semigroup with 3 generators>,
<Numerical semigroup with 2 generators> ]

gap> Length(NumericalSemigroupsWithMaxPrimitive(15));
194

5.5.3 NumericalSemigroupsWithMaxPrimitivePC

▷ NumericalSemigroupsWithMaxPrimitivePC(M) (function)

M is an integer. The output is the set of numerical semigroups with maximum primitive M . It relies
on pre-computed data, which is available for small values of M .

Example
gap> Length(NumericalSemigroupsWithMaxPrimitivePC(15));
194

5.6 Constructing the set of numerical semigroups with genus g

Given a numerical semigroup of genus g (that is, with exactly g gaps), removing minimal generators,
one obtains numerical semigroups of genus g+1. In order to avoid repetitions, we only remove minimal
generators greater than the Frobenius number of the numerical semigroup (this is accomplished with
the local function sons).

These procedures are described in [RGSGGB03] and [BA08].

5.6.1 NumericalSemigroupsWithGenus

▷ NumericalSemigroupsWithGenus(g) (function)

g is a nonnegative integer. The output is the set of numerical semigroups with genus g . If the
user just wants to use some numerical semigroup with a given genus pseudo-randomly choosen, he is
probably looking for the function RandomNumericalSemigroupWithGenus (B.1.7).
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Example
gap> NumericalSemigroupsWithGenus(5);
[ <Numerical semigroup with 6 generators>,

<Numerical semigroup with 5 generators>,
<Numerical semigroup with 5 generators>,
<Numerical semigroup with 5 generators>,
<Numerical semigroup with 5 generators>,
<Numerical semigroup with 4 generators>,
<Numerical semigroup with 4 generators>,
<Numerical semigroup with 4 generators>,
<Numerical semigroup with 4 generators>,
<Numerical semigroup with 3 generators>,
<Numerical semigroup with 3 generators>,
<Numerical semigroup with 2 generators> ]

gap> List(last,MinimalGenerators);
[ [ 6 .. 11 ], [ 5, 7, 8, 9, 11 ], [ 5, 6, 8, 9 ], [ 5, 6, 7, 9 ],

[ 5, 6, 7, 8 ], [ 4, 6, 7 ], [ 4, 7, 9, 10 ], [ 4, 6, 9, 11 ],
[ 4, 5, 11 ], [ 3, 8, 10 ], [ 3, 7, 11 ], [ 2, 11 ] ]

5.6.2 NumericalSemigroupsWithGenusPC

▷ NumericalSemigroupsWithGenusPC(g) (function)

g is a nonnegative integer. The output is the set of numerical semigroups with genus g . It relies
on pre-computed data, which is available for small values of g .

Example
gap> Length(NumericalSemigroupsWithGenusPC(15));
2857

5.7 Constructing the set of numerical semigroups with a given set of
pseudo-Frobenius numbers

Refer to PseudoFrobeniusOfNumericalSemigroup (3.1.24).
These procedures are described in [DGSRP16], and are used to find the set of numerical semi-

groups with a prescribed set of pseudo-Frobenius numbers.

5.7.1 ForcedIntegersForPseudoFrobenius

▷ ForcedIntegersForPseudoFrobenius(PF) (function)

PF is a list of positive integers (given as a list or individual elements). The output is:

• in case there exists a numerical semigroup S such that PF(S) = PF :

– a list [ f orced_gaps, f orced_elts] such that:

* f orced_gaps is contained in N−S for any numerical semigroup S such that PF(S) =
{g_1, . . . ,g_n}
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* forced_elts is contained in S for any numerical semigroup S such that PF(S) =
{g_1, . . . ,g_n}

• "fail" in case it is found some condition that fails.
Example

gap> pf := [ 58, 64, 75 ];
[ 58, 64, 75 ]
gap> ForcedIntegersForPseudoFrobenius(pf);
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 11, 15, 16, 17, 25, 29, 32, 58, 64, 75 ],

[ 0, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 76 ] ]

5.7.2 SimpleForcedIntegersForPseudoFrobenius

▷ SimpleForcedIntegersForPseudoFrobenius(fg, fe, PF) (function)

Is just a quicker version of ForcedIntegersForPseudoFrobenius (5.7.1)
fg is a list of integers that we require to be gaps of the semigroup; fe is a list of integers that we

require to be elements of the semigroup; PF is a list of positive integers. The output is:

• in case there exists a numerical semigroup S such that PF(S) = PF :

– a list [ f orced_gaps, f orced_elts] such that:

* f orced_gaps is contained in N−S for any numerical semigroup S such that PF(S) =
{g_1, . . . ,g_n}

* forced_elts is contained in S for any numerical semigroup S such that PF(S) =
{g_1, . . . ,g_n}

• "fail" in case it is found some condition that fails.
Example

gap> pf := [ 15, 20, 27, 35 ];;
gap> fint := ForcedIntegersForPseudoFrobenius(pf);
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 20, 27, 35 ],

[ 0, 19, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36 ] ]
gap> free := Difference([1..Maximum(pf)],Union(fint));
[ 11, 13, 14, 17, 18, 21, 22, 24 ]
gap> SimpleForcedIntegersForPseudoFrobenius(fint[1],Union(fint[2],[free[1]]),pf);
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 20, 24, 27, 35 ],

[ 0, 11, 19, 22, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36 ] ]

5.7.3 NumericalSemigroupsWithPseudoFrobeniusNumbers

▷ NumericalSemigroupsWithPseudoFrobeniusNumbers(PF) (function)

PF is a list of positive integers (given as a list or individual elements). The output is: a list
of numerical semigroups S such that PF(S)=PF. When Length(PF)=1, it makes use of the function
NumericalSemigroupsWithFrobeniusNumber (5.4.3)

Example
gap> pf := [ 58, 64, 75 ];
[ 58, 64, 75 ]
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gap> Length(NumericalSemigroupsWithPseudoFrobeniusNumbers(pf));
561
gap> pf := [11,19,22];;
gap> NumericalSemigroupsWithPseudoFrobeniusNumbers(pf);
[ <Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup> ]
gap> List(last,MinimalGenerators);
[ [ 7, 9, 17, 20 ], [ 7, 10, 13, 16, 18 ], [ 9, 12, 14, 15, 16, 17, 20 ],

[ 10, 13, 14, 15, 16, 17, 18, 21 ],
[ 12, 13, 14, 15, 16, 17, 18, 20, 21, 23 ] ]

gap> Set(last2,PseudoFrobeniusOfNumericalSemigroup);
[ [ 11, 19, 22 ] ]
g

5.7.4 ANumericalSemigroupWithPseudoFrobeniusNumbers

▷ ANumericalSemigroupWithPseudoFrobeniusNumbers(PF) (function)

PF is a list of positive integers (given as a list or individual elements). Alternatively, a record
with fields "pseudo_frobenius" and "max_attempts" may be given. The output is: A numerical semi-
group S such that PF(S) = PF . Returns fail if it concludes that it does not exist and suggests to use
NumericalSemigroupsWithPseudoFrobeniusNumbers if it is not able to conclude...

When Length(PF) = 1 or Length(PF) = 2 and 2 ∗PF [1] = PF [2], it makes use of the function
AnIrreducibleNumericalSemigroupWithFrobeniusNumber (6.1.4).

Example
gap> pf := [ 83, 169, 173, 214, 259 ];;
gap> ANumericalSemigroupWithPseudoFrobeniusNumbers(pf);
<Numerical semigroup>
gap> gen := MinimalGeneratingSystem(last);
[ 38, 57, 64, 72, 79, 98, 99, 106, 118, 120, 124, 132, 134, 146, 147, 154,

165, 168, 179 ]
gap> ns := NumericalSemigroup(gen);
<Numerical semigroup with 19 generators>
gap> PseudoFrobeniusOfNumericalSemigroup(ns);
[ 83, 169, 173, 214, 259 ]



Chapter 6

Irreducible numerical semigroups

An irreducible numerical semigroup is a semigroup that cannot be expressed as the intersection of
numerical semigroups properly containing it.

It is not difficult to prove that a semigroup is irreducible if and only if it is maximal (with respect to
set inclusion) in the set of all numerical semigroups having its same Frobenius number (see [RB03]).
Hence, according to [FGR87] (respectively [BDF97]), symmetric (respectively pseudo-symmetric)
numerical semigroups are those irreducible numerical semigroups with odd (respectively even) Frobe-
nius number.

In [RGSGGJM03] it is shown that a nontrivial numerical semigroup is irreducible if and only if it
has only one special gap. We use this characterization.

In old versions of the package, we first constructed an irreducible numerical semigroup with the
given Frobenius number (as explained in [RGS04]), and then we constructed the rest from it. The
present version uses a faster procedure presented in [BR13].

Every numerical semigroup can be expressed as an intersection of irreducible numerical semi-
groups. If S can be expressed as S = S1 ∩ ·· · ∩ Sn, with Si irreducible numerical semigroups, and no
factor can be removed, then we say that this decomposition is minimal. Minimal decompositions can
be computed by using Algorithm 26 in [RGSGGJM03].

6.1 Irreducible numerical semigroups

In this section we provide membership tests to the two families that conform the set of irreducible
numerical semigroups. We also give a procedure to compute the set of all irreducible numerical
semigroups with fixed Frobenius number (or equivalently genus, since for irreducible numerical semi-
groups once the Frobenius number is fixed, so is the genus). Also we give a function to compute the
decomposition of a numerical semigroup as an intersection of irreducible numerical semigroups.

6.1.1 IsIrreducible (for numerical semigroups)

▷ IsIrreducible(s) (property)

▷ IsIrreducibleNumericalSemigroup(s) (property)

s is a numerical semigroup. The output is true if s is irreducible, false otherwise.
This filter implies IsAlmostSymmetricNumericalSemigroup (6.3.3) and

IsAcuteNumericalSemigroup (3.1.30).

47
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Example
gap> IsIrreducible(NumericalSemigroup(4,6,9));
true
gap> IsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,7,9));
false

6.1.2 IsSymmetric (for numerical semigroups)

▷ IsSymmetric(s) (attribute)

▷ IsSymmetricNumericalSemigroup(s) (attribute)

s is a numerical semigroup. The output is true if s is symmetric, false otherwise.
This filter implies IsIrreducibleNumericalSemigroup (6.1.1).

Example
gap> IsSymmetric(NumericalSemigroup(10,23));
true
gap> IsSymmetricNumericalSemigroup(NumericalSemigroup(10,11,23));
false

6.1.3 IsPseudoSymmetric (for numerical semigroups)

▷ IsPseudoSymmetric(s) (property)

▷ IsPseudoSymmetricNumericalSemigroup(s) (property)

s is a numerical semigroup. The output is true if s is pseudo-symmetric, false otherwise.
This filter implies IsIrreducibleNumericalSemigroup (6.1.1).

Example
gap> IsPseudoSymmetric(NumericalSemigroup(6,7,8,9,11));
true
gap> IsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(4,6,9));
false

6.1.4 AnIrreducibleNumericalSemigroupWithFrobeniusNumber

▷ AnIrreducibleNumericalSemigroupWithFrobeniusNumber(f) (function)

f is an integer. When f = 0 or f ≤−2, the output is fail. Otherwise, the output is an irreducible
numerical semigroup with Frobenius number f . From the way the procedure is implemented, the
resulting semigroup has at most four generators (see [RGS04]).

Example
gap> s := AnIrreducibleNumericalSemigroupWithFrobeniusNumber(28);
<Numerical semigroup with 3 generators>
gap> MinimalGenerators(s);
[ 3, 17, 31 ]
gap> FrobeniusNumber(s);
28
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6.1.5 IrreducibleNumericalSemigroupsWithFrobeniusNumber

▷ IrreducibleNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer. The output is the set of all irreducible numerical semigroups with Frobenius
number f . The algorithm is inspired in [BR13].

Example
gap> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumber(19));
20

6.1.6 IrreducibleNumericalSemigroupsWithFrobeniusNumberAndMultiplicity

▷ IrreducibleNumericalSemigroupsWithFrobeniusNumberAndMultiplicity(f, m) (func-

tion)

f and m are integers. The output is the set of all irreducible numerical semigroups with Frobenius
number f and multiplicity m . The implementation appears in [BOR21].

Example
gap> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumberAndMultiplicity(31,11));
16

6.1.7 DecomposeIntoIrreducibles (for numerical semigroup)

▷ DecomposeIntoIrreducibles(s) (function)

s is a numerical semigroup. The output is a set of irreducible numerical semigroups containing it.
These elements appear in a minimal decomposition of s as intersection into irreducibles.

Example
gap> DecomposeIntoIrreducibles(NumericalSemigroup(5,6,8));
[ <Numerical semigroup with 3 generators>,

<Numerical semigroup with 4 generators> ]

6.2 Complete intersection numerical semigroups

The cardinality of a minimal presentation of a numerical semigroup is always greater than or equal
to its embedding dimension minus one. Complete intersection numerical semigroups are numeri-
cal semigroups reaching this bound, and they are irreducible. It can be shown that every complete
intersection (other that N) is a complete intersection if and only if it is the gluing of two complete in-
tersections. When in this gluing, one of the copies is isomorphic to N, then we obtain a free semigroup
in the sense of [BC77]. Two special kinds of free semigroups are telescopic semigroups ([KP95]) and
those associated to an irreducible planar curve ([Zar86]). We use the algorithms presented in [AGS13]
to find the set of all complete intersections (also free, telescopic and associated to irreducible planar
curves) numerical semigroups with given Frobenius number.
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6.2.1 AsGluingOfNumericalSemigroups

▷ AsGluingOfNumericalSemigroups(s) (function)

s is a numerical semigroup. Returns all partitions {A1,A2} of the minimal generating set of s
such that s is a gluing of ⟨A1⟩ and ⟨A2⟩ by gcd(A1)gcd(A2).

Example
gap> s := NumericalSemigroup( 10, 15, 16 );
<Numerical semigroup with 3 generators>
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 10, 15 ], [ 16 ] ], [ [ 10, 16 ], [ 15 ] ] ]
gap> s := NumericalSemigroup( 18, 24, 34, 46, 51, 61, 74, 8 );
<Numerical semigroup with 8 generators>
gap> AsGluingOfNumericalSemigroups(s);
[ ]

6.2.2 IsCompleteIntersection

▷ IsCompleteIntersection(s) (property)

▷ IsACompleteIntersectionNumericalSemigroup(s) (property)

s is a numerical semigroup. The output is true if the numerical semigroup is a complete inter-
section, that is, the cardinality of a (any) minimal presentation equals its embedding dimension minus
one.

This filter implies IsSymmetricNumericalSemigroup (6.1.2) and
IsCyclotomicNumericalSemigroup (10.1.8).

Example
gap> s := NumericalSemigroup( 10, 15, 16 );
<Numerical semigroup with 3 generators>
gap> IsCompleteIntersection(s);
true
gap> s := NumericalSemigroup( 18, 24, 34, 46, 51, 61, 74, 8 );
<Numerical semigroup with 8 generators>
gap> IsACompleteIntersectionNumericalSemigroup(s);
false

6.2.3 CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber

▷ CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer. The output is the set of all complete intersection numerical semigroups with
Frobenius number f .

Example
gap> Length(CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber(57));
34
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6.2.4 IsFree

▷ IsFree(s) (property)

▷ IsFreeNumericalSemigroup(s) (property)

s is a numerical semigroup. The output is true if the numerical semigroup is free in the sense of
[BC77]: it is either N or the gluing of a copy of N with a free numerical semigroup.

This filter implies IsACompleteIntersectionNumericalSemigroup (6.2.2).
Example

gap> IsFree(NumericalSemigroup(10,15,16));
true
gap> IsFreeNumericalSemigroup(NumericalSemigroup(3,5,7));
false

6.2.5 FreeNumericalSemigroupsWithFrobeniusNumber

▷ FreeNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer. The output is the set of all free numerical semigroups with Frobenius number f .
Example

gap> Length(FreeNumericalSemigroupsWithFrobeniusNumber(57));
33

6.2.6 IsTelescopic

▷ IsTelescopic(s) (property)

▷ IsTelescopicNumericalSemigroup(s) (property)

s is a numerical semigroup. The output is true if the numerical semigroup is telescopic in the
sense of [KP95]: it is either N or the gluing of ⟨ne⟩ and s′ = ⟨n1/d, . . . ,ne−1/d⟩, and s′ is again a
telescopic numerical semigroup, where n1 < · · ·< ne are the minimal generators of s .

This filter implies IsAperySetBetaRectangular (6.2.12) and IsFree (6.2.4).
Example

gap> IsTelescopic(NumericalSemigroup(4,11,14));
false
gap> IsTelescopicNumericalSemigroup(NumericalSemigroup(4,11,14));
false
gap> IsFree(NumericalSemigroup(4,11,14));
true

6.2.7 TelescopicNumericalSemigroupsWithFrobeniusNumber

▷ TelescopicNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer. The output is the set of all telescopic numerical semigroups with Frobenius number
f .

Example
gap> Length(TelescopicNumericalSemigroupsWithFrobeniusNumber(57));
20
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6.2.8 IsUniversallyFree

▷ IsUniversallyFree(s) (property)

▷ IsUniversallyFreeNumericalSemigroup(s) (property)

s is a numerical semigroup. The output is true if the numerical semigroup is free for all the
arrangements of its minimal generators.

This filter implies IsTelescopic (6.2.6).
Example

gap> s:=NumericalSemigroup(10,15,18);;
gap> IsUniversallyFree(s);
true
gap> s:=NumericalSemigroup(4,6,9);;
gap> IsFree(s);
true
gap> IsUniversallyFree(s);
false

6.2.9 IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity

▷ IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity(s) (property)

s is a numerical semigroup. The output is true if the numerical semigroup is associated to an
irreducible planar curve singularity ([Zar86]). These semigroups are telescopic.

This filter implies IsAperySetAlphaRectangular (6.2.13) and
IsTelescopicNumericalSemigroup (6.2.6).

Example
gap> ns := NumericalSemigroup(4,11,14);;
gap> IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity(ns);
false
gap> ns := NumericalSemigroup(4,11,19);;
gap> IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity(ns);
true

6.2.10 NumericalSemigroupsPlanarSingularityWithFrobeniusNumber

▷ NumericalSemigroupsPlanarSingularityWithFrobeniusNumber(f) (function)

f is an integer. The output is the set of all numerical semigroups associated to irreducible planar
curves singularities with Frobenius number f .

Example
gap> Length(NumericalSemigroupsPlanarSingularityWithFrobeniusNumber(57));
7

6.2.11 IsAperySetGammaRectangular

▷ IsAperySetGammaRectangular(S) (function)

S is a numerical semigroup.
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Test for the γ-rectangularity of the Apéry Set of a numerical semigroup. This test is the imple-
mentation of the algorithm given in [DMS14]. Numerical Semigroups with this property are free and
thus complete intersections.

This filter implies IsFreeNumericalSemigroup (6.2.4).
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> IsAperySetGammaRectangular(s);
false
gap> s:=NumericalSemigroup(4,6,11);;
gap> IsAperySetGammaRectangular(s);
true

6.2.12 IsAperySetBetaRectangular

▷ IsAperySetBetaRectangular(S) (function)

S is a numerical semigroup.
Test for the β-rectangularity of the Apéry Set of a numerical semigroup. This test is the imple-

mentation of the algorithm given in [DMS14]; β-rectangularity implies γ-rectangularity.
This filter implies IsAperySetGammaRectangular (6.2.11).

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> IsAperySetBetaRectangular(s);
false
gap> s:=NumericalSemigroup(4,6,11);;
gap> IsAperySetBetaRectangular(s);
true

6.2.13 IsAperySetAlphaRectangular

▷ IsAperySetAlphaRectangular(S) (function)

S is a numerical semigroup.
Test for the α-rectangularity of the Apéry Set of a numerical semigroup. This test is the imple-

mentation of the algorithm given in [DMS14]; α-rectangularity implies β-rectangularity.
This filter implies IsAperySetBetaRectangular (6.2.12).

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> IsAperySetAlphaRectangular(s);
false
gap> s:=NumericalSemigroup(4,6,11);;
gap> IsAperySetAlphaRectangular(s);
true
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6.3 Almost-symmetric numerical semigroups

A numerical semigroup is almost-symmetric ([BF97]) if its genus is the arithmetic mean of its Frobe-
nius number and type. We use a procedure presented in [RGS14] to determine the set of all al-
most-symmetric numerical semigroups with given Frobenius number. In order to do this, we first
calculate the set of all almost-symmetric numerical semigroups that can be constructed from an irre-
ducible numerical semigroup.

6.3.1 AlmostSymmetricNumericalSemigroupsFromIrreducible

▷ AlmostSymmetricNumericalSemigroupsFromIrreducible(s) (function)

s is an irreducible numerical semigroup. The output is the set of almost-symmetric numeri-
cal semigroups that can be constructed from s by removing some of its generators (as explained in
[RGS14]).

Example
gap> ns := NumericalSemigroup(5,8,9,11);;
gap> AlmostSymmetricNumericalSemigroupsFromIrreducible(ns);
[ <Numerical semigroup with 4 generators>,

<Numerical semigroup with 5 generators>,
<Numerical semigroup with 5 generators> ]

gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);
[ [ 5, 8, 9, 11 ], [ 5, 8, 11, 14, 17 ], [ 5, 9, 11, 13, 17 ] ]

6.3.2 AlmostSymmetricNumericalSemigroupsFromIrreducibleAndGivenType

▷ AlmostSymmetricNumericalSemigroupsFromIrreducibleAndGivenType(s, t) (function)

s is an irreducible numerical semigroup and t is a positive integer. The output is the set of
almost-symmetric numerical semigroups with type t that can be constructed from s by removing
some of its generators (as explained in [BOR18]).

Example
gap> ns := NumericalSemigroup(5,8,9,11);;
gap> AlmostSymmetricNumericalSemigroupsFromIrreducibleAndGivenType(ns,4);
[ <Numerical semigroup with 5 generators>,

<Numerical semigroup with 5 generators> ]
gap> List(last,MinimalGenerators);
[ [ 5, 8, 11, 14, 17 ], [ 5, 9, 11, 13, 17 ] ]

6.3.3 IsAlmostSymmetric

▷ IsAlmostSymmetric(s) (function)

▷ IsAlmostSymmetricNumericalSemigroup(s) (function)

s is a numerical semigroup. The output is true if the numerical semigroup is almost symmetric.
Example

gap> IsAlmostSymmetric(NumericalSemigroup(5,8,11,14,17));
true
gap> IsAlmostSymmetricNumericalSemigroup(NumericalSemigroup(5,8,11,14,17));
true
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6.3.4 AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber

▷ AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber(f[, ts]) (function)

f is an integer, and so is ts . The output is the set of all almost symmetric numerical semigroups
with Frobenius number f , and type greater than or equal to ts . If ts is not specified, then it is con-
sidered to be equal to one, and so the output is the set of all almost symmetric numerical semigroups
with Frobenius number f .

Example
gap> Length(AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber(12));
15
gap> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumber(12));
2
gap> List(AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber(12,4),Type);
[ 12, 10, 8, 8, 6, 6, 6, 6, 4, 4, 4, 4, 4 ]

6.3.5 AlmostSymmetricNumericalSemigroupsWithFrobeniusNumberAndType

▷ AlmostSymmetricNumericalSemigroupsWithFrobeniusNumberAndType(f, t) (function)

f is an integer and so is t . The output is the set of all almost symmetric numerical semigroups
with Frobenius number f and type t .

Example
gap> Length(AlmostSymmetricNumericalSemigroupsWithFrobeniusNumberAndType(12,4));
5

6.4 Several approaches generalizing the concept of symmetry

Let S be a numerical semigroup and let R be its semigroup ring K[[S]]. We say that S has the generalized
Gorenstein property if its semigroup ring has this property. For the definition and characterization of
generalized Gorenstein rings please see [GIKT17].

A numerical semigroup is said to be nearly Gorenstein if its maximal ideal is contained in its trace
ideal [HHS19]. Every almost symmetric numerical semigroup is nearly Gorenstein.

A numerical semigroup S with canonical ideal K is a generalized almost symmetric numeri-
cal semigroup if either 2K = K (symmetric) or 2K \K = {F(S)− x1, . . . ,F(S)− xr,F(S)} for some
x1, . . . ,xr ∈ M \2M (minimal generators) and xi − x j ̸∈ (S−M)\S (not pseudo-Frobenius numbers),
see [DS21]. As expected, every almost symmetric numerical semigroup is a generalized almost sym-
metric numerical semigroup.

6.4.1 IsGeneralizedGorenstein

▷ IsGeneralizedGorenstein(s) (property)

s is a numerical semigroup. The output is true if the semigroup ring K[[S]] is generalized Goren-
stein using the characterization by Goto-Kumashiro [MK17].

Example
gap> s:=NumericalSemigroup(3,7,8);;
gap> IsAlmostSymmetric(s);
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false
gap> IsGeneralizedGorenstein(s);
true

6.4.2 IsNearlyGorenstein

▷ IsNearlyGorenstein(s) (property)

s is a numerical semigroup. The output is true if the semigroup is nearly Gorenstein, and false
otherwise. Example

gap> s:=NumericalSemigroup(10,11,12,25);;
gap> IsAlmostSymmetric(s);
false
gap> IsNearlyGorenstein(s);
true
gap> s:=NumericalSemigroup(3,7,8);;
gap> IsNearlyGorenstein(s);
false

6.4.3 NearlyGorensteinVectors

▷ NearlyGorensteinVectors(s) (operation)

s is a numerical semigroup. The output is a lists of lists (making the cartesian product of them
yields all possible NG-vectors). If ni is the ith generator of s , in the ith position of the list it returns all
pseudo-Frobenius numbers f of s such that ni + f − f ′ is in s for all f a pseudo-Frobenius number
of s , [MS21].

Example
gap> s:=NumericalSemigroup(10,11,12,25);;
gap> IsAlmostSymmetric(s);
false
gap> IsNearlyGorenstein(s);
true
gap> s:=NumericalSemigroup(3,7,8);;
gap> IsNearlyGorenstein(s);
false

6.4.4 IsGeneralizedAlmostSymmetric

▷ IsGeneralizedAlmostSymmetric(s) (property)

s is a numerical semigroup. Determines whether or not s is a generalized almost symmetric
numerical semigroup.

Example
gap> s:=NumericalSemigroup(9, 24, 39, 43, 77);;
gap> IsGeneralizedAlmostSymmetric(s);
true
gap> IsAlmostSymmetric(s);
false



Chapter 7

Ideals of numerical semigroups

Let S be a numerical semigroup. A set I of integers is an ideal relative to a numerical semigroup S
provided that I +S ⊆ I and that there exists d ∈ S such that d + I ⊆ S.

If {i1, . . . , ik} is a subset of Z, then the set I = {i1, . . . , ik}+S =
⋃k

n=1 in+S is an ideal relative to S,
and {i1, . . . , ik} is a system of generators of I. A system of generators M is minimal if no proper subset
of M generates the same ideal. Usually, ideals are specified by means of its generators and the ambient
numerical semigroup to which they are ideals (for more information see for instance [BDF97]).

7.1 Definitions and basic operations

We describe in this section the basic functions to create and compute notable elements of ideals of
numerical semigroups. We also include iterators and functions to treat ideals as lists, which easies the
access to its elements.

7.1.1 IdealOfNumericalSemigroup

▷ IdealOfNumericalSemigroup(l, S) (function)

▷ +(l, S) (function)

S is a numerical semigroup and l a list of integers. The output is the ideal of S generated by l .
There are several shortcuts for this function, as shown in the example.

Example
gap> IdealOfNumericalSemigroup([3,5],NumericalSemigroup(9,11));
<Ideal of numerical semigroup>
gap> [3,5]+NumericalSemigroup(9,11);
<Ideal of numerical semigroup>
gap> last=last2;
true
gap> 3+NumericalSemigroup(5,9);
<Ideal of numerical semigroup>

7.1.2 IsIdealOfNumericalSemigroup

▷ IsIdealOfNumericalSemigroup(Obj) (function)

57
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Tests if the object Obj is an ideal of a numerical semigroup.
Example

gap> I:=[1..7]+NumericalSemigroup(7,19);;
gap> IsIdealOfNumericalSemigroup(I);
true
gap> IsIdealOfNumericalSemigroup(2);
false

7.1.3 MinimalGenerators (for ideal of numerical semigroup)

▷ MinimalGenerators(I) (attribute)

▷ MinimalGeneratingSystem(I) (attribute)

▷ MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I) (attribute)

I is an ideal of a numerical semigroup. The output is the minimal system of generators of I .
Example

gap> MinimalGenerators([3,5]+NumericalSemigroup(2,11));
[ 3 ]
gap> I:=[3,5,9]+NumericalSemigroup(2,11);;
gap> MinimalGeneratingSystem(I);
[ 3 ]
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I);
[ 3 ]

7.1.4 Generators (for ideal of numerical semigroup)

▷ Generators(I) (attribute)

▷ GeneratorsOfIdealOfNumericalSemigroup(I) (attribute)

I is an ideal of a numerical semigroup. The output is a system of generators of the ideal.
Remark: from Version 1.0.1 on, this value does not change even when a set of minimal generators

is computed.
Example

gap> I:=[3,5,9]+NumericalSemigroup(2,11);;
gap> Generators(I);
[ 3, 5, 9 ]
gap> GeneratorsOfIdealOfNumericalSemigroup(I);
[ 3, 5, 9 ]
gap> MinimalGenerators(I);
[ 3 ]

7.1.5 AmbientNumericalSemigroupOfIdeal

▷ AmbientNumericalSemigroupOfIdeal(I) (function)

I is an ideal of a numerical semigroup, say S. The output is S.
Example

gap> I:=[3,5,9]+NumericalSemigroup(2,11);;
gap> AmbientNumericalSemigroupOfIdeal(I);
<Numerical semigroup with 2 generators>
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7.1.6 IsIntegral (for ideal of numerical semigroup)

▷ IsIntegral(I) (property)

▷ IsIntegralIdealOfNumericalSemigroup(I) (property)

I is an ideal of a numerical semigroup, say S. Detects if I ⊆ S.
Example

gap> s:=NumericalSemigroup(3,7,5);;
gap> IsIntegral(10+s);
true
gap> IsIntegral(4+s);
false
gap> IsIntegralIdealOfNumericalSemigroup(10+s);
true

7.1.7 IsComplementOfIntegralIdeal

▷ IsComplementOfIntegralIdeal(X, S) (operation)

S is a numerical semigroup and X is a subset of S . Determines if the subset X of S is the comple-
ment of an integral ideal of S .

Example
gap> s:=NumericalSemigroup(10,11,15,19);;
gap> i:=[20,21,25]+s;;
gap> d:=Difference(0+s,i);
[ 0, 10, 11, 15, 19, 22, 26, 29, 33, 34, 37, 38, 48 ]
gap> IsComplementOfIntegralIdeal(d,s);
true
gap> d:=DivisorsOfElementInNumericalSemigroup(50,s);
[ 0, 10, 11, 15, 19, 20, 21, 25, 29, 30, 31, 35, 39, 40, 50 ]
gap> IsComplementOfIntegralIdeal(d,s);
true

7.1.8 IdealByDivisorClosedSet

▷ IdealByDivisorClosedSet(X, S) (operation)

S is a numerical semigroup and X is a subset of S with the following property: for all x in X and
every y in S with x− y in S , the integer y is also in X . The output is the integral ideal S \X .

Example
gap> s:=NumericalSemigroup(10,11,15,19);;
gap> i:=[20,21,25]+s;;
gap> d:=Difference(0+s,i);
[ 0, 10, 11, 15, 19, 22, 26, 29, 33, 34, 37, 38, 48 ]
gap> i=IdealByDivisorClosedSet(d,s);
true
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7.1.9 SmallElements (for ideal of numerical semigroup)

▷ SmallElements(I) (function)

▷ SmallElementsOfIdealOfNumericalSemigroup(I) (function)

I is an ideal of a numerical semigroup. The output is a list with the elements in I that are less
than or equal to the greatest integer not belonging to the ideal plus one.

Example
gap> I:=[3,5,9]+NumericalSemigroup(2,11);;
gap> SmallElements(I);
[ 3, 5, 7, 9, 11, 13 ]
gap> SmallElements(I) = SmallElementsOfIdealOfNumericalSemigroup(I);
true
gap> J:=[2,11]+NumericalSemigroup(2,11);;
gap> SmallElements(J);
[ 2, 4, 6, 8, 10 ]

7.1.10 Conductor (for ideal of numerical semigroup)

▷ Conductor(I) (attribute)

▷ ConductorOfIdealOfNumericalSemigroup(I) (function)

I is an ideal of a numerical semigroup. The output is the largest element in SmallElements(I) .
Example

gap> s:=NumericalSemigroup(3,7,5);;
gap> Conductor(10+s);
15
gap> ConductorOfIdealOfNumericalSemigroup(10+s);
15

7.1.11 FrobeniusNumber (for ideal of numerical semigroup)

▷ FrobeniusNumber(I) (attribute)

▷ FrobeniusNumberOfIdealOfNumericalSemigroup(I) (function)

I is an ideal of a numerical semigroup. The output is the largest element not belonging to I .
Example

gap> s:=NumericalSemigroup(3,7,5);;
gap> FrobeniusNumber(0+s);
4

7.1.12 PseudoFrobenius (for ideal of numerical semigroup)

▷ PseudoFrobenius(I) (attribute)

▷ PseudoFrobeniusOfIdealOfNumericalSemigroup(I) (attribute)

I is an ideal of a numerical semigroup. The output is the set of pseudo-Frobenius numbers of I ,
that is the set I −M \I , with M the maximal ideal of the ambient semigroup of I (see [ADGS20]).
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Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> i:=4+s;;
gap> PseudoFrobenius(i);
[ 6, 8 ]
gap> PseudoFrobenius(s)=PseudoFrobenius(0+s);
true

7.1.13 Type (for ideal of numerical semigroup)

▷ Type(I) (operation)

I is an ideal of a numerical semigroup. The output is the cardinality of the set of pseudo-Frobenius
numbers of I (see [DS21]).

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> k:=CanonicalIdeal(s);;
gap> Type(k);
1

7.1.14 Minimum (minimum of ideal of numerical semigroup)

▷ Minimum(I) (operation)

I is an ideal of a numerical semigroup. The output is the minimum of I .
Example

gap> J:=[2,11]+NumericalSemigroup(2,11);;
gap> Minimum(J);
2

7.1.15 BelongsToIdealOfNumericalSemigroup

▷ BelongsToIdealOfNumericalSemigroup(n, I) (function)

▷ \in(n, I) (operation)

I is an ideal of a numerical semigroup, n is an integer. The output is true if n belongs to I .
n in I can be used for short.

Example
gap> J:=[2,11]+NumericalSemigroup(2,11);;
gap> BelongsToIdealOfNumericalSemigroup(9,J);
false
gap> 9 in J;
false
gap> BelongsToIdealOfNumericalSemigroup(10,J);
true
gap> 10 in J;
true
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7.1.16 ElementNumber_IdealOfNumericalSemigroup

▷ ElementNumber_IdealOfNumericalSemigroup(I, r) (function)

I is an ideal of a numerical semigroup and r is an integer. It returns the r-th element of I .
Example

gap> I := [2,5]+ NumericalSemigroup(7,8,17);;
gap> ElementNumber_IdealOfNumericalSemigroup(I,10);
19

7.1.17 NumberElement_IdealOfNumericalSemigroup

▷ NumberElement_IdealOfNumericalSemigroup(I, r) (function)

I is an ideal of a numerical semigroup and r is an integer. It returns the position of r in I (and
fail if the integer is not in the ideal).

Example
gap> I := [2,5]+ NumericalSemigroup(7,8,17);;
gap> NumberElement_IdealOfNumericalSemigroup(I,19);
10

7.1.18 \[ \] (for ideals of numerical semigroups)

▷ \[ \](I, r) (operation)

I is an ideal of a numerical semigroup and r is an integer. It returns the r-th element of I .
Example

gap> I := [2,5]+ NumericalSemigroup(7,8,17);;
gap> I[10];
19

7.1.19 \{ \} (for ideals of numerical semigroups)

▷ \{ \}(I, ls) (operation)

I is an ideal of a numerical semigroup and ls is a list of integers. It returns the list
[I[r] : r in ls] .

Example
gap> I := [2,5]+ NumericalSemigroup(7,8,17);;
gap> I{[10..13]};
[ 19, 20, 21, 22 ]

7.1.20 Iterator (for ideals of numerical semigroups)

▷ Iterator(I) (operation)

I is an ideal of a numerical semigroup. It returns an iterator over I .
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Example
gap> s:=NumericalSemigroup(4,10,11);;
gap> i:=[2,3]+s;;
gap> iter:=Iterator(i);
<iterator>
gap> NextIterator(iter);
2
gap> NextIterator(iter);
3
gap> NextIterator(iter);
6
gap> SmallElements(i);
[ 2, 3, 6, 7, 10 ]

7.1.21 SumIdealsOfNumericalSemigroup

▷ SumIdealsOfNumericalSemigroup(I, J) (function)

▷ +(I, J) (function)

I, J are ideals of a numerical semigroup. The output is the sum of both ideals {i+ j | i ∈ I , j ∈
J}.

Example
gap> I:=[3,5,9]+NumericalSemigroup(2,11);;
gap> J:=[2,11]+NumericalSemigroup(2,11);;
gap> I+J;
<Ideal of numerical semigroup>
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(last);
[ 5, 14 ]
gap> SumIdealsOfNumericalSemigroup(I,J);
<Ideal of numerical semigroup>
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(last);
[ 5, 14 ]

7.1.22 MultipleOfIdealOfNumericalSemigroup

▷ MultipleOfIdealOfNumericalSemigroup(n, I) (function)

▷ *(n, I) (function)

I is an ideal of a numerical semigroup, n is a non negative integer. The output is the ideal
I + · · ·+I (n times).

n * I can be used for short.
Example

gap> I:=[0,1]+NumericalSemigroup(3,5,7);;
gap> MultipleOfIdealOfNumericalSemigroup(2,I) = 2*I;
true
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(2*I);
[ 0, 1, 2 ]
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7.1.23 SubtractIdealsOfNumericalSemigroup

▷ SubtractIdealsOfNumericalSemigroup(I, J) (function)

▷ -(I, J) (function)

I, J are ideals of a numerical semigroup. The output is the ideal {z ∈ Z | z+J ⊆ I}.
I − J can be used as a short for SubtractIdealsOfNumericalSemigroup(I,J).
S−J is a synonym of (0+S)−J , if S is the ambient semigroup of I and J . The following example

appears in [HS04].
Example

gap> S:=NumericalSemigroup(14, 15, 20, 21, 25);;
gap> I:=[0,1]+S;;
gap> II:=S-I;;
gap> MinimalGenerators(I);
[ 0, 1 ]
gap> MinimalGenerators(II);
[ 14, 20 ]
gap> MinimalGenerators(I+II);
[ 14, 15, 20, 21 ]

7.1.24 Difference (for ideals of numerical semigroups)

▷ Difference(I, J) (operation)

▷ DifferenceOfIdealsOfNumericalSemigroup(I, J) (function)

I, J are ideals of a numerical semigroup. J must be contained in I . The output is the set I \J .
Example

gap> S:=NumericalSemigroup(14, 15, 20, 21, 25);;
gap> I:=[0,1]+S;
<Ideal of numerical semigroup>
gap> 2*I-2*I;
<Ideal of numerical semigroup>
gap> I-I;
<Ideal of numerical semigroup>
gap> ii := 2*I-2*I;
<Ideal of numerical semigroup>
gap> i := I-I;
<Ideal of numerical semigroup>
gap> Difference(last2,last);
[ 26, 27, 37, 38 ]
gap> DifferenceOfIdealsOfNumericalSemigroup(ii,i);
[ 26, 27, 37, 38 ]
gap> Difference(i,ii);
[ ]

7.1.25 TranslationOfIdealOfNumericalSemigroup

▷ TranslationOfIdealOfNumericalSemigroup(k, I) (function)

▷ +(k, I) (function)
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Given an ideal I of a numerical semigroup S and an integer k , returns an ideal of the numerical
semigroup S generated by {i1 + k, . . . , in + k}, where {i1, . . . , in} is the system of generators of I .

As a synonym to TranslationOfIdealOfNumericalSemigroup(k, I) the expression k + I
may be used.

Example
gap> s:=NumericalSemigroup(13,23);;
gap> l:=List([1..6], _ -> Random([8..34]));
[ 22, 29, 34, 25, 10, 12 ]
gap> I:=IdealOfNumericalSemigroup(l, s);;
gap> It:=TranslationOfIdealOfNumericalSemigroup(7,I);
<Ideal of numerical semigroup>
gap> It2:=7+I;
<Ideal of numerical semigroup>
gap> It2=It;
true

7.1.26 Union (for ideals of numerical semigroup)

▷ Union(I, J) (function)

I, J are ideals of a numerical semigroup. The output is the union of both ideals.
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> I:=2+s;;
gap> J:=3+s;;
gap> Union(I,J);
<Ideal of numerical semigroup>
gap> Generators(last);
[ 2, 3 ]

7.1.27 Intersection (for ideals of numerical semigroups)

▷ Intersection(I, J) (operation)

▷ IntersectionIdealsOfNumericalSemigroup(I, J) (function)

Given two ideals I and J of a numerical semigroup S returns the ideal of the numerical semigroup
S which is the intersection of the ideals I and J .

Example
gap> i:=IdealOfNumericalSemigroup([75,89],s);;
gap> j:=IdealOfNumericalSemigroup([115,289],s);;
gap> Intersection(i,j);
<Ideal of numerical semigroup>
gap> IntersectionIdealsOfNumericalSemigroup(i,j) = Intersection(i,j);
true

7.1.28 MaximalIdeal (for numerical semigroups)

▷ MaximalIdeal(S) (operation)

▷ MaximalIdealOfNumericalSemigroup(S) (function)
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Returns the maximal ideal of the numerical semigroup S .
Example

gap> s := NumericalSemigroup(3,7);;
gap> MaximalIdeal(s);
<Ideal of numerical semigroup>
gap> MaximalIdealOfNumericalSemigroup(s) = MaximalIdeal(s);
true

7.1.29 CanonicalIdeal (for numerical semigroups)

▷ CanonicalIdeal(S) (operation)

▷ CanonicalIdealOfNumericalSemigroup(S) (function)

S is a numerical semigroup. Computes the (standard) canonical ideal of S ([BF97]): {x∈Z|g−x ̸∈
S}, where g is the Frobenius number of S .

Example
gap> s:=NumericalSemigroup(4,6,11);;
gap> m:=MaximalIdeal(s);;
gap> c:=CanonicalIdeal(s);
<Ideal of numerical semigroup>
gap> c-(c-m)=m;
true
gap> id:=3+s;
<Ideal of numerical semigroup>
gap> c-(c-id)=id;
true
gap> CanonicalIdealOfNumericalSemigroup(s) = c;
true

7.1.30 IsCanonicalIdeal

▷ IsCanonicalIdeal(E) (property)

▷ IsCanonicalIdealOfNumericalSemigroup(E) (property)

E is an ideal of a numerical semigroup, say S. Determines if E is a translation of the canonical
ideal of S, or equivalently, for every ideal J, E − (E − J) = J.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> c:=3+CanonicalIdeal(s);;
gap> c-(c-(3+s))=3+s;
true
gap> IsCanonicalIdeal(c);
true
gap> IsCanonicalIdealOfNumericalSemigroup(c);
true

7.1.31 IsAlmostCanonicalIdeal

▷ IsAlmostCanonicalIdeal(E) (property)
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E is an ideal of a numerical semigroup, say S. Set I to be a translation of E so that its conductor is
the same as the conductor of S, and let M and K be the maximal and canonical ideals of S, respectively.
Then E is almost canonical if I −M = K −M (see [DS21]). Determines if E almost canonical.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> IsAlmostSymmetric(s);
true
gap> IsAlmostCanonical(MaximalIdeal(s));
true

7.1.32 TraceIdeal (for numerical semigroups)

▷ TraceIdeal(S) (operation)

▷ TraceIdealOfNumericalSemigroup(S) (function)

S is a numerical semigroup. Computes the trace ideal of S ([HHS21]), that is, K +(S −K), with
K the canonical ideal of S .

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> MinimalGenerators(TraceIdeal(s));
[ 3, 5, 7 ]

7.1.33 TypeSequence (for numerical semigroups)

▷ TypeSequence(S) (operation)

▷ TypeSequenceOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
Computes the type sequence of a numerical semigroup. That is, the secuence ti(S) = ♯(S(i)\S(i−

1)), with S(i) = {s ∈ S | s ≥ si} and si the ith element of S .
This function is the implementation of the algorithm given in [BDF97].

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> TypeSequence(s);
[ 13, 3, 4, 4, 7, 3, 3, 3, 2, 2, 2, 3, 3, 2, 4, 3, 2, 1, 3, 2, 1, 1, 2, 2, 1,

1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,
1, 1, 1 ]

gap> s:=NumericalSemigroup(4,6,11);;
gap> TypeSequenceOfNumericalSemigroup(s);
[ 1, 1, 1, 1, 1, 1, 1 ]

7.2 Decomposition into irreducibles

Let I be an ideal of a numerical semigroup S. We say that I is Z-irreducible if it cannot be expressed
as a finite intersection of other relative ideals properly containing it. Every ideal I can be expressed
as an intersection of exactly t irreducible ideals of S, where t is the type of I. These irreducible ideals
are unique and are known as the irreducible Z-components of I. Recall that an ideal is integral (or
proper) if it is contained in its ambient semigroup. We say that an integral ideal is irreducible if it
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cannot be expressed as an intersection of other proper integral ideals. Every integral ideal admits a
unique decomposition into irredundant irreducible integral ideals.

7.2.1 IrreducibleZComponents

▷ IrreducibleZComponents(I) (operation)

I is an ideal of a numerical semigroup. The output is the list of irreducible Z-components of I .
These are calculated using Proposition 24 in [ADGS20].

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> i:=[4,5]+s;;
gap> zc:=IrreducibleZComponents(i);
[ <Ideal of numerical semigroup>, <Ideal of numerical semigroup> ]
gap> List(zc,MinimalGenerators);
[ [ 2, 4 ], [ -2, 0 ] ]
gap> i=Intersection(zc);
true

7.2.2 DecomposeIntegralIdealIntoIrreducibles

▷ DecomposeIntegralIdealIntoIrreducibles(I) (operation)

I is an integral ideal of a numerical semigroup. The output is the list of irreducible integral ideals
whose intersection is the unique irredundant decomposition of I into integral proper ideals. The
computations are performed using Theorem 4 in [ADGS20].

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> i:=10+s;;
gap> di:=DecomposeIntegralIdealIntoIrreducibles(i);
[ <Ideal of numerical semigroup>, <Ideal of numerical semigroup> ]
gap> List(di,MinimalGenerators);
[ [ 8, 10 ], [ 10, 12 ] ]
gap> i=Intersection(di);
true

7.3 Blow ups and closures

The blow up of an ideal I of a numerical semigroup is the ideal
⋃

n≥0 nI − nI . In this section we
provide functions to compute the blow up and related invariants.

7.3.1 HilbertFunctionOfIdealOfNumericalSemigroup

▷ HilbertFunctionOfIdealOfNumericalSemigroup(n, I) (function)

I is an ideal of a numerical semigroup, n is a non negative integer. I must be contained in its
ambient semigroup. The output is the cardinality of the set nI \ (n +1)I .
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Example
gap> I:=[6,9,11]+NumericalSemigroup(6,9,11);;
gap> List([1..7],n->HilbertFunctionOfIdealOfNumericalSemigroup(n,I));
[ 3, 5, 6, 6, 6, 6, 6 ]

7.3.2 HilbertFunction

▷ HilbertFunction(I) (attribute)

I is an ideal of a numerical semigroup. I must be contained in its ambient semigroup (integral
ideal). The output is a function that maps to each n the cardinality of the set nI \ (n+1)I .

Example
gap> I:=[6,9,11]+NumericalSemigroup(6,9,11);;
gap> List([1..7],n->HilbertFunction(I)(n));
[ 3, 5, 6, 6, 6, 6, 6 ]

7.3.3 BlowUp (for ideals of numerical semigroups)

▷ BlowUp(I) (operation)

▷ BlowUpIdealOfNumericalSemigroup(I) (function)

I is an ideal of a numerical semigroup. The output is the ideal
⋃

n≥0 nI −nI .
Example

gap> I:=[0,2]+NumericalSemigroup(6,9,11);;
gap> BlowUp(I);
<Ideal of numerical semigroup>
gap> SmallElements(last);
[ 0, 2, 4, 6, 8 ]
gap> BlowUpIdealOfNumericalSemigroup(I);;
gap> SmallElementsOfIdealOfNumericalSemigroup(last);
[ 0, 2, 4, 6, 8 ]

7.3.4 ReductionNumber (for ideals of numerical semigroups)

▷ ReductionNumber(I) (attribute)

▷ ReductionNumberIdealNumericalSemigroup(I) (attribute)

I is an ideal of a numerical semigroup. The output is the least integer such that nI + i = (n+1)I ,
where i = min(I).

Example
gap> I:=[0,2]+NumericalSemigroup(6,9,11);;
gap> ReductionNumber(I);
2
gap> ReductionNumberIdealNumericalSemigroup(I);
2
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7.3.5 BlowUp (for numerical semigroups)

▷ BlowUp(S) (operation)

▷ BlowUpOfNumericalSemigroup(S) (function)

S is a numerical semigroup. If M is the maximal ideal of the numerical semigroup, then the output
is the numerical semigroup

⋃
n≥0 nM −nM .

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> BlowUp(s);
<Numerical semigroup with 10 generators>
gap> SmallElements(last);
[ 0, 5, 10, 12, 15, 17, 20, 22, 24, 25, 27, 29, 30, 32, 34, 35, 36, 37, 39,

40, 41, 42, 44 ]
gap> BlowUpOfNumericalSemigroup(s);;
gap> SmallElements(last);
[ 0, 5, 10, 12, 15, 17, 20, 22, 24, 25, 27, 29, 30, 32, 34, 35, 36, 37, 39,

40, 41, 42, 44 ]
gap> m:=MaximalIdeal(s);
<Ideal of numerical semigroup>
gap> BlowUp(m);
<Ideal of numerical semigroup>
gap> SmallElements(last);
[ 0, 5, 10, 12, 15, 17, 20, 22, 24, 25, 27, 29, 30, 32, 34, 35, 36, 37, 39,

40, 41, 42, 44 ]

7.3.6 LipmanSemigroup

▷ LipmanSemigroup(S) (function)

This is just a synonym of BlowUpOfNumericalSemigroup (7.3.5).
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> LipmanSemigroup(s);
<Numerical semigroup with 10 generators>
gap> SmallElementsOfNumericalSemigroup(last);
[ 0, 5, 10, 12, 15, 17, 20, 22, 24, 25, 27, 29, 30, 32, 34, 35, 36, 37, 39,

40, 41, 42, 44 ]

7.3.7 RatliffRushNumber

▷ RatliffRushNumber(I) (operation)

▷ RatliffRushNumberOfIdealOfNumericalSemigroup(I) (function)

I is an ideal of a numerical semigroup S. The output is the least integer such that S∩(n+1)I−nI
is the Ratliff-Rush closure of I (see [DGH01]).

Example
gap> s:=NumericalSemigroup([9..17]);;
gap> i:=[9,10,12]+s;;
gap> RatliffRushNumber(i);
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3
gap> ReductionNumber(i);
4

7.3.8 RatliffRushClosure

▷ RatliffRushClosure(I) (operation)

▷ RatliffRushClosureOfIdealOfNumericalSemigroup(I) (function)

I is an ideal of a numerical semigroup S. The output is the Ratliff-Rush closure of I : S∩
⋃

n∈N(n+
1)I −nI (see [DGH01]).

Example
gap> s:=NumericalSemigroup(4,5,6,7);;
gap> i:=[4,5]+s;;
gap> MinimalGenerators(RatliffRushClosure(i));
[ 4, 5, 6, 7 ]

7.3.9 AsymptoticRatliffRushNumber

▷ AsymptoticRatliffRushNumber(I) (operation)

▷ AsymptoticRatliffRushNumberOfIdealOfNumericalSemigroup(I) (function)

I is an ideal of a numerical semigroup. The output is the least n such that the Ratliff-Rush closure
of mI equals mI for all m ≥ n (see [DGH01]).

Example
gap> i:=[4,5]+NumericalSemigroup([4..7]);;
gap> AsymptoticRatliffRushNumber(i);
3

7.3.10 MultiplicitySequence

▷ MultiplicitySequence(S) (operation)

▷ MultiplicitySequenceOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is a list with the multiplicities of the sequence S ⊆ L(S)⊆
·· · ⊆ N, where L(·) means LipmanSemigroup (7.3.6).

Example
gap> s:=NumericalSemigroup(3,5);;
gap> MultiplicitySequence(s);
[ 3, 2, 1 ]
gap> MultiplicitySequenceOfNumericalSemigroup(s);
[ 3, 2, 1 ]

7.3.11 MicroInvariants

▷ MicroInvariants(S) (operation)

▷ MicroInvariantsOfNumericalSemigroup(S) (function)
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Returns the microinvariants of the numerical semigroup S defined in [Eli01]. For their computa-
tion we have used the formula given in [BF06]. The Apéry set of S and its blow up are involved in
this computation.

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> bu:=BlowUpOfNumericalSemigroup(s);;
gap> ap:=AperyListOfNumericalSemigroupWRTElement(s,30);;
gap> apbu:=AperyListOfNumericalSemigroupWRTElement(bu,30);;
gap> (ap-apbu)/30;
[ 0, 4, 4, 3, 2, 1, 3, 4, 4, 3, 2, 3, 1, 4, 4, 3, 3, 1, 4, 4, 4, 3, 2, 4, 2,

5, 4, 3, 3, 2 ]
gap> MicroInvariants(s)=last;
true
gap> MicroInvariantsOfNumericalSemigroup(s)=MicroInvariants(s);
true

7.3.12 AperyList (for ideals of numerical semigroups with respect to element)

▷ AperyList(I, n) (operation)

▷ AperyListOfIdealOfNumericalSemigroupWRTElement(I, n) (function)

I is an ideal and n is an integer. Computes the set of elements x of I such that x−n is not in the
ideal I , where n is supposed to be in the ambient semigroup of I . The element in the ith position of
the output list (starting in 0) is congruent with i modulo n .

Example
gap> s:=NumericalSemigroup(10,11,13);;
gap> i:=[12,14]+s;;
gap> AperyList(i,10);
[ 40, 51, 12, 23, 14, 25, 36, 27, 38, 49 ]
gap> AperyListOfIdealOfNumericalSemigroupWRTElement(i,10);
[ 40, 51, 12, 23, 14, 25, 36, 27, 38, 49 ]

7.3.13 AperyList (for ideals of numerical semigroups with respect to multiplicity)

▷ AperyList(I) (operation)

I is an ideal. Computes the Apéry list of I with respect to the multiplicity of its ambient numerical
semigroup.

Example
gap> s:=NumericalSemigroup(5,7,9);;
gap> i:=[0,1,2]+s;;
gap> AperyList(i);
[ 0, 1, 2, 8, 9 ]

7.3.14 AperyTable

▷ AperyTable(S) (operation)

▷ AperyTableOfNumericalSemigroup(s) (function)
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Computes the Apéry table associated to the numerical semigroup s as explained in [CBJZA13],
that is, a list containing the Apéry list of s with respect to its multiplicity and the Apéry lists of kM
(with M the maximal ideal of s ) with respect to the multiplicity of s , for k ∈ {1, . . . ,r}, where r is the
reduction number of M (see ReductionNumberIdealNumericalSemigroup (7.3.4)).

Example
gap> s:=NumericalSemigroup(10,11,13);;
gap> AperyTable(s);
[ [ 0, 11, 22, 13, 24, 35, 26, 37, 48, 39 ],

[ 10, 11, 22, 13, 24, 35, 26, 37, 48, 39 ],
[ 20, 21, 22, 23, 24, 35, 26, 37, 48, 39 ],
[ 30, 31, 32, 33, 34, 35, 36, 37, 48, 39 ],
[ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 ] ]

gap> AperyTableOfNumericalSemigroup(s) = AperyTable(s);
true

7.3.15 StarClosureOfIdealOfNumericalSemigroup

▷ StarClosureOfIdealOfNumericalSemigroup(i, is) (function)

i is an ideal and is is a set of ideals (all from the same numerical semigroups). The output is i∗is ,
where ∗is is the star operation generated by is : (s− (s− i))

⋂
k∈is(k− (k− i)). The implementation

uses Section 3 of [Spi15].
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> StarClosureOfIdealOfNumericalSemigroup([0,2]+s,[[0,4]+s]);;
gap> MinimalGenerators(last);
[ 0, 2, 4 ]

7.4 Patterns for ideals

In this section we document the functions implemented by K. Stokes related to patterns of ideals in
numerical semigroups. The correctness of the algorithms can be found in [Sto16].

7.4.1 IsAdmissiblePattern

▷ IsAdmissiblePattern(p) (function)

p is the list of integers that are the coefficients of a pattern.
Returns true or false depending if the pattern is admissible or not (see [BAGS06]).

Example
gap> IsAdmissiblePattern([1,1,-1]);
true
gap> IsAdmissiblePattern([1,-2]);
false
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7.4.2 IsStronglyAdmissiblePattern

▷ IsStronglyAdmissiblePattern(p) (function)

p is the list of integers that are the coefficients of a pattern.
Returns true or false depending if the pattern is strongly admissible or not (see [BAGS06]).

Example
gap> IsAdmissiblePattern([1,-1]);
true
gap> IsStronglyAdmissiblePattern([1,-1]);
false
gap> IsStronglyAdmissiblePattern([1,1,-1]);
true

7.4.3 AsIdealOfNumericalSemigroup

▷ AsIdealOfNumericalSemigroup(I, T) (function)

I is an ideal of a numerical semigroup S, and T is a numerical semigroup. Detects if I is an ideal
of T and contained in T (integral ideal), and if so, returns I as an ideal of T . It returns fail if I is an
ideal of some semigroup but not an integral ideal of T .

Example
gap> s:=NumericalSemigroup(3,7,5);;
gap> t:=NumericalSemigroup(10,11,14);;
gap> AsIdealOfNumericalSemigroup(10+s,t);
fail
gap> AsIdealOfNumericalSemigroup(100+s,t);
<Ideal of numerical semigroup>

7.4.4 BoundForConductorOfImageOfPattern

▷ BoundForConductorOfImageOfPattern(p, C) (function)

p is the list of integers that are the coefficients of an admissible pattern. C is a positive integer.
Calculates an upper bound of the smallest element K in p(I) such that all integers larger than K belong
to p(I), where I is an ideal of a numerical semigroup. Instead of taking I as parameter, the function
takes C, which is assumed to be the conductor of I.

Example
gap> BoundForConductorOfImageOfPattern([1,1,-1],10);
10

7.4.5 ApplyPatternToIdeal

▷ ApplyPatternToIdeal(p, I) (function)

p is the list of integers that are the coefficients of a strongly admissible pattern. I is an ideal of a
numerical semigroup.

Outputs p(I), represented as [d,p(I)/d], where d is the gcd of the coefficients of p . All elements
of p(I) are divisible by d, and p(I)/d is an ideal of some numerical semigroup. It is returned as the
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maximal ideal of the numerical semigroup p(I)/d ∪{0}. The ambient numerical semigroup can later
be changed with the function AsIdealOfNumericalSemigroup.

Example
gap> s:=NumericalSemigroup(3,7,5);;
gap> i:=10+s;;
gap> ApplyPatternToIdeal([1,1,-1],i);
[ 1, <Ideal of numerical semigroup> ]

7.4.6 ApplyPatternToNumericalSemigroup

▷ ApplyPatternToNumericalSemigroup(p, S) (function)

p is the list of integers that are the coefficients of a strongly admissible pattern. S is a numerical
semigroup.

Outputs ApplyPatternToIdeal(p,0+S).
Example

gap> s:=NumericalSemigroup(3,7,5);;
gap> ApplyPatternToNumericalSemigroup([1,1,-1],s);
[ 1, <Ideal of numerical semigroup> ]
gap> SmallElements(last[2]);
[ 0, 3, 5 ]

7.4.7 IsAdmittedPatternByIdeal

▷ IsAdmittedPatternByIdeal(p, I, J) (function)

p is the list of integers that are the coefficients of a strongly admissible pattern. I and J are ideals
of certain numerical semigroups.

Tests whether or not p(I) is contained in J .
Example

gap> s:=NumericalSemigroup(3,7,5);;
gap> i:=[3,5]+s;;
gap> IsAdmittedPatternByIdeal([1,1,-1],i,i);
false
gap> IsAdmittedPatternByIdeal([1,1,-1],i,0+s);
true

7.4.8 IsAdmittedPatternByNumericalSemigroup

▷ IsAdmittedPatternByNumericalSemigroup(p, S, T) (function)

p is the list of integers that are the coefficients of a strongly admissible pattern. S and T are
numerical semigroups.

Tests whether or not p(S) is contained in T .
Example

gap> s:=NumericalSemigroup(3,7,5);;
gap> IsAdmittedPatternByNumericalSemigroup([1,1,-1],s,s);
true
gap> IsArfNumericalSemigroup(s);
true
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7.5 Graded associated ring of numerical semigroup

This section contains several functions to test properties of the graded (with respect to the maximal
ideal) semigroup ring K[[S]] (with S a numerical semigroup).

7.5.1 IsGradedAssociatedRingNumericalSemigroupCM

▷ IsGradedAssociatedRingNumericalSemigroupCM(S) (property)

S is a numerical semigroup. Returns true if the graded ring associated to K[[S ]] is Co-
hen-Macaulay, and false otherwise. This test is the implementation of the algorithm given in [BF06].

This filter implies IsGradedAssociatedRingNumericalSemigroupBuchsbaum (7.5.2).
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> IsGradedAssociatedRingNumericalSemigroupCM(s);
false
gap> MicroInvariantsOfNumericalSemigroup(s);
[ 0, 4, 4, 3, 2, 1, 3, 4, 4, 3, 2, 3, 1, 4, 4, 3, 3, 1, 4, 4, 4, 3, 2, 4, 2,

5, 4, 3, 3, 2 ]
gap> List(AperyListOfNumericalSemigroupWRTElement(s,30),
> w->MaximumDegreeOfElementWRTNumericalSemigroup (w,s));
[ 0, 1, 4, 1, 2, 1, 3, 1, 4, 3, 2, 3, 1, 1, 4, 3, 3, 1, 4, 1, 4, 3, 2, 4, 2,

5, 4, 3, 1, 2 ]
gap> last=last2;
false
gap> s:=NumericalSemigroup(4,6,11);;
gap> IsGradedAssociatedRingNumericalSemigroupCM(s);
true
gap> MicroInvariantsOfNumericalSemigroup(s);
[ 0, 2, 1, 1 ]
gap> List(AperyListOfNumericalSemigroupWRTElement(s,4),
> w->MaximumDegreeOfElementWRTNumericalSemigroup(w,s));
[ 0, 2, 1, 1 ]

7.5.2 IsGradedAssociatedRingNumericalSemigroupBuchsbaum

▷ IsGradedAssociatedRingNumericalSemigroupBuchsbaum(S) (property)

S is a numerical semigroup.
Returns true if the graded ring associated to K[[S ]] is Buchsbaum, and false otherwise. This test

is the implementation of the algorithm given in [DMV09].
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> IsGradedAssociatedRingNumericalSemigroupBuchsbaum(s);
true



numericalsgps-- a package for numerical semigroups 77

7.5.3 TorsionOfAssociatedGradedRingNumericalSemigroup

▷ TorsionOfAssociatedGradedRingNumericalSemigroup(S) (function)

S is a numerical semigroup.
This function returns the set of elements in the numerical semigroup S corresponding to a K-basis

of the torsion submodule of the associated graded ring of the numerical semigroup ring K[[S]]. It uses
the Apery table as explained in [CBJZA13].

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> TorsionOfAssociatedGradedRingNumericalSemigroup(s);
[ 181, 153, 157, 193, 169, 148 ]

7.5.4 BuchsbaumNumberOfAssociatedGradedRingNumericalSemigroup

▷ BuchsbaumNumberOfAssociatedGradedRingNumericalSemigroup(S) (function)

S is a numerical semigroup.
This function returns the smallest non-negative integer k for which the associated graded ring G of

a given numerical semigroup ring is k-Buchsbaum, that is, the least k for which the torsion submodule
of G is annihilated by the k-th power of the homogeneous maximal ideal of G.

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> BuchsbaumNumberOfAssociatedGradedRingNumericalSemigroup(s);
1
gap> IsGradedAssociatedRingNumericalSemigroupBuchsbaum(s);
true

7.5.5 IsGradedAssociatedRingNumericalSemigroupGorenstein

▷ IsGradedAssociatedRingNumericalSemigroupGorenstein(S) (function)

S is a numerical semigroup.
Returns true if the graded ring associated to K[[S ]] is Gorenstein, and false otherwise. This test

is the implementation of the algorithm given in [DMS11].
This filter implies IsGradedAssociatedRingNumericalSemigroupCM (7.5.1),

IsMpureNumericalSemigroup (9.8.2), and IsSymmetricNumericalSemigroup (6.1.2).
Example

gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> IsGradedAssociatedRingNumericalSemigroupGorenstein(s);
false
gap> s:=NumericalSemigroup(4,6,11);;
gap> IsGradedAssociatedRingNumericalSemigroupGorenstein(s);
true

7.5.6 IsGradedAssociatedRingNumericalSemigroupCI

▷ IsGradedAssociatedRingNumericalSemigroupCI(S) (function)
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S is a numerical semigroup.
Returns true if the Complete Intersection property of the associated graded ring of a numerical

semigroup ring associated to K[[S ]], and false otherwise. This test is the implementation of the
algorithm given in [DMS13].

This filter implies IsGradedAssociatedRingNumericalSemigroupGorenstein (7.5.5) and
IsAperySetGammaRectangular (6.2.11).

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> IsGradedAssociatedRingNumericalSemigroupCI(s);
false
gap> s:=NumericalSemigroup(4,6,11);;
gap> IsGradedAssociatedRingNumericalSemigroupCI(s);
true



Chapter 8

Numerical semigroups with maximal
embedding dimension

If S is a numerical semigroup and m is its multiplicity (the least positive integer belonging to it), then
the embedding dimension e of S (the cardinality of the minimal system of generators of S) is less than
or equal to m. We say that S has maximal embedding dimension (MED for short) when e = m. The
intersection of two numerical semigroups with the same multiplicity and maximal embedding dimen-
sion is again of maximal embedding dimension. Thus we define the MED closure of a non-empty
subset of positive integers M = {m < m1 < · · ·< mn < · · ·} with gcd(M) = 1 as the intersection of all
MED numerical semigroups with multiplicity m.

Given a MED numerical semigroup S, we say that M = {m1 < · · · < mk} is a MED system of
generators if the MED closure of M is S. Moreover, M is a minimal MED generating system for S
provided that every proper subset of M is not a MED system of generators of S. Minimal MED gen-
erating systems are unique, and in general are smaller than the classical minimal generating systems
(see [RGSGGB03]).

8.1 Numerical semigroups with maximal embedding dimension

This section describes the basic functions to deal with maximal embedding dimension numerical semi-
groups, and MED generating systems.

8.1.1 IsMED

▷ IsMED(S) (property)

▷ IsMEDNumericalSemigroup(S) (property)

S is a numerical semigroup. Returns true if S is a MED numerical semigroup and false otherwise.
Example

gap> IsMED(NumericalSemigroup(3,5,7));
true
gap> IsMEDNumericalSemigroup(NumericalSemigroup(3,5));
false

79
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8.1.2 MEDClosure

▷ MEDClosure(S) (operation)

▷ MEDNumericalSemigroupClosure(S) (function)

S is a numerical semigroup. Returns the MED closure of S .
Example

gap> s := MEDClosure(NumericalSemigroup(3,5));
<Numerical semigroup>
gap> MinimalGenerators(s);
[ 3, 5, 7 ]
gap> MEDNumericalSemigroupClosure(NumericalSemigroup(3,5)) = s;
true

8.1.3 MinimalMEDGeneratingSystemOfMEDNumericalSemigroup

▷ MinimalMEDGeneratingSystemOfMEDNumericalSemigroup(S) (function)

S is a MED numerical semigroup. Returns the minimal MED generating system of S .
Example

gap> MinimalMEDGeneratingSystemOfMEDNumericalSemigroup(
> NumericalSemigroup(3,5,7));
[ 3, 5 ]

8.2 Numerical semigroups with the Arf property and Arf closures

A numerical semigroup S is Arf if for every x,y,z in S with x ≥ y ≥ z, one has that x+ y− z ∈ S.
Numerical semigroups with the Arf property are a special kind of numerical semigroups with maximal
embedding dimension.

The intersection of two Arf numerical semigroups is again Arf, and thus we can consider the Arf
closure of a set of nonnegative integers with greatest common divisor equal to one. Analogously as
with MED numerical semigroups, we define Arf systems of generators and minimal Arf generating
system for an Arf numerical semigroup. These are also unique (see [RGSGGB04]).

8.2.1 IsArf

▷ IsArf(S) (property)

▷ IsArfNumericalSemigroup(S) (property)

S is a numerical semigroup. Returns true if S is an Arf numerical semigroup and false otherwise.
This property implies IsMED (8.1.1) and IsAcuteNumericalSemigroup (3.1.30).

Example
gap> IsArf(NumericalSemigroup(3,5,7));
true
gap> IsArfNumericalSemigroup(NumericalSemigroup(3,7,11));
false
gap> IsMED(NumericalSemigroup(3,7,11));
true
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8.2.2 ArfClosure (of numerical semigroup)

▷ ArfClosure(S) (operation)

▷ ArfNumericalSemigroupClosure(S) (function)

S is a numerical semigroup. Returns the Arf closure of S .
Example

gap> s := NumericalSemigroup(3,7,11);;
gap> t := ArfClosure(s);
<Numerical semigroup>
gap> MinimalGenerators(t);
[ 3, 7, 8 ]
gap> ArfNumericalSemigroupClosure(s) = t;
true

8.2.3 ArfCharactersOfArfNumericalSemigroup

▷ ArfCharactersOfArfNumericalSemigroup(S) (function)

▷ MinimalArfGeneratingSystemOfArfNumericalSemigroup(S) (function)

S is an Arf numerical semigroup. Returns the minimal Arf generating system of S . The current
version of this algorithm is due to G. Zito.

Example
gap> s := NumericalSemigroup(3,7,8);
<Numerical semigroup with 3 generators>
gap> ArfCharactersOfArfNumericalSemigroup(s);
[ 3, 7 ]
gap> MinimalArfGeneratingSystemOfArfNumericalSemigroup(s);
[ 3, 7 ]

8.2.4 ArfNumericalSemigroupsWithFrobeniusNumber

▷ ArfNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer. The output is the set of all Arf numerical semigroups with Frobenius number f .
The current version of this algorithm is due to G. Zito.

Example
gap> ArfNumericalSemigroupsWithFrobeniusNumber(10);
[ <Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,
<Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup> ]

gap> Set(last,MinimalGenerators);
[ [ 3, 11, 13 ], [ 4, 11, 13, 14 ], [ 6, 9, 11, 13, 14, 16 ],

[ 6, 11, 13, 14, 15, 16 ], [ 7, 9, 11, 12, 13, 15, 17 ],
[ 7, 11, 12, 13, 15, 16, 17 ], [ 8, 11, 12, 13, 14, 15, 17, 18 ],
[ 9, 11, 12, 13, 14, 15, 16, 17, 19 ], [ 11 .. 21 ] ]
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8.2.5 ArfNumericalSemigroupsWithFrobeniusNumberUpTo

▷ ArfNumericalSemigroupsWithFrobeniusNumberUpTo(f) (function)

f is an integer. The output is the set of all Arf numerical semigroups with Frobenius number less
than or equal to f . The current version of this algorithm is due to G. Zito.

Example
gap> Length(ArfNumericalSemigroupsWithFrobeniusNumberUpTo(10));
46

8.2.6 ArfNumericalSemigroupsWithGenus

▷ ArfNumericalSemigroupsWithGenus(g) (function)

g is a nonnegative integer. The output is the set of all Arf numerical semigroups with genus equal
to g . The current version of this algorithm is due to G. Zito.

Example
gap> Length(ArfNumericalSemigroupsWithGenus(10));
21

8.2.7 ArfNumericalSemigroupsWithGenusUpTo

▷ ArfNumericalSemigroupsWithGenusUpTo(g) (function)

g is a nonnegative integer. The output is the set of all Arf numerical semigroups with genus less
than or equal to g . The current version of this algorithm is due to G. Zito.

Example
gap> Length(ArfNumericalSemigroupsWithGenusUpTo(10));
86

8.2.8 ArfNumericalSemigroupsWithGenusAndFrobeniusNumber

▷ ArfNumericalSemigroupsWithGenusAndFrobeniusNumber(g, f) (function)

f and g are integers. The output is the set of all Arf numerical semigroups with genus g and
Frobenius number f . The algorithm is explained in [GSHKR17].

Example
gap> ArfNumericalSemigroupsWithGenusAndFrobeniusNumber(10,13);
[ <Numerical semigroup>, <Numerical semigroup>, <Numerical semigroup>,

<Numerical semigroup>, <Numerical semigroup> ]
gap> List(last,MinimalGenerators);
[ [ 8, 10, 12, 14, 15, 17, 19, 21 ], [ 6, 10, 14, 15, 17, 19 ],

[ 5, 12, 14, 16, 18 ], [ 6, 9, 14, 16, 17, 19 ], [ 4, 14, 15, 17 ] ]

8.2.9 ArfSpecialGaps

▷ ArfSpecialGaps(s) (operation)
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s is an Arf numerical semigroup. The output is the set of gaps g of s such that s ∪{g} is an Arf
numerical semigroup. The implementation is based on [Sü22].

Example
gap> s:=NumericalSemigroup(10,24,25,26,27,28,29,31,32,33);;
gap> ArfSpecialGaps(s);
[ 15, 22, 23 ]

8.2.10 ArfOverSemigroups

▷ ArfOverSemigroups(s) (operation)

s is an Arf numerical semigroup. The output is the set of Arf oversemigroups of s . The imple-
mentation is based on [Sü22].

Example
gap> s:=NumericalSemigroup(6,9,11,13,14,16);;
gap> List(ArfOverSemigroups(s),MinimalGenerators);
[ [ 1 ], [ 2, 3 ], [ 2, 5 ], [ 2, 7 ], [ 2, 9 ], [ 3 .. 5 ], [ 3, 5, 7 ],

[ 3, 7, 8 ], [ 3, 8, 10 ], [ 3, 10, 11 ], [ 3, 11, 13 ], [ 4 .. 7 ],
[ 4, 6, 7, 9 ], [ 4, 6, 9, 11 ], [ 5 .. 9 ], [ 6 .. 11 ],
[ 6, 8, 9, 10, 11, 13 ], [ 6, 9, 10, 11, 13, 14 ],
[ 6, 9, 11, 13, 14, 16 ] ]

8.2.11 IsArfIrreducible

▷ IsArfIrreducible(s) (property)

s is an Arf numerical semigroup. Detects if s is Arf-irreducible, that is, irreducible in the Frobe-
nius variety of Arf numerical semigroups. The implementation is based on [Sü22].

Example
gap> s:=NumericalSemigroupBySmallElements([0,10,17,20]);;
gap> IsArfIrreducible(s);
true
gap> IsIrreducible(s);
false

8.2.12 DecomposeIntoArfIrreducibles

▷ DecomposeIntoArfIrreducibles(s) (operation)

s is an Arf numerical semigroup. The output is a set of Arf irreuducible numerical semigroups
whose intersection is s . This decomposition is not redundant in the sense that no semigroup can be
removes. The implementation is based on [Sü22].

Example
gap> s:=NumericalSemigroup(6,9,11,13,14,16);;
gap> List(DecomposeIntoArfIrreducibles(s),MinimalGenerators);
[ [ 2, 9 ], [ 3, 11, 13 ] ]



numericalsgps-- a package for numerical semigroups 84

8.3 Saturated numerical semigroups

A numerical semigroup S is saturated if the following condition holds: s,s1, . . . ,sr in S are such that
si ≤ s for all i in {1, . . . ,r} and z1, . . . ,zr in Z are such that z1s1 + · · ·+ zrsr ≥ 0, then s+ z1s1 + · · ·+
zrsr in S. Saturated numerical semigroups are a special kind of numerical semigroups with maximal
embedding dimension.

The intersection of two saturated numerical semigroups is again saturated, and thus we can con-
sider the saturated closure of a set of nonnegative integers with greatest common divisor equal to one
(see [RGS09]).

8.3.1 IsSaturated

▷ IsSaturated(S) (property)

▷ IsSaturatedNumericalSemigroup(S) (property)

S is a numerical semigroup. Returns true if S is a saturated numerical semigroup and false
otherwise.

This property implies IsArf (8.2.1).
Example

gap> IsSaturated(NumericalSemigroup(4,6,9,11));
true
gap> IsSaturatedNumericalSemigroup(NumericalSemigroup(8, 9, 12, 13, 15, 19 ));
false

8.3.2 SaturatedClosure (for numerical semigroups)

▷ SaturatedClosure(S) (operation)

▷ SaturatedNumericalSemigroupClosure(S) (function)

S is a numerical semigroup. Returns the saturated closure of S .
Example

gap> s := NumericalSemigroup(8, 9, 12, 13, 15);;
gap> SaturatedClosure(s);
<Numerical semigroup>
gap> MinimalGenerators(last);
[ 8 .. 15 ]
gap> SaturatedNumericalSemigroupClosure(s) = SaturatedClosure(s);
true

8.3.3 SaturatedNumericalSemigroupsWithFrobeniusNumber

▷ SaturatedNumericalSemigroupsWithFrobeniusNumber(f) (function)

f is an integer. The output is the set of all saturated numerical semigroups with Frobenius number
f .

Example
gap> SaturatedNumericalSemigroupsWithFrobeniusNumber(10);
[ <Numerical semigroup with 3 generators>,

<Numerical semigroup with 4 generators>,
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<Numerical semigroup with 6 generators>,
<Numerical semigroup with 6 generators>,
<Numerical semigroup with 7 generators>,
<Numerical semigroup with 8 generators>,
<Numerical semigroup with 9 generators>,
<Numerical semigroup with 11 generators> ]

gap> List(last,MinimalGenerators);
[ [ 3, 11, 13 ], [ 4, 11, 13, 14 ], [ 6, 9, 11, 13, 14, 16 ],

[ 6, 11, 13, 14, 15, 16 ], [ 7, 11, 12, 13, 15, 16, 17 ],
[ 8, 11, 12, 13, 14, 15, 17, 18 ], [ 9, 11, 12, 13, 14, 15, 16, 17, 19 ],
[ 11 .. 21 ] ]



Chapter 9

Nonunique invariants for factorizations
in numerical semigroups

Let S be a numerical semigroup minimally generated by {m1, . . . ,mn}. A factorization of an ele-
ment s ∈ S is an n-tuple a = (a1, . . . ,an) of nonnegative integers such that n = a1n1 + · · ·+ anmn.
The length of a is |a| = a1 + · · ·+ an. Given two factorizations a and b of n, the distance be-
tween a and b is d(a,b) =max{|a−gcd(a,b)|, |b−gcd(a,b)|}, where gcd((a1, . . . ,an),(b1, . . . ,bn)) =
(min(a1,b1), . . . ,min(an,bn)). In the literature, factorizations are sometimes called representations or
expressions of the element in terms of the generators.

If l1 > · · · > lk are the lengths of all the factorizations of s ∈ S, the delta set associated to s is
∆(s) = {l1 − l2, . . . , lk − lk−1}.

The catenary degree of an element in S is the least positive integer c such that for any two of its
factorizations a and b, there exists a chain of factorizations starting in a and ending in b and so that
the distance between two consecutive links is at most c. The catenary degree of S is the supremum of
the catenary degrees of the elements in S.

The tame degree of S is the least positive integer t such that for any factorization a of an element
s in S, and any i such that s−mi ∈ S, there exists another factorization b of s so that the distance to a
is at most t and bi ̸= 0.

The ω-primality of an element s in S is the least positive integer k such that if (∑i∈I si)−s ∈ S,si ∈
S, then there exists Ω ⊆ I with cardinality k such that (∑i∈Ω si)− s ∈ S. The ω-primality of S is the
maximum of the ω-primality of its minimal generators.

The basic properties of these constants can be found in [GHK06]. The algorithm used to compute
the catenary and tame degree is an adaptation of the algorithms appearing in [CGSL+06] for numerical
semigroups (see [CGSD07]). The computation of the elasticity of a numerical semigroup reduces to
m/n with m the multiplicity of the semigroup and n its largest minimal generator (see [CHM06] or
[GHK06]).

9.1 Factorizations in Numerical Semigroups

Denumerants, sets of factorizations, R-classes, and L-shapes are described in this section.

86
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9.1.1 FactorizationsIntegerWRTList

▷ FactorizationsIntegerWRTList(n, ls) (function)

ls is a list of integers and n an integer. The output is the set of factorizations of n in terms of the
elements in the list ls . This function uses RestrictedPartitions (Reference: RestrictedParti-
tions).

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);
[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ],

[ 5, 2, 0, 1 ], [ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]

9.1.2 Factorizations (for an element in a numerical semigroup)

▷ Factorizations(n, S) (operation)

▷ Factorizations(S, n) (operation)

▷ FactorizationsElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n an element of S . The output is the set of factorizations of n in
terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);;
gap> Factorizations(1100,s);
[ [ 0, 8, 1, 0, 0, 0 ], [ 0, 0, 0, 2, 2, 0 ], [ 5, 1, 1, 0, 0, 1 ],

[ 0, 2, 3, 0, 0, 1 ] ]
gap> Factorizations(s,1100)=Factorizations(1100,s);
true
gap> FactorizationsElementWRTNumericalSemigroup(1100,s)=Factorizations(1100,s);
true

9.1.3 FactorizationsElementListWRTNumericalSemigroup

▷ FactorizationsElementListWRTNumericalSemigroup(l, S) (function)

S is a numerical semigroup and l a list of elements of S .
Computes the factorizations of all the elements in l .

Example
gap> s:=NumericalSemigroup(10,11,13);
<Numerical semigroup with 3 generators>
gap> FactorizationsElementListWRTNumericalSemigroup([100,101,103],s);
[ [ [ 0, 2, 6 ], [ 1, 7, 1 ], [ 3, 4, 2 ], [ 5, 1, 3 ], [ 10, 0, 0 ] ],

[ [ 0, 8, 1 ], [ 1, 0, 7 ], [ 2, 5, 2 ], [ 4, 2, 3 ], [ 9, 1, 0 ] ],
[ [ 0, 7, 2 ], [ 2, 4, 3 ], [ 4, 1, 4 ], [ 7, 3, 0 ], [ 9, 0, 1 ] ] ]

9.1.4 RClassesOfSetOfFactorizations

▷ RClassesOfSetOfFactorizations(ls) (function)
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ls is a set of factorizations (a list of lists of nonnegative integers with the same length). The output
is the set of R-classes of this set of factorizations as defined in Chapter 7 of [RGS09].

Example
gap> s:=NumericalSemigroup(10,11,19,23);;
gap> BettiElements(s);
[ 30, 33, 42, 57, 69 ]
gap> Factorizations(69,s);
[ [ 5, 0, 1, 0 ], [ 2, 1, 2, 0 ], [ 0, 0, 0, 3 ] ]
gap> RClassesOfSetOfFactorizations(last);
[ [ [ 2, 1, 2, 0 ], [ 5, 0, 1, 0 ] ], [ [ 0, 0, 0, 3 ] ] ]

9.1.5 LShapes

▷ LShapes(S) (operation)

▷ LShapesOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the number of LShapes associated to S . These are ways
of arranging the set of factorizations of the elements in the Apéry set of the largest generator, so that
if one factorization x is chosen for w and w−w′ ∈ S, then only the factorization of x′ of w′ with x′ ≤ x
can be in the LShape (and if there is no such a factorization, then we have no LShape with x in it), see
[AGGS10].

Example
gap> s:=NumericalSemigroup(4,6,9);;
gap> LShapes(s);
[ [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 2, 0 ], [ 1, 1 ], [ 0, 2 ], [ 2, 1 ],

[ 1, 2 ], [ 2, 2 ] ],
[ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 2, 0 ], [ 1, 1 ], [ 3, 0 ], [ 2, 1 ],

[ 4, 0 ], [ 5, 0 ] ] ]
gap> LShapesOfNumericalSemigroup(s) = LShapes(s);
true

9.1.6 RFMatrices

▷ RFMatrices(f, S) (function)

S is a numerical semigroup, and f is a pseudo-Frobenius number of S .
The output is the list of RF-matrices associated to f . The ith row of each matrix contains the

coefficients of a combination of f in terms of the minimal generators of the semigroup, obtained by
substraction the ith generator to the factorizations of f plus the ith generator of S , see [Mos16].

Example
gap> s:=NumericalSemigroup(6, 7, 9, 10);;
gap> RFMatrices(8,s);
[ [ [ -1, 2, 0, 0 ], [ 1, -1, 1, 0 ], [ 0, 1, -1, 1 ], [ 3, 0, 0, -1 ] ],

[ [ -1, 2, 0, 0 ], [ 1, -1, 1, 0 ], [ 0, 1, -1, 1 ], [ 0, 0, 2, -1 ] ] ]

9.1.7 DenumerantOfElementInNumericalSemigroup

▷ DenumerantOfElementInNumericalSemigroup(n, S) (function)
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S is a numerical semigroup and n a positive integer. The output is the number of factorizations of
n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,195,272,278,286);;
gap> DenumerantOfElementInNumericalSemigroup(1311,s);
6

9.1.8 DenumerantFunction

▷ DenumerantFunction(S) (operation)

S is a numerical semigroup. The output is a function that for a given n computes the number of
factorizations of n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,195,272,278,286);;
gap> DenumerantFunction(s)(1311);
6

9.1.9 DenumerantIdeal (denumerant ideal of a given number of factorizations in a
numerical semigroup)

▷ DenumerantIdeal(n, S) (operation)

▷ DenumerantIdeal(S, n) (operation)

S is a numerical semigroup and n a nonnegative integer. The output is the ideal of elements in S
with more than n factorizations. If we add zero to this set, we obtain what is is called in [Kom24] an
n-semigroup.

Example
gap> s:=NumericalSemigroup(101,113,195,272,278,286);;
gap> 1311 in DenumerantIdeal(6,s);
false
gap> 1311 in DenumerantIdeal(5,s);
true

9.2 Invariants based on lengths

This section is devoted to nonunique factorization invariants based on lengths of factorizations. There
are some families of numerical semigroups related to maximal denumerantes; membership tests for
these families are provede here.

9.2.1 LengthsOfFactorizationsIntegerWRTList

▷ LengthsOfFactorizationsIntegerWRTList(n, ls) (function)

ls is a list of integers and n an integer. The output is the set of lengths of the factorizations of n
in terms of the elements in ls . Example

gap> LengthsOfFactorizationsIntegerWRTList(100,[11,13,15,19]);
[ 6, 8 ]



numericalsgps-- a package for numerical semigroups 90

9.2.2 LengthsOfFactorizationsElementWRTNumericalSemigroup

▷ LengthsOfFactorizationsElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n an element of S . The output is the set of lengths of the factor-
izations of n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> LengthsOfFactorizationsElementWRTNumericalSemigroup(1100,s);
[ 4, 6, 8, 9 ]

9.2.3 Elasticity (for the factorizations of an element in a numerical semigroup)

▷ Elasticity(n, S) (operation)

▷ Elasticity(S, n) (operation)

▷ ElasticityOfFactorizationsElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n an element of S . The output is the maximum length divided by
the minimum length of the factorizations of n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);;
gap> e := Elasticity(1100,s);
9/4
gap> Elasticity(1100,s) = Elasticity(s,1100);
true
gap> ElasticityOfFactorizationsElementWRTNumericalSemigroup(1100,s)= e;
true

9.2.4 Elasticity (for numerical semigroups)

▷ Elasticity(S) (operation)

▷ ElasticityOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the elasticity of S .
Example

gap> s:=NumericalSemigroup(101,113,196,272,278,286);;
gap> Elasticity(s);
286/101
gap> ElasticityOfNumericalSemigroup(s);
286/101

9.2.5 DeltaSet (for a set of integers)

▷ DeltaSet(ls) (operation)

▷ DeltaSetOfSetOfIntegers(ls) (function)

ls is list of integers. The output is the Delta set of the elements in ls , that is, the set of differences
of consecutive elements in the list.
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Example
gap> LengthsOfFactorizationsIntegerWRTList(100,[11,13,15,19]);
[ 6, 8 ]
gap> DeltaSet(last);
[ 2 ]
gap> DeltaSetOfSetOfIntegers(last2);
[ 2 ]

9.2.6 DeltaSet (for the factorizations of an element in a numerical semigroup)

▷ DeltaSet(n, S) (operation)

▷ DeltaSet(S, n) (operation)

▷ DeltaSetOfFactorizationsElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n an element of S . The output is the Delta set of the factorizations
of n in terms of the minimal generating set of S .

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);;
gap> d := DeltaSet(1100,s);
[ 1, 2 ]
gap> DeltaSet(s,1100) = d;
true
gap> DeltaSetOfFactorizationsElementWRTNumericalSemigroup(1100,s) = d;
true

9.2.7 DeltaSetPeriodicityBoundForNumericalSemigroup

▷ DeltaSetPeriodicityBoundForNumericalSemigroup(S) (function)

S is a numerical semigroup. Computes the bound were the periodicity starts for Delta sets of the
elements in S ; see [GGMFVT15].

Example
gap> s:=NumericalSemigroup(5,7,11);;
gap> DeltaSetPeriodicityBoundForNumericalSemigroup(s);
60

9.2.8 DeltaSetPeriodicityStartForNumericalSemigroup

▷ DeltaSetPeriodicityStartForNumericalSemigroup(S) (function)

S is a numerical semigroup.
Computes the element were the periodicity starts for Delta sets of the elements in S .

Example
gap> s:=NumericalSemigroup(5,7,11);;
gap> DeltaSetPeriodicityStartForNumericalSemigroup(s);
21
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9.2.9 DeltaSetListUpToElementWRTNumericalSemigroup

▷ DeltaSetListUpToElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup, n an integer.
Computes the Delta sets of the integers up to (and including) n , if an integer is not in S , the

corresponding Delta set is empty.
Example

gap> s:=NumericalSemigroup(5,7,11);;
gap> DeltaSetListUpToElementWRTNumericalSemigroup(31,s);
[ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],

[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ 2 ], [ ], [ ], [ 2 ], [ ],
[ 2 ], [ ], [ 2 ], [ 2 ], [ ] ]

9.2.10 DeltaSetUnionUpToElementWRTNumericalSemigroup

▷ DeltaSetUnionUpToElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup, n a nonnegative integer.
Computes the union of the delta sets of the elements of S up to and including n , using a ring buffer

to conserve memory.
Example

gap> s:=NumericalSemigroup(5,7,11);;
gap> DeltaSetUnionUpToElementWRTNumericalSemigroup(60,s);
[ 2 ]

9.2.11 DeltaSet (for a numerical semigroup)

▷ DeltaSet(S) (operation)

▷ DeltaSetOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
Computes the Delta set of S .

Example
gap> s:=NumericalSemigroup(5,7,11);;
gap> DeltaSet(s);
[ 2 ]
gap> DeltaSetOfNumericalSemigroup(s);
[ 2 ]

9.2.12 MaximumDegree

▷ MaximumDegree(S, n) (operation)

▷ MaximumDegreeOfElementWRTNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a nonnegative integer. The output is the maximum length of the
factorizations of n in terms of the minimal generating set of S .
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Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> MaximumDegree(1100,s);
9
gap> MaximumDegreeOfElementWRTNumericalSemigroup(1100,s);
9

9.2.13 IsAdditiveNumericalSemigroup

▷ IsAdditiveNumericalSemigroup(S) (function)

S is a numerical semigroup. Detects if S is additive, that is, ord(m + x) =
ord(x) + 1 for all x in S , where m is the multiplicity of S (ord corresponds to
MaximumDegreeOfElementWRTNumericalSemigroup (9.2.12); see Section 9.8 for an alternate defi-
nition). For these semigroups grm(K[[S]]) is Cohen-Macaulay (see [BH13]).

Example
gap> l:=IrreducibleNumericalSemigroupsWithFrobeniusNumber(31);;
gap> Length(l);
109
gap> Length(Filtered(l,IsAdditiveNumericalSemigroup));
20

9.2.14 MaximalDenumerant (for element in numerical semigroup)

▷ MaximalDenumerant(n, S) (operation)

▷ MaximalDenumerant(S, n) (operation)

▷ MaximalDenumerantOfElementInNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n an element of S . The output is the number of factorizations of
n in terms of the minimal generating set of S with maximal length.

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);;
gap> MaximalDenumerant(1100,s);
1
gap> MaximalDenumerant(s,1311);
2
gap> MaximalDenumerantOfElementInNumericalSemigroup(1311,s);
2

9.2.15 MaximalDenumerantOfSetOfFactorizations

▷ MaximalDenumerantOfSetOfFactorizations(ls) (function)

ls is list of factorizations (a list of lists of nonnegative integers with the same length). The output
is number of elements in ls with maximal length.

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);
[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ], [ 5, 2, 0, 1 ],
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[ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]
gap> MaximalDenumerantOfSetOfFactorizations(last);
6

9.2.16 MaximalDenumerant

▷ MaximalDenumerant(S) (operation)

▷ MaximalDenumerantOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the maximal denumerant of S , that is, the maximum of
the maximal denumerants of the elements in S (see [BH13]).

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);;
gap> MaximalDenumerant(s);
4
gap> MaximalDenumerantOfNumericalSemigroup(s);
4

9.2.17 Adjustment

▷ Adjustment(S) (operation)

▷ AdjustmentOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the adjustment of S as defined in [BH13].
Example

gap> s:=NumericalSemigroup(101,113,196,272,278,286);;
gap> a := Adjustment(s);
[ 0, 12, 24, 36, 48, 60, 72, 84, 95, 96, 107, 108, 119, 120, 131, 132, 143,

144, 155, 156, 167, 168, 171, 177, 179, 180, 183, 185, 189, 190, 191, 192,
195, 197, 201, 203, 204, 207, 209, 213, 215, 216, 219, 221, 225, 227, 228,
231, 233, 237, 239, 240, 243, 245, 249, 251, 252, 255, 257, 261, 263, 264,
266, 267, 269, 273, 275, 276, 279, 280, 281, 285, 287, 288, 292, 293, 299,
300, 304, 305, 311, 312, 316, 317, 323, 324, 328, 329, 335, 336, 340, 341,
342, 347, 348, 352, 353, 354, 356, 359, 360, 361, 362, 364, 365, 366, 368,
370, 371, 372, 374, 376, 377, 378, 380, 382, 383, 384, 388, 389, 390, 394,
395, 396, 400, 401, 402, 406, 407, 408, 412, 413, 414, 418, 419, 420, 424,
425, 426, 430, 431, 432, 436, 437, 438, 442, 444, 448, 450, 451, 454, 456,
460, 465, 466, 472, 477, 478, 484, 489, 490, 496, 501, 502, 508, 513, 514,
519, 520, 525, 526, 527, 531, 532, 533, 537, 539, 543, 545, 549, 551, 555,
561, 567, 573, 579, 585, 591, 597, 603, 609, 615, 621, 622, 627, 698, 704,
710, 716, 722 ]

gap> AdjustmentOfNumericalSemigroup(s) = a;
true

9.3 Invariants based on distances

This section is devoted to invariants that rely on the concept of distance between two factorizations.
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9.3.1 CatenaryDegree (for sets of factorizations)

▷ CatenaryDegree(ls) (operation)

▷ CatenaryDegreeOfSetOfFactorizations(ls) (function)

ls is a set of factorizations (a list of lists of nonnegative integers with the same length). The output
is the catenary degree of this set of factorizations.

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);
[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ],

[ 5, 2, 0, 1 ], [ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]
gap> CatenaryDegree(last);
5
gap> CatenaryDegreeOfSetOfFactorizations(last2);
5

9.3.2 AdjacentCatenaryDegreeOfSetOfFactorizations

▷ AdjacentCatenaryDegreeOfSetOfFactorizations(ls) (function)

ls is a set of factorizations. The output is the adjacent catenary degree of this set of factorizations,
that is, the supremum of the distance between to sets of factorizations with adjacent lengths. More
precisely, if l1, . . . , lt are the lengths of the factorizations of the elements in ls , and Zli is the set of
factorizations in ls with length li, then the adjacent catenary degree is the maximum of the distances
d(Zli ,Zli+1).

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);
[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ], [ 5, 2, 0, 1 ],

[ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]
gap> AdjacentCatenaryDegreeOfSetOfFactorizations(last);
5

9.3.3 EqualCatenaryDegreeOfSetOfFactorizations

▷ EqualCatenaryDegreeOfSetOfFactorizations(ls) (function)

ls is a set of factorizations. The same as CatenaryDegreeOfSetOfFactorizations, but now the
factorizations joined by the chain must have the same length, and the elements in the chain also.
Equivalently, if l1, . . . , lt are the lengths of the factorizations of the elements in ls , and Zli is the set of
factorizations in ls with length li, then the equal catenary degree is the maximum of the CatenaryDe-
greeOfSetOfFactorizations of d(Zli ,Zli+1).

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);
[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ], [ 5, 2, 0, 1 ],

[ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]
gap> EqualCatenaryDegreeOfSetOfFactorizations(last);
2
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9.3.4 MonotoneCatenaryDegreeOfSetOfFactorizations

▷ MonotoneCatenaryDegreeOfSetOfFactorizations(ls) (function)

ls is a set of factorizations. The same as CatenaryDegreeOfSetOfFactorizations, but now the
factorizations are joined by a chain with nondecreasing lengths. Equivalently, it is the maximum of the
AdjacentCatenaryDegreeOfSetOfFactorizations and the EqualCatenaryDegreeOfSetOfFactorizations.

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);
[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ], [ 5, 2, 0, 1 ],

[ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]
gap> MonotoneCatenaryDegreeOfSetOfFactorizations(last);
5

9.3.5 CatenaryDegree (for element in a numerical semigroup)

▷ CatenaryDegree(n, S) (operation)

▷ CatenaryDegree(S, n) (operation)

▷ CatenaryDegreeOfElementInNumericalSemigroup(n, S) (function)

n is a nonnegative integer and S is a numerical semigroup. The output is the catenary degree of n
relative to S .

Example
gap> CatenaryDegree(157,NumericalSemigroup(13,18));
0
gap> CatenaryDegree(NumericalSemigroup(13,18),1157);
18
gap> CatenaryDegreeOfElementInNumericalSemigroup(1157,NumericalSemigroup(13,18));
18

9.3.6 TameDegree (for sets of factorizations)

▷ TameDegree(ls) (operation)

▷ TameDegreeOfSetOfFactorizations(ls) (function)

ls is a set of factorizations (a list of lists of nonnegative integers with the same length). The output
is the tame degree of this set of factorizations.

Example
gap> FactorizationsIntegerWRTList(100,[11,13,15,19]);
[ [ 2, 6, 0, 0 ], [ 3, 4, 1, 0 ], [ 4, 2, 2, 0 ], [ 5, 0, 3, 0 ],

[ 5, 2, 0, 1 ], [ 6, 0, 1, 1 ], [ 0, 1, 2, 3 ], [ 1, 1, 0, 4 ] ]
gap> TameDegree(last);
4
gap> TameDegreeOfSetOfFactorizations(last2);
4

9.3.7 CatenaryDegree (for numerical semigroups)

▷ CatenaryDegree(S) (operation)

▷ CatenaryDegreeOfNumericalSemigroup(S) (function)
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S is a numerical semigroup. The output is the catenary degree of S .
Example

gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> CatenaryDegree(s);
8
gap> CatenaryDegreeOfNumericalSemigroup(s);
8

9.3.8 DegreesOffEqualPrimitiveElementsOfNumericalSemigroup

▷ DegreesOffEqualPrimitiveElementsOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
The output is the set of elements s in S such that there exists a minimal solution to msg ·x−msg ·y=

0, such that x,y are factorizations with the same length of s, and msg is the minimal generating system
of S . These elements are used to compute the equal catenary degree of S .

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> DegreesOfEqualPrimitiveElementsOfNumericalSemigroup(s);
[ 3, 5, 7, 10 ]

9.3.9 EqualCatenaryDegreeOfNumericalSemigroup

▷ EqualCatenaryDegreeOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the equal catenary degree of S .
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> EqualCatenaryDegreeOfNumericalSemigroup(s);
2

9.3.10 DegreesOfMonotonePrimitiveElementsOfNumericalSemigroup

▷ DegreesOfMonotonePrimitiveElementsOfNumericalSemigroup(S) (function)

S is a numerical semigroup.
The output is the set of elements s in S such that there exists a minimal solution to msg ·x−msg ·y=

0, such that x,y are factorizations of s, with |x| ≤ |y|; msg stands the minimal generating system of S .
These elements are used to compute the monotone catenary degree of S .

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> DegreesOfMonotonePrimitiveElementsOfNumericalSemigroup(s);
[ 3, 5, 7, 10, 12, 14, 15, 21, 28, 35 ]
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9.3.11 MonotoneCatenaryDegreeOfNumericalSemigroup

▷ MonotoneCatenaryDegreeOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the monotone catenary degree of S .
Example

gap> s:=NumericalSemigroup(10,23,31,44);;
gap> CatenaryDegreeOfNumericalSemigroup(s);
9
gap> MonotoneCatenaryDegreeOfNumericalSemigroup(s);
21

9.3.12 TameDegree (for numerical semigroups)

▷ TameDegree(S) (operation)

▷ TameDegreeOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the tame degree of S .
Example

gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> TameDegree(s);
14
gap> TameDegreeOfNumericalSemigroup(s);
14

9.3.13 TameDegree (for element in numerical semigroups)

▷ TameDegree(n, S) (operation)

▷ TameDegree(S, n) (operation)

▷ TameDegreeOfElementInNumericalSemigroup(n, S) (function)

n is an element of the numerical semigroup S . The output is the tame degree of n in S .
Example

gap> s:=NumericalSemigroup(10,11,13);;
gap> TameDegree(100,s);
5
gap> TameDegree(s,100);
5
gap> TameDegreeOfElementInNumericalSemigroup(100,s);
5

9.4 Primality

There are no primes among the irreducible elements (minimal generators) of a numerical semigroup.
However, there is a way to measure how far an element is frome being prime: the ω-primality.
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9.4.1 OmegaPrimality (for an element in a numerical semigroup)

▷ OmegaPrimality(n, S) (operation)

▷ OmegaPrimality(S, n) (operation)

▷ OmegaPrimalityOfElementInNumericalSemigroup(n, S) (function)

n is an element of the numerical semigroup S . The output is the ω-primality of n in S as explained
in [BGSG11]. The current implementation is due to Chris O’Neill based on a work in progress with
Pelayo and Thomas.

Example
gap> s:=NumericalSemigroup(10,11,13);;
gap> OmegaPrimality(100,s);
13
gap> OmegaPrimality(s,100);
13
gap> OmegaPrimalityOfElementInNumericalSemigroup(100,s);
13

9.4.2 OmegaPrimalityOfElementListInNumericalSemigroup

▷ OmegaPrimalityOfElementListInNumericalSemigroup(l, S) (function)

S is a numerical semigroup and l a list of elements of S .
Computes the omega-values of all the elements in l .

Example
gap> s:=NumericalSemigroup(10,11,13);;
gap> l:=FirstElementsOfNumericalSemigroup(100,s);;
gap> List(l,x->OmegaPrimalityOfElementInNumericalSemigroup(x,s)); time;
[ 0, 4, 5, 5, 4, 6, 7, 6, 6, 6, 6, 7, 8, 7, 7, 7, 7, 7, 8, 7, 8, 9, 8, 8, 8,

8, 8, 8, 8, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 10, 10, 10, 10, 10,
10, 10, 10, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 12, 12, 12, 12,
12, 12, 12, 12, 13, 14, 13, 13, 13, 13, 13, 13, 13, 13, 14, 15, 14, 14, 14,
14, 14, 14, 14, 14, 15, 16, 15, 15, 15, 15, 15, 15, 15, 15 ]

218
gap> OmegaPrimalityOfElementListInNumericalSemigroup(l,s);time;
[ 0, 4, 5, 5, 4, 6, 7, 6, 6, 6, 6, 7, 8, 7, 7, 7, 7, 7, 8, 7, 8, 9, 8, 8, 8,

8, 8, 8, 8, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 10, 10, 10, 10, 10,
10, 10, 10, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 12, 12, 12, 12,
12, 12, 12, 12, 13, 14, 13, 13, 13, 13, 13, 13, 13, 13, 14, 15, 14, 14, 14,
14, 14, 14, 14, 14, 15, 16, 15, 15, 15, 15, 15, 15, 15, 15 ]

10

9.4.3 OmegaPrimality (for a numerical semigroup)

▷ OmegaPrimality(S) (operation)

▷ OmegaPrimalityOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the maximum of the ω-primalities of the minimal
generators of S .
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Example
gap> s:=NumericalSemigroup(10,11,13);
<Numerical semigroup with 3 generators>
gap> OmegaPrimality(s);
5
gap> OmegaPrimalityOfNumericalSemigroup(s);
5

9.5 Homogenization of Numerical Semigroups

Let S be a numerical semigroup minimally generated by {m1, . . . ,mn}. The homogenization of S, Shom

is the semigroup generated by {(1,0),(1,m1), . . . ,(1,mn)}. The catenary degree of Shom coincides
with the homogeneous catenary degree of S, and it is between the catenary and the monotone catenary
degree of S. The advantage of this catenary degree is that is less costly to compute than the monotone
catenary degree, and has some nice interpretations ([GSOSRN13]). This section contains the auxiliary
functions needed to compute the homogeneous catenary degree.

9.5.1 BelongsToHomogenizationOfNumericalSemigroup

▷ BelongsToHomogenizationOfNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a list with two entries (a pair). The output is true if the n belongs
to the homogenization of S .

Example
gap> s:=NumericalSemigroup(10,11,13);;
gap> BelongsToHomogenizationOfNumericalSemigroup([10,23],s);
true
gap> BelongsToHomogenizationOfNumericalSemigroup([1,23],s);
false

9.5.2 FactorizationsInHomogenizationOfNumericalSemigroup

▷ FactorizationsInHomogenizationOfNumericalSemigroup(n, S) (function)

S is a numerical semigroup and n a list with two entries (a pair). The output is the set of factor-
izations n in terms of the minimal generating system of the homogenization of S .

Example
gap> s:=NumericalSemigroup(10,11,13);;
gap> FactorizationsInHomogenizationOfNumericalSemigroup([20,230],s);
[ [ 0, 0, 15, 5 ], [ 0, 2, 12, 6 ], [ 0, 4, 9, 7 ],

[ 0, 6, 6, 8 ], [ 0, 8, 3, 9 ], [ 0, 10, 0, 10 ],
[ 1, 1, 7, 11 ], [ 1, 3, 4, 12 ], [ 1, 5, 1, 13 ],
[ 2, 0, 2, 16 ] ]

gap> FactorizationsElementWRTNumericalSemigroup(230,s);
[ [ 23, 0, 0 ], [ 12, 10, 0 ], [ 1, 20, 0 ], [ 14, 7, 1 ],

[ 3, 17, 1 ], [ 16, 4, 2 ], [ 5, 14, 2 ], [ 18, 1, 3 ],
[ 7, 11, 3 ], [ 9, 8, 4 ], [ 11, 5, 5 ], [ 0, 15, 5 ],
[ 13, 2, 6 ], [ 2, 12, 6 ], [ 4, 9, 7 ], [ 6, 6, 8 ],
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[ 8, 3, 9 ], [ 10, 0, 10 ], [ 1, 7, 11 ], [ 3, 4, 12 ],
[ 5, 1, 13 ], [ 0, 2, 16 ] ]

9.5.3 HomogeneousBettiElementsOfNumericalSemigroup

▷ HomogeneousBettiElementsOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the set of Betti elements of the homogenization of S .
Example

gap> s:=NumericalSemigroup(10,17,19);;
gap> BettiElements(s);
[ 57, 68, 70 ]
gap> HomogeneousBettiElementsOfNumericalSemigroup(s);
[ [ 5, 57 ], [ 5, 68 ], [ 6, 95 ], [ 7, 70 ], [ 9, 153 ] ]

9.5.4 HomogeneousCatenaryDegreeOfNumericalSemigroup

▷ HomogeneousCatenaryDegreeOfNumericalSemigroup(S) (function)

S is a numerical semigroup. The output is the homogeneous catenary degree
of S . Observe that for a single element in the homogenization of S , its cate-
nary degree can be computed with CatenaryDegreeOfSetOfFactorizations and
FactorizationsInHomogenizationOfNumericalSemigroup.

Example
gap> s:=NumericalSemigroup(10,17,19);;
gap> CatenaryDegree(s);
7
gap> HomogeneousCatenaryDegreeOfNumericalSemigroup(s);
9

9.6 Divisors, posets

Given a numerical semigroup S and two integers a,b, we write a ≤S b if b−a ∈ S. We also say that a
divides b (with respect to S). The semigroup S with this binary relation is a poset.

The set of divisors of n in S will be denoted by DS(n). If we are given n1, . . . ,nr ∈ S, the set of the
divisors of these elements is D(n1, . . . ,nr) =

⋃r
i=1 D(ni).

For a numerical semigroup S, we can define the sequence {νi}i≥1, with νi the number of divisors of
the ith element in S. It can be shown that the first 2g− c elements of the sequence uniquely determine
the semigroup (with c the conductor of S and g its genus), see [BA13].

There is another sequence associated to divisors that also determines the semigroup. Let S= {λ0 =
0 < λ1 . . .} be a numerical semigroup. We can define the following binary operation on N: i⊕S i = k,
where k is such that λi+λ j = λk. Set τi = max{ j ∈N : exists k ∈ { j, . . . , i} with j⊕S k = i}. The first
2c−g+1 determine uniquely S (see [BA13]).

Translated to code, the definition of τi could be as follows.
Example

TauNS := function(i,S)
local d, D, si;
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D:=DivisorsOfElementInNumericalSemigroup(S[i+1],S);
si:=S[i+1];
d:=Maximum(Intersection(D,[0..Int(si/2)]));
return NumberElement_NumericalSemigroup(S,d)-1;

end;

9.6.1 MoebiusFunctionAssociatedToNumericalSemigroup

▷ MoebiusFunctionAssociatedToNumericalSemigroup(S, n) (function)

S is a numerical semigroup and n is an integer. As (S,≤S) is a poset, we can define the Möbius
function associated to it as in [CRA13]. The output is the value of the Möbius function in the integer
n , that is, the alternate sum of the number of chains from 0 to n .

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> MoebiusFunctionAssociatedToNumericalSemigroup(s,10);
2
gap> MoebiusFunctionAssociatedToNumericalSemigroup(s,34);
25

9.6.2 MoebiusFunction

▷ MoebiusFunction(S) (operation)

S is a numerical semigroup. As (S,≤S) is a poset, we can define the Möbius function associated
to it as in [CRA13]. The output is the Möbius function associated to S .

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> List([1..10],MoebiusFunction(s));
[ 0, 0, -1, 0, -1, 0, -1, 1, 0, 2 ]

9.6.3 DivisorsOfElementInNumericalSemigroup

▷ DivisorsOfElementInNumericalSemigroup(S, n) (operation)

S is a numerical semigroup and n is an integer. The arguments can also be given as n, S . The
output is the set of divisors of n in S .

Example
gap> s:=NumericalSemigroup(5,7,11);;
gap> DivisorsOfElementInNumericalSemigroup(s,20);
[ 0, 5, 10, 15, 20 ]
gap> DivisorsOfElementInNumericalSemigroup(20,s);
[ 0, 5, 10, 15, 20 ]

9.6.4 NumericalSemigroupByNuSequence

▷ NumericalSemigroupByNuSequence(nuseq) (function)
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nuseq is a list of integers that represents a ν-sequence, that is, the ith element in the sequence is
the number of divisors of the ith element in a certain numerical semigroup. Though the sequence is
finite, it is understood that from the last element every entry increases exactly by one.

The output is the only numerical semigroup whose ν-sequence is nusec ∪{k,k+ 1, . . .} (with k
the last element of nusec ).

The implementation is inspired in Theorem 1.54 in [BA13].
Example

gap> NuSequence:=S->List([1..2*Conductor(S)-Genus(S)],
i->Length(DivisorsOfElementInNumericalSemigroup(S[i],S)));;
gap> s:=NumericalSemigroup(5,7,11);;
gap> NuSequence(s);
[ 1, 2, 2, 3, 2, 4, 3, 4, 4, 6, 4, 6, 5, 8, 9, 8, 9, 10, 12, 12 ]
gap> s=NumericalSemigroupByNuSequence(last);
true

9.6.5 NumericalSemigroupByTauSequence

▷ NumericalSemigroupByTauSequence(tauseq) (function)

tauseq is a list of integers that represents a τ-sequence. Though the sequence is finite, it is
understood that τk+2i = τk+2i+1, with k the length of the list, and this amount increases by one as i
increases.

The output is the only numerical semigroup whose τ-sequence is tausec ∪{l+1, l+1, l+2, l+
2, . . .} (with l the last element of tausec ).

The implementation is inspired in Theorem 1.60 in [BA13].
Example

gap> tau:=[ 0, 0, 0, 0, 1, 1, 2, 2, 3, 0, 1, 2, 3, 3, 3, 3, 4, 4 ];
[ 0, 0, 0, 0, 1, 1, 2, 2, 3, 0, 1, 2, 3, 3, 3, 3, 4, 4 ]
gap> MinimalGenerators(NumericalSemigroupByTauSequence(tau));
[ 6, 7, 8, 17 ]

9.7 Feng-Rao distances and numbers

Let S be a numerical semigroup and let n ∈ S. The Feng-Rao distance of n is then defined as δS(n) =
min{#D(x) | n ≤ x, x ∈ S}.

The rth generalized distance is δ r
S(n) = {#D(n1, . . . ,nr) | n ≤ n1 < · · ·< nr, ni ∈ S}.

9.7.1 FengRaoDistance

▷ FengRaoDistance(S, r, m) (function)

S is a numerical semigroup, r and m integers. The output is the r-th Feng-Rao distance of the
element m in the numerical semigroup S .

Example
gap> S := NumericalSemigroup(7,9,17);;
gap> FengRaoDistance(S,6,100);
86
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9.7.2 FengRaoNumber

▷ FengRaoNumber(S, r) (operation)

S is a numerical semigroup and r is an integer. The output is the r-th Feng-Rao number of the
numerical semigroup S .

Example
gap> S := NumericalSemigroup(7,8,17);;
gap> FengRaoNumber(S,209);
224
gap> FengRaoNumber(209,S);
224

9.8 Numerical semigroups with Apéry sets having special factorization
properties

Let S be a numerical semigroup with maximal ideal M, and let x ∈ S. The order of x, denoted ord(x)
is the largest positive integer k such that x ∈ kM \ (k + 1)M. Notice that the order of an element
corresponds with MaximumDegreeOfElementWRTNumericalSemigroup (9.2.12).

Recall that for x,y ∈ Z, we write x ≤S y if y−x ∈ S. Define the relation ⪯S on S as x ⪯S y if x ≤S y
and ord(y) = ord(x)+ord(y− x).

A numerical semigroup S with multiplicity m is said to be pure if the maximal elements of Ap(S,m)
with respect to ≤S have all the same order. The semigroup S is M-pure if the maximal elements of
Ap(S,m) with respect to ⪯S have all the same order, [Bry10].

The numerical semigroup S is said to be homogeneous if for every element in Ap(S,m), its set of
lengths is a singleton (that is, all its a factorizations have the same length), [JZA18].

A numerical semigroup S is supersymmetric if it is symmetric, additive, and whenever w+w′ =
f + m for some w,w′ ∈ Ap(S,m) (with m the multiplicity and f the Frobenius number), we have
ord(w+w′) = ord(w)+ord(w′), see [BH13]).

9.8.1 IsPure

▷ IsPure(S) (property)

▷ IsPureNumericalSemigroup(S) (property)

S is a numerical semigroup.
Test for the purity of the numerical semigroup S S . This test is based on [Bry10].

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> IsPure(s);
false
gap> s:=NumericalSemigroup(4,6,11);;
gap> IsPureNumericalSemigroup(s);
true
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9.8.2 IsMpure

▷ IsMpure(S) (property)

▷ IsMpureNumericalSemigroup(S) (property)

S is a numerical semigroup.
Test for the M-Purity of the numerical semigroup S S . This test is based on [Bry10].
This filter implies IsPureNumericalSemigroup (9.8.1).

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
gap> IsMpure(s);
false
gap> s:=NumericalSemigroup(4,6,11);;
gap> IsMpureNumericalSemigroup(s);
true

9.8.3 IsHomogeneousNumericalSemigroup

▷ IsHomogeneousNumericalSemigroup(S) (property)

S is a numerical semigroup.
Detects if S is homogeneous.

Example
gap> s:=NumericalSemigroup(10,11,12,25);;
gap> IsHomogeneousNumericalSemigroup(s);
false
gap> s:=NumericalSemigroup(3,5,7);;
gap> IsHomogeneousNumericalSemigroup(s);
true

9.8.4 IsSuperSymmetricNumericalSemigroup

▷ IsSuperSymmetricNumericalSemigroup(S) (function)

S is a numerical semigroup. Detects if S is supersymmetric.
Example

gap> l:=IrreducibleNumericalSemigroupsWithFrobeniusNumber(31);;
gap> Length(l);
109
gap> Length(Filtered(l,IsSuperSymmetricNumericalSemigroup));
7



Chapter 10

Polynomials and numerical semigroups

Polynomials appear related to numerical semigroups in several ways. One of them is through their
associated generating function (or Hilbert series), and another via value semigroups of a curve; and
curves might be defined by polynomials. In this chapter we present several functions to compute the
polynomial and Hilbert series associated to a numerical semigroup, and to calculate the respective
numerical semigroups given a set of defining polynomials.

10.1 Generating functions or Hilbert series

Let S be a numerical semigroup. The Hilbert series or generating function associated to S is HS(x) =
∑s∈S xs (actually it is the Hilbert function of the ring K[S] with K a field). See for instance [Mor14].

10.1.1 NumericalSemigroupPolynomial

▷ NumericalSemigroupPolynomial(s, x) (function)

s is a numerical semigroups and x a variable (or a value to evaluate in). The output is the polyno-
mial 1+(x−1)∑s∈N\S xs, which equals (1− x)HS(x).

Example
gap> x:=X(Rationals,"x");;
gap> s:=NumericalSemigroup(5,7,9);;
gap> NumericalSemigroupPolynomial(s,x);
x^14-x^13+x^12-x^11+x^9-x^8+x^7-x^6+x^5-x+1

10.1.2 IsNumericalSemigroupPolynomial

▷ IsNumericalSemigroupPolynomial(f) (function)

f is a polynomial in one variable. The output is true if there exists a numerical semigroup S such
that f equals (1− x)HS(x), that is, the polynomial associated to S (false otherwise).

Example
gap> x:=X(Rationals,"x");;
gap> s:=NumericalSemigroup(5,6,7,8);;
gap> f:=NumericalSemigroupPolynomial(s,x);
x^10-x^9+x^5-x+1
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gap> IsNumericalSemigroupPolynomial(f);
true

10.1.3 NumericalSemigroupFromNumericalSemigroupPolynomial

▷ NumericalSemigroupFromNumericalSemigroupPolynomial(f) (function)

f is a polynomial associated to a numerical semigroup (otherwise yields error). The output is the
numerical semigroup S such that f equals (1− x)HS(x).

Example
gap> x:=X(Rationals,"x");;
gap> s:=NumericalSemigroup(5,6,7,8);;
gap> f:=NumericalSemigroupPolynomial(s,x);
x^10-x^9+x^5-x+1
gap> NumericalSemigroupFromNumericalSemigroupPolynomial(f)=s;
true

10.1.4 HilbertSeriesOfNumericalSemigroup

▷ HilbertSeriesOfNumericalSemigroup(s, x) (function)

s is a numerical semigroup and x a variable (or a value to evaluate in). The output is the series
∑s∈S xs. The series is given as a rational function.

Example
gap> x:=X(Rationals,"x");;
gap> s:=NumericalSemigroup(5,7,9);;
gap> HilbertSeriesOfNumericalSemigroup(s,x);
(x^14-x^13+x^12-x^11+x^9-x^8+x^7-x^6+x^5-x+1)/(-x+1)

10.1.5 GraeffePolynomial

▷ GraeffePolynomial(p) (function)

p is a polynomial. Computes the Graeffe polynomial of p . Needed to test if p is a cyclotomic
polynomial (see [BD89]).

Example
gap> x:=Indeterminate(Rationals,1);; SetName(x,"x");
gap> GraeffePolynomial(x^2-1);
x^2-2*x+1

10.1.6 IsCyclotomicPolynomial

▷ IsCyclotomicPolynomial(p) (function)

p is a polynomial. Detects if p is a cyclotomic polynomial using the procedure given in [BD89].
Example

gap> CyclotomicPolynomial(Rationals,3);
x^2+x+1
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gap> IsCyclotomicPolynomial(last);
true

10.1.7 IsKroneckerPolynomial

▷ IsKroneckerPolynomial(p) (function)

p is a polynomial. Detects if p is a Kronecker polynomial, that is, a monic polynomial with integer
coefficients having all its roots in the unit circumference, or equivalently, a product of cyclotomic
polynomials. The current implementation has been done with A. Herrera-Poyatos, following [BD89].

Example
gap> x:=X(Rationals,"x");;
gap> s:=NumericalSemigroup(3,5,7);;
gap> t:=NumericalSemigroup(4,6,9);;
gap> p:=NumericalSemigroupPolynomial(s,x);
x^5-x^4+x^3-x+1
gap> q:=NumericalSemigroupPolynomial(t,x);
x^12-x^11+x^8-x^7+x^6-x^5+x^4-x+1
gap> IsKroneckerPolynomial(p);
false
gap> IsKroneckerPolynomial(q);
true

10.1.8 IsCyclotomicNumericalSemigroup

▷ IsCyclotomicNumericalSemigroup(s) (function)

s is a numerical semigroup. Detects if the polynomial associated to s is a Kronecker polynomial.
Example

gap> l:=CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber(21);;
gap> ForAll(l,IsCyclotomicNumericalSemigroup);
true

10.1.9 CyclotomicExponentSequence

▷ CyclotomicExponentSequence(s, k) (operation)

s is a numerical semigroup and k is a positive integer. Outputs the list of the first k elements of
the cyclotomic exponent sequence of s (see [CGSM16]).

The sequence will be truncated if the semigroup is cyclotomic and k is bigger than the last nonzero
element in its sequence.

Example
gap> s:=NumericalSemigroup(3,4);;
gap> CyclotomicExponentSequence(s,20);
[ 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1 ]
gap> s:=NumericalSemigroup(3,5,7);;
gap> CyclotomicExponentSequence(s,20);
[ 1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, -1, 0 ]
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10.1.10 WittCoefficients

▷ WittCoefficients(p, k) (operation)

p is a univariate polynomial with integer coefficientas and p(1) = 1. Then p(x) = ∏n≥0(1−xn)en ,
for some integers en. The output is the list [e1, . . . ,ek], and it is computed by using [CGSHPM19].

Example
gap> s:=NumericalSemigroup(3,4);;
gap> x:=Indeterminate(Rationals,"x");;
gap> p:=NumericalSemigroupPolynomial(s,x);;
gap> WittCoefficients(p,20);
[ 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ]

The difference with this example and the one in CyclotomicExponentSequence (10.1.9) is that in
that case a cyclotomic check is performed that slows down the process.

10.1.11 IsSelfReciprocalUnivariatePolynomial

▷ IsSelfReciprocalUnivariatePolynomial(p) (function)

p is a univariate polynomial. Detects if p is selfreciprocal. A numerical semigroup is symmetric
if and only if it is selfreciprocal, [Mor14]. The current implementation is due to A. Herrera-Poyatos.

Example
gap> l:=IrreducibleNumericalSemigroupsWithFrobeniusNumber(13);;
gap> x:=X(Rationals,"x");;
gap> ForAll(l, s->
> IsSelfReciprocalUnivariatePolynomial(NumericalSemigroupPolynomial(s,x)));
true

10.2 Semigroup of values of algebraic curves

Let f (x,y) ∈ K[x,y], with K an algebraically closed field of characteristic zero. Let f (x,y) = yn +
a1(x)yn−1 + . . .+an(x) be a nonzero polynomial of K[x][y]. After possibly a change of variables, we
may assume that, that degx(ai(x))≤ i−1 for all i ∈ {1, . . . ,n}. For g ∈K[x,y] that is not a multiple of
f , define int( f ,g) = dimK

K[x,y]
( f ,g) . If f has one place at infinity, then the set {int( f ,g) | g ∈K[x,y]\ ( f )}

is a free numerical semigroup (and thus a complete intersection).

10.2.1 SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity

▷ SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f) (function)

f is a polynomial in the variables X(Rationals,1) and X(Rationals,2). Computes the semigroup
{int( f ,g) | g ∈ K[x,y] \ ( f )}, where int( f ,g) = dimK(K[x,y]/( f ,g)). The algorithm checks if f has
one place at infinity. If the extra argument "all" is given, then the output is the δ-sequence and
approximate roots of f . The method is explained in [AGS16a].

Example
gap> x:=Indeterminate(Rationals,1);; SetName(x,"x");
gap> y:=Indeterminate(Rationals,2);; SetName(y,"y");
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gap> f:=((y^3-x^2)^2-x*y^2)^4-(y^3-x^2);;
gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f,"all");
[ [ 24, 16, 28, 7 ], [ y, y^3-x^2, y^6-2*x^2*y^3+x^4-x*y^2 ] ]

10.2.2 IsDeltaSequence

▷ IsDeltaSequence(l) (function)

l is a list of positive integers. Assume that l equals a0,a1, . . . ,ah. Then l is a δ-sequence
if gcd(a0, . . . ,ah) = 1, ⟨a0, · · · ,as⟩ is free, akDk > ak+1Dk+1 and a0 > a1 > D2 > D3 > .. . > Dh+1,
where D1 = a0, Dk = gcd(Dk−1,ak−1).

Every δ-sequence generates a numerical semigroup that is the semigroup of values of a plane
curve with one place at infinity.

Example
gap> IsDeltaSequence([24,16,28,7]);
true

10.2.3 DeltaSequencesWithFrobeniusNumber

▷ DeltaSequencesWithFrobeniusNumber(f) (function)

f is an integer. Computes the set of all δ-sequences generating numerical semigroups with Frobe-
nius number f .

Example
gap> DeltaSequencesWithFrobeniusNumber(21);
[ [ 8, 6, 11 ], [ 10, 4, 15 ], [ 12, 8, 6, 11 ], [ 14, 4, 11 ],

[ 15, 10, 4 ], [ 23, 2 ] ]

10.2.4 CurveAssociatedToDeltaSequence

▷ CurveAssociatedToDeltaSequence(l) (function)

l is a δ-sequence. Computes a curve in the variables X(Rationals,1) and X(Rationals,2) whose
semigroup of values is generated by the l .

Example
gap> CurveAssociatedToDeltaSequence([24,16,28,7]);
y^24-8*x^2*y^21+28*x^4*y^18-56*x^6*y^15-4*x*y^20+70*x^8*y^12+24*x^3*y^17-56*x^\
10*y^9-60*x^5*y^14+28*x^12*y^6+80*x^7*y^11+6*x^2*y^16-8*x^14*y^3-60*x^9*y^8-24\
*x^4*y^13+x^16+24*x^11*y^5+36*x^6*y^10-4*x^13*y^2-24*x^8*y^7-4*x^3*y^12+6*x^10\
*y^4+8*x^5*y^9-4*x^7*y^6+x^4*y^8-y^3+x^2
gap> SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(last,"all");
[ [ 24, 16, 28, 7 ], [ y, y^3-x^2, y^6-2*x^2*y^3+x^4-x*y^2 ] ]

10.2.5 SemigroupOfValuesOfPlaneCurve

▷ SemigroupOfValuesOfPlaneCurve(f) (function)
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f is a polynomial in the variables X(Rationals,1) and X(Rationals,2). The singular package is
mandatory. Either by loading it prior to numerical semigroups or by using NumSgpsUseSingular() .
If f is irreducible, computes the semigroup {int( f ,g) | g ∈ K[x,y] \ ( f )}, where int( f ,g) =
dimK(K[[x,y]]/( f ,g)). If it has two components, the output is the value semigroup in two variables,
and thus a good semigroup. If there are more components, then the output is that of semigroup in the
alexpoly singular library.

Example
gap> x:=X(Rationals,"x");; y:=X(Rationals,"y");;
gap> f:= y^4-2*x^3*y^2-4*x^5*y+x^6-x^7;
-x^7+x^6-4*x^5*y-2*x^3*y^2+y^4
gap> SemigroupOfValuesOfPlaneCurve(f);
<Numerical semigroup with 3 generators>
gap> MinimalGenerators(last);
[ 4, 6, 13 ]
gap> f:=(y^4-2*x^3*y^2-4*x^5*y+x^6-x^7)*(y^2-x^3);;
gap> SemigroupOfValuesOfPlaneCurve(f);
<Good semigroup>
gap> MinimalGenerators(last);
[ [ 4, 2 ], [ 6, 3 ], [ 13, 15 ], [ 29, 13 ] ]

10.2.6 SemigroupOfValuesOfCurve_Local

▷ SemigroupOfValuesOfCurve_Local(arg) (function)

The function admits one or two parameters. In any case, the first is a list of polynomials pols .
And the second can be the string "basis" or an integer val .

If only one argument is given, the output is the semigroup of all possible orders of K[[pols]]
provided that K[[x]]/K[[pols]] has finite length. If the second argument "basis" is given, then the
output is a (reduced) basis of the algebra K[[pols]] such that the orders of the basis elements generate
minimally the semigroup of orders of K[[pols]]. If an integer val is the second argument, then the
output is a polynomial in K[[pols]] with order val (fail if there is no such polynomial, that is, val
is not in the semigroup of values).

The method is explained in [AGSM17].
Example

gap> x:=Indeterminate(Rationals,"x");;
gap> SemigroupOfValuesOfCurve_Local([x^4,x^6+x^7,x^13]);
<Numerical semigroup with 4 generators>
gap> MinimalGeneratingSystem(last);
[ 4, 6, 13, 15 ]
gap> SemigroupOfValuesOfCurve_Local([x^4,x^6+x^7,x^13], "basis");
[ x^4, x^7+x^6, x^13, x^15 ]
gap> SemigroupOfValuesOfCurve_Local([x^4,x^6+x^7,x^13], 20);
x^20

10.2.7 SemigroupOfValuesOfCurve_Global

▷ SemigroupOfValuesOfCurve_Global(arg) (function)
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The function admits one or two parameters. In any case, the first is a list of polynomials pols .
And the second can be the string "basis" or an integer val .

If only one argument is given, the output is the semigroup of all possible degrees of K[pols]
provided that K[x]/K[pols] has finite length. If the second argument "basis" is given, then the
output is a (reduced) basis of the algebra K[pols] such that the degrees of the basis elements generate
minimally the semigroup of degrees of K[pols]. If an integer val is the second argument, then the
output is a polynomial in K[pols] with degree val (fail if there is no such polynomial, that is, val
is not in the semigroup of values).

The method is explained in [AGSM17].
Example

gap> x:=Indeterminate(Rationals,"x");;
gap> SemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13]);
<Numerical semigroup with 3 generators>
gap> MinimalGeneratingSystem(last);
[ 4, 7, 13 ]
gap> SemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13],"basis");
[ x^4, x^7+x^6, x^13 ]
gap> SemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13],12);
x^12
gap> SemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13],6);
fail

10.2.8 GeneratorsModule_Global

▷ GeneratorsModule_Global(A, M) (function)

A and M are lists of polynomials in the same variable. The output is a basis of the ideal MK[A],
that is, a set F such that deg(F) generates the ideal deg(MK[A]) of deg(K[A]), where deg stands for
degree. The method is explained in [AAGS19].

Example
gap> t:=Indeterminate(Rationals,"t");;
gap> A:=[t^6+t,t^4];;
gap> M:=[t^3,t^4];;
gap> GeneratorsModule_Global(A,M);
[ t^3, t^4, t^5, t^6 ]

10.2.9 GeneratorsKahlerDifferentials

▷ GeneratorsKahlerDifferentials(A) (function)

A is a list of polynomials in the same variable. The output is GeneratorsModule_Global(A,M) ,
with M the set of derivatives of the elements in A .

Example
gap> t:=Indeterminate(Rationals,"t");;
gap> GeneratorsKahlerDifferentials([t^3,t^4]);
[ t^2, t^3 ]
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10.2.10 IsMonomialNumericalSemigroup

▷ IsMonomialNumericalSemigroup(S) (property)

S is a numerical semigroup. Tests whether S a monomial numerical semigroup.
Let R a Noetherian ring such that K ⊆ R ⊆ K[[t]], K is a field of characteristic zero, the algebraic

closure of R is K[[t]], and the conductor (R : K[[t]]) is not zero. If v : K((t))→Z is the natural valuation
for K((t)), then v(R) is a numerical semigroup.

Let S be a numerical semigroup minimally generated by {n1, . . . ,ne}. The semigroup ring associ-
ated to S is K[[S]] = K[[tn1 , . . . , tne ]]. A ring is called a semigroup ring if it is of the form K[[S]], for
some numerical semigroup S. We say that S is a monomial numerical semigroup if for any R as above
with v(R) = S, R is a semigroup ring. See [Mic02] for details.

Example
gap> IsMonomialNumericalSemigroup(NumericalSemigroup(4,6,7));
true
gap> IsMonomialNumericalSemigroup(NumericalSemigroup(4,6,11));
false

10.3 Semigroups and Legendrian curves

10.3.1 LegendrianGenericNumericalSemigroup

▷ LegendrianGenericNumericalSemigroup(n, m) (function)

n and m are coprime integers with m ≥ 2n +1. The output is the semigroup of a generic element
in the class of irreducible Legendrian singularities with equisingularity equal to the topological type
of yn = xm, as described in Section 5 of [AN09].

Example
gap> s:=LegendrianGenericNumericalSemigroup(5,11);;
gap> SmallElements(s);
[ 0, 5, 6, 10, 11, 12, 13, 15 ]



Chapter 11

Affine semigroups

An affine semigroup S is a finitely generated cancellative monoid that is reduced (no units other than
0) and is torsion-free (as = bs implies a = b, with a,b ∈ N and s ∈ S). Up to isomorphism any affine
semigroup can be viewed as a finitely generated submonoid of Nk for some positive integer k. Thus
affine semigroups are a natural generalization of numerical semigroups.

Some of the functions in this chapter may work considerably faster when some external package
is installed and its use is allowed. When this is the case, it is referred in the function documentation.
We refer the user to Chapter 13 for details on the use of external packages.

11.1 Defining affine semigroups

The most common way to give an affine semigroup is by any of its systems of generators. As for
numerical semigroups, any affine semigroup admits a unique minimal system of generators. A system
of generators can be represented as a list of lists of nonnegative integers; all lists in the list having the
same length (a matrix actually). If G is a subgroup of Zk, then S =G∩Nk is an affine semigroup (these
semigroups are called full affine semigroups). As G can be represented by its defining equations (ho-
mogeneous and some of them possibly in congruences), we can represent S by the defining equations
of G; indeed S is just the set of nonnegative solutions of this system of equations. We can represent
the equations as a list of lists of integers, all with the same length. Every list is a row of the matrix of
coefficients of the system of equations. For the equations in congruences, if we arrange them so that
they are the first ones in the list, we provide the corresponding moduli in a list. So for instance, the
equations x+ y ≡ 0 mod 2, x−2y = 0 will be represented as [[1,1],[1,-2]] and the moduli [2].

As happens with numerical semigroups, there are different ways to specify an affine semigroup S,
namely, by means of a system of generators, a system of homogeneous linear Diophantine equations
or a system of homogeneous linear Diophantine inequalities, just to mention some. In this section we
describe functions that may be used to specify, in one of these ways, an affine semigroup in GAP.

11.1.1 AffineSemigroup (by generators)

▷ AffineSemigroup([String, ]List) (function)

▷ AffineSemigroupByGenerators(List) (function)

List is a list of n-tuples of nonnegative integers, if the semigroup to be created is n-dimensional.
The n-tuples may be given as a list or by a sequence of individual elements. The output is the affine
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semigroup spanned by List.
String does not need to be present. When it is present, it must be "generators" and List must

be a list, not a sequence of individual elements.
Example

gap> s1 := AffineSemigroup([1,3],[7,2],[1,5]);
<Affine semigroup in 2 dimensional space, with 3 generators>
gap> s2 := AffineSemigroup([[1,3],[7,2],[1,5]]);;
gap> s3 := AffineSemigroupByGenerators([1,3],[7,2],[1,5]);;
gap> s4 := AffineSemigroupByGenerators([[1,3],[7,2],[1,5]]);;
gap> s5 := AffineSemigroup("generators",[[1,3],[7,2],[1,5]]);;
gap> Length(Set([s1,s2,s3,s4,s5]));
1

11.1.2 AffineSemigroupByEquations

▷ AffineSemigroupByEquations(List) (function)

▷ AffineSemigroup(String, List) (function)

List is a list with two components. The first represents a matrix with integer coefficients, say
A = (ai j), and so it is a list of lists of integers all with the same length. The second component is a list
of positive integers, say d = (di), which may be empty. The list d must be of length less than or equal
to the length of A (number of rows of A).

The output is the full semigroup of nonnegative integer solutions to the system of homogeneous
equations
a11x1 + · · ·+a1nxn ≡ 0 mod d1,
· · ·
ak1x1 + · · ·+aknxn ≡ 0 mod dk,
ak+11x1 + · · ·+ak+1n = 0,
· · ·
am1x1 + · · ·+amnxn = 0.

If d is empty, then there will be no equations in congruences.
As pointed at the beginning of the section, the equations x+ y ≡ 0 mod 2, x− 2y = 0 will be

represented as A equal to [[1,1],[1,-2]] and the moduli d equal to [2].
In the second form, String must be "equations".

Example
gap> s1 := AffineSemigroup("equations",[[[1,1]],[3]]);
<Affine semigroup>
gap> s2 := AffineSemigroupByEquations([[[-2,1]],[3]]);
<Affine semigroup>
gap> s1=s2;
true

11.1.3 AffineSemigroupByInequalities

▷ AffineSemigroupByInequalities(List) (function)

▷ AffineSemigroup(String, List) (function)
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List is a list of lists (a matrix) of integers that represents a set of inequalities.
Returns the (normal) affine semigroup of nonegative integer solutions of the system of inequalities

List ×X ≥ 0.
In the second form, String must be "inequalities".

Example
gap> a1:=AffineSemigroup("inequalities",[[2,-1],[-1,3]]);
<Affine semigroup>
gap> a2:=AffineSemigroupByInequalities([[2,-1],[-1,3]]);
<Affine semigroup>
gap> a1=a2;
true

11.1.4 AffineSemigroupByPMInequality

▷ AffineSemigroupByPMInequality(f, b, g) (function)

▷ AffineSemigroup(String, List) (function)

f , g are lists of integers and b is a positive integer.
Returns the proportionally modular affine semigroup defined by the f ×X (mod b)≤ g×X
In the second form, String must be "pminequality".

Example
gap> s:=AffineSemigroupByPMInequality([0, 1, 1, 0, -1], 4, [1, 0, -2, -3, 1]);
<Affine semigroup>
gap> [ 3, 0, 0, 4, 12 ] in s;
true
gap> [ 3, 0, 0, 4, 1 ] in s;
false

11.1.5 AffineSemigroupByGaps

▷ AffineSemigroupByGaps(List) (function)

▷ AffineSemigroup([String, ]List) (function)

In the second form, String must be "gaps" and List must be a list, not a sequence of individual
elements.

In the first form, List is a list of n-tuples of nonnegative integers, if the semigroup to be created
is n-dimensional. The n-tuples may be given as a list or by a sequence of individual elements. The
output is the affine semigroup with gaps List. If the given set is not a set of gaps of a numerical
semigroup, then the function raises an error.

Example
gap> gaps := [[1,0,0,0],[1,1,0,0],[2,0,0,0],[2,1,0,0],[5,0,0,0]];;
gap> a1 := AffineSemigroup("gaps", gaps );
<Affine semigroup>
gap> a2 := AffineSemigroupByGaps( gaps );
<Affine semigroup>
gap> a1 = a2;
true
gap> Generators(a1);;
gap> Set(last);
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[ [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ 1, 0, 0, 1 ],
[ 1, 0, 1, 0 ], [ 1, 2, 0, 0 ], [ 2, 0, 0, 1 ], [ 2, 0, 1, 0 ],
[ 2, 2, 0, 0 ], [ 3, 0, 0, 0 ], [ 4, 0, 0, 0 ], [ 5, 1, 0, 0 ] ]

11.1.6 FiniteComplementIdealExtension

▷ FiniteComplementIdealExtension(List) (function)

List is a list or sequence of n-tuples of nonnegative integers. If the monoid M = {0}∪ (List+
Nn) is an affine semigroup (equivalently, M has finitely many gaps), then the output is M. Otherwise,
an error is raised.

Example
gap> s:=FiniteComplementIdealExtension([[0,2],[1,1],[3,0]]);
<Affine semigroup>
gap> MinimalGenerators(s);
[ [ 0, 3 ], [ 1, 1 ], [ 0, 2 ], [ 3, 0 ], [ 2, 1 ], [ 1, 2 ], [ 3, 1 ], [ 5, 0 ], [ 4, 0 ] ]
gap> s:=FiniteComplementIdealExtension([0,2],[1,1],[3,0]);
<Affine semigroup>

11.1.7 Gaps (for affine semigroup)

▷ Gaps(S) (attribute)

S is an affine semigroup, the output is its set of gaps, if this set has finitely many elements.
Otherwise the output is ’fail’ and a warning is raised. The procedure is inspired in [CFR18]

Example
gap> a:=AffineSemigroup([[1,0,0,0],[3,1,0,0],[1,2,0,0],[0,0,1,0],
> [0,2,1,0],[0,1,1,0],[0,0,0,1],[0,2,0,1],[0,1,0,1],[0,3,0,0],
> [0,5,0,0],[0,4,0,0]]);
<Affine semigroup in 4 dimensional space, with 12 generators>
gap> Set(Gaps(a));
[ [ 0, 1, 0, 0 ], [ 0, 2, 0, 0 ], [ 1, 1, 0, 0 ], [ 2, 1, 0, 0 ] ]
gap> n := AffineSemigroup([1,1],[0,1]);;
gap> Gaps(n);
#I The given affine semigroup has infinitely many gaps
fail

11.1.8 Genus (for affine semigroup)

▷ Genus(S) (attribute)

S is an affine semigroup, the output is the cardinality of its set of gaps, if this set is finite. Otherwise
the output is ’infinite’. The procedure is inspired in [CFR18]

Example
gap> a:=AffineSemigroup([[1,0,0,0],[3,1,0,0],[1,2,0,0],[0,0,1,0],
> [0,2,1,0],[0,1,1,0],[0,0,0,1],[0,2,0,1],[0,1,0,1],[0,3,0,0],
> [0,5,0,0]]);
<Affine semigroup in 4 dimensional space, with 11 generators>
gap> Genus(a);
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7
gap> n := AffineSemigroup([1,1],[0,1]);;
gap> Genus(n);
#I The given affine semigroup has infinitely many gaps
infinity
gap> last > 10^50;
true

11.1.9 PseudoFrobenius (for affine semigroup)

▷ PseudoFrobenius(S) (attribute)

S is an affine semigroup, the output is its set of pseudo-Frobenius vectors, that is, the gaps g of
S such that for every nonzero element s of S , the vector g+ s is in S . The package will only find
pseudo-Frobenius vectors for affine semigroups with a finite set of gaps.

Example
gap> a:=AffineSemigroup([[1,0,0,0],[3,1,0,0],[1,2,0,0],[0,0,1,0],
> [0,2,1,0],[0,1,1,0],[0,0,0,1],[0,2,0,1],[0,1,0,1],[0,3,0,0],
> [0,5,0,0],[0,4,0,0]]);
<Affine semigroup in 4 dimensional space, with 12 generators>
gap> PseudoFrobenius(a);
[ [ 0, 2, 0, 0 ], [ 2, 1, 0, 0 ] ]

11.1.10 SpecialGaps (for affine semigroup)

▷ SpecialGaps(S) (attribute)

S is an affine semigroup, the output is its set of special gaps of S , that is, the gaps g of S such that
S ∪{g} is a semigroup. Special gaps can only be computed in the package for affine semigroups with
finitely many gaps.

Example
gap> a:=AffineSemigroup([[1,0,0,0],[3,1,0,0],[1,2,0,0],[0,0,1,0],
> [0,2,1,0],[0,1,1,0],[0,0,0,1],[0,2,0,1],[0,1,0,1],[0,3,0,0],
> [0,5,0,0],[0,4,0,0]]);
<Affine semigroup in 4 dimensional space, with 12 generators>
gap> SpecialGaps(a);
[ [ 0, 2, 0, 0 ], [ 2, 1, 0, 0 ] ]

11.1.11 Generators (for affine semigroup)

▷ Generators(S) (function)

▷ GeneratorsOfAffineSemigroup(S) (function)

S is an affine semigroup, the output is a system of generators.
Example

gap> a:=AffineSemigroup([[1,0],[0,1],[1,1]]);
<Affine semigroup in 2 dimensional space, with 3 generators>
gap> Generators(a);
[ [ 0, 1 ], [ 1, 0 ], [ 1, 1 ] ]
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11.1.12 MinimalGenerators (for affine semigroup)

▷ MinimalGenerators(S) (function)

▷ MinimalGeneratingSystem(S) (function)

S is an affine semigroup, the output is its system of minimal generators.
Example

gap> a:=AffineSemigroup([[1,0],[0,1],[1,1]]);
<Affine semigroup in 2 dimensional space, with 3 generators>

gap> MinimalGenerators(a);
[ [ 0, 1 ], [ 1, 0 ] ]

11.1.13 RemoveMinimalGeneratorFromAffineSemigroup

▷ RemoveMinimalGeneratorFromAffineSemigroup(n, S) (function)

S is an affine semigroup and n is one if its minimal generators.
The output is the affine semigroup S \ {n} (S \ {n} is an affine semigroup if and only if n is a

minimal generator of S).
Example

gap> a:=AffineSemigroup([2,0],[0,4]);
<Affine semigroup in 2 dimensional space, with 2 generators>
gap> b:=RemoveMinimalGeneratorFromAffineSemigroup([2,0],a);Generators(b);
<Affine semigroup in 2 dimensional space, with 4 generators>
[ [ 0, 4 ], [ 2, 4 ], [ 4, 0 ], [ 6, 0 ] ]

11.1.14 AddSpecialGapOfAffineSemigroup

▷ AddSpecialGapOfAffineSemigroup(g, S) (function)

S is an semigroup and g is a special gap of S .
The output is the numerical semigroup S ∪{g} (see [RGSGGJM03], where it is explained why

this set is a numerical semigroup).
Example

gap> s:=AffineSemigroup([[2,0],[3,0],[0,4],[0,5],[1,1]]);
<Affine semigroup in 2 dimensional space, with 5 generators>
gap> t:=AddSpecialGapOfAffineSemigroup([1,12],s);
<Affine semigroup in 2 dimensional space, with 6 generators>
gap> Gaps(s);
[ [ 0, 1 ], [ 0, 2 ], [ 0, 3 ], [ 0, 6 ], [ 0, 7 ], [ 0, 11 ], [ 1, 0 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ],
[ 1, 7 ], [ 1, 8 ], [ 1, 12 ], [ 2, 1 ], [ 2, 3 ], [ 3, 2 ], [ 4, 3 ] ]
gap> Gaps(t);
[ [ 0, 1 ], [ 0, 2 ], [ 0, 3 ], [ 0, 6 ], [ 0, 7 ], [ 0, 11 ], [ 1, 0 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ],
[ 1, 7 ], [ 1, 8 ], [ 2, 1 ], [ 2, 3 ], [ 3, 2 ], [ 4, 3 ] ]

11.1.15 AsAffineSemigroup

▷ AsAffineSemigroup(S) (function)
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S is a numerical semigroup, the output is S regarded as an affine semigroup.
Example

gap> s:=NumericalSemigroup(1310,1411,1546,1601);
<Numerical semigroup with 4 generators>
gap> MinimalPresentationOfNumericalSemigroup(s);;time;
2960
gap> a:=AsAffineSemigroup(s);
<Affine semigroup in 1 dimensional space, with 4 generators>
gap> GeneratorsOfAffineSemigroup(a);
[ [ 1310 ], [ 1411 ], [ 1546 ], [ 1601 ] ]
gap> MinimalPresentationOfAffineSemigroup(a);;time;
237972

If we use the package SingularInterface, the speed up is considerable.
Example

gap> NumSgpsUseSingularInterface();
...
gap> MinimalPresentationOfAffineSemigroup(a);;time;
32

11.1.16 IsAffineSemigroup

▷ IsAffineSemigroup(AS) (attribute)

▷ IsAffineSemigroupByGenerators(AS) (attribute)

▷ IsAffineSemigroupByEquations(AS) (attribute)

▷ IsAffineSemigroupByInequalities(AS) (attribute)

AS is an affine semigroup and these attributes are available (their names should be self explana-
tory). They reflect what is currently known about the semigroup.

Example
gap> a1:=AffineSemigroup([[3,0],[2,1],[1,2],[0,3]]);
<Affine semigroup in 2 dimensional space, with 4 generators>
gap> IsAffineSemigroupByEquations(a1);
false
gap> IsAffineSemigroupByGenerators(a1);
true
gap> ns := NumericalSemigroup(3,5);
<Numerical semigroup with 2 generators>
gap> IsAffineSemigroup(ns);
false
gap> as := AsAffineSemigroup(ns);
<Affine semigroup in 1 dimensional space, with 2 generators>
gap> IsAffineSemigroup(as);
true

11.1.17 BelongsToAffineSemigroup

▷ BelongsToAffineSemigroup(v, a) (function)

▷ \in(v, a) (operation)
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v is a list of nonnegative integers and a an affine semigroup. Returns true if the vector is in the
semigroup, and false otherwise.

If the semigroup is full and its equations are known (either because the semigroup was defined by
equations, or because the user has called IsFullAffineSemgiroup(a) and the output was true), then
membership is performed by evaluating v in the equations. The same holds for normal semigroups
and its defining inequalities. If the set of gaps is finite and known, then membership is just checking
that v has nonnegative integers and it is not in the set of gaps.

v in a can be used for short.
Example

gap> a:=AffineSemigroup([[2,0],[0,2],[1,1]]);;
gap> BelongsToAffineSemigroup([5,5],a);
true
gap> BelongsToAffineSemigroup([1,2],a);
false
gap> [5,5] in a;
true
gap> [1,2] in a;
false

11.1.18 IsFull

▷ IsFull(S) (property)

▷ IsFullAffineSemigroup(S) (property)

S is an affine semigroup.
Returns true if the semigroup is full, false otherwise. The semigroup is full if whenever a,b ∈ S

and b−a ∈ Nk, then a−b ∈ S, where k is the dimension of S.
If the semigroup is full, then its equations are stored in the semigroup for further use.

Example
gap> a:=AffineSemigroup("equations",[[[1,1,1],[0,0,2]],[2,2]]);;
gap> IsFull(a);
true
gap> IsFullAffineSemigroup(a);
true

11.1.19 HilbertBasisOfSystemOfHomogeneousEquations

▷ HilbertBasisOfSystemOfHomogeneousEquations(ls, m) (operation)

ls is a list of lists of integers and m a list of integers. The elements of ls represent the rows of a
matrix A. The output is a minimal generating system (Hilbert basis) of the set of nonnegative integer
solutions of the system Ax = 0 where the k first equations are in the congruences modulo m[i] , with
k the length of m .

If the package NormalizInterface has not been loaded, then Contejean-Devie algorithm is used
[CD94] instead (if this is the case, congruences are treated as in [RGS98]).

Example
gap> HilbertBasisOfSystemOfHomogeneousEquations([[1,0,1],[0,1,-1]],[2]);
[ [ 0, 2, 2 ], [ 1, 1, 1 ], [ 2, 0, 0 ] ]
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If C is a pointed cone (a cone in Qk not containing lines and 0 ∈ C), then S = C∩Nk is an affine
semigroup (known as normal affine semigroup). So another way to give an affine semigroup is by a
set of homogeneous inequalities, and we can represent these inequalities by its coefficients. If we put
them in a matrix S can be defined as the set of nonnegative integer solutions to Ax ≥ 0.

11.1.20 HilbertBasisOfSystemOfHomogeneousInequalities

▷ HilbertBasisOfSystemOfHomogeneousInequalities(ls) (operation)

ls is a list of lists of integers. The elements of ls represent the rows of a matrix A. The output is
a minimal generating system (Hilbert basis) of the set of nonnegative integer solutions to Ax ≥ 0.

If the package NormalizInterface has not been loaded, then Contejean-Devie algorithm is used
[CD94] instead (the use of slack variables is described in [RGSB02]).

Example
gap> HilbertBasisOfSystemOfHomogeneousInequalities([[2,-3],[0,1]]);
[ [ 1, 0 ], [ 2, 1 ], [ 3, 2 ] ]

11.1.21 EquationsOfGroupGeneratedBy

▷ EquationsOfGroupGeneratedBy(M) (function)

M is a matrix of integers. The output is a pair [A,m] that represents the set of defining equations of
the group spanned by the rows of M : Ax = 0 ∈ Zn1 ×·· ·×Znt ×Zk, with m = [n1, . . . ,nt ].

Example
gap> EquationsOfGroupGeneratedBy([[1,2,0],[2,-2,2]]);
[ [ [ 0, 0, -1 ], [ -2, 1, 3 ] ], [ 2 ] ]

11.1.22 BasisOfGroupGivenByEquations

▷ BasisOfGroupGivenByEquations(A, m) (function)

A is a matrix of integers and m is a list of positive integers. The output is a basis for the group with
defining equations Ax = 0 ∈ Zn1 ×·· ·×Znt ×Zk, with m = [n1, . . . ,nt ].

Example
gap> BasisOfGroupGivenByEquations([[0,0,1],[2,-1,-3]],[2]);
[ [ -1, -2, 0 ], [ -2, 2, -2 ] ]

11.2 Gluings of affine semigroups

Let S1 and S2 be two affine semigroups with the same dimension generated by A1 and A2, respectively.
We say that the affine semigroup S generated by the union of A1 and A2 is a gluing of S1 and S2 if
G(S1)∩G(S2) = dZ (G(·) stands for group spanned by) for some d ∈ S1 ∩S2.

The algorithm used is explained in [RGS99c].
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11.2.1 GluingOfAffineSemigroups

▷ GluingOfAffineSemigroups(a1, a2) (function)

a1, a2 are affine semigroups. Determines if they can be glued, and if so, returns the gluing.
Otherwise it returns fail.

Example
gap> a1:=AffineSemigroup([[2,0],[0,2]]);
<Affine semigroup in 2 dimensional space, with 2 generators>
gap> a2:=AffineSemigroup([[1,1]]);
<Affine semigroup in 2 dimensional space, with 1 generators>
gap> GluingOfAffineSemigroups(a1,a2);
<Affine semigroup in 2 dimensional space, with 3 generators>
gap> Generators(last);
[ [ 0, 2 ], [ 1, 1 ], [ 2, 0 ] ]

11.3 Presentations of affine semigroups

A minimal presentation of an affine semigroup is defined analogously as for numerical semigroups
(see Chapter 4). We warn the user to take into account that minimal generators are stored in a set,
and thus might be arranged in a different way to the initial input. If a presentation is needed with a
certain arrangment in the set of generators, or some of the generators are not necessarily minimal, then
GeneratorsOfKernelCongruence (11.3.3) is recommended.

11.3.1 CircuitsOfKernelCongruence

▷ CircuitsOfKernelCongruence(M) (operation)

M is matrix with nonnegative integer coefficients. The output is the set of circuits (pairs with
minimal support) of the congruence {(x,y) | xM = yM}. The computation is performed by using Lemma
8.8 in [ES96].

Example
gap> s:=NumericalSemigroup(4,6,9);;
gap> CircuitsOfKernelCongruence([[4],[6],[9]]);
[ [ [ 3, 0, 0 ], [ 0, 2, 0 ] ], [ [ 9, 0, 0 ], [ 0, 0, 4 ] ], [ [ 0, 3, 0 ], [ 0, 0, 2 ] ] ]
gap> MinimalPresentation(s);
[ [ [ 0, 0, 2 ], [ 0, 3, 0 ] ], [ [ 0, 2, 0 ], [ 3, 0, 0 ] ] ]

11.3.2 PrimitiveRelationsOfKernelCongruence

▷ PrimitiveRelationsOfKernelCongruence(M) (operation)

M is matrix with nonnegative integer coefficients. The output is the set of primitive relations of the
congruence R = {(x,y) | xM = yM}. A pair (relation) (x,y) in R is primitive if x ̸= y and it cannot be
expressed as a sumo of two nonzero pairs in R.

Example
gap> PrimitiveRelationsOfKernelCongruence([[4],[6],[9]]);
[ [ [ 0, 0, 2 ], [ 0, 3, 0 ] ], [ [ 0, 0, 2 ], [ 3, 1, 0 ] ],
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[ [ 0, 0, 4 ], [ 9, 0, 0 ] ], [ [ 0, 1, 2 ], [ 6, 0, 0 ] ],
[ [ 0, 2, 0 ], [ 3, 0, 0 ] ] ]

11.3.3 GeneratorsOfKernelCongruence

▷ GeneratorsOfKernelCongruence(M) (operation)

M is matrix with nonnegative integer coefficients. The output is a system of generators of the
congruence {(x,y) | xM = yM}.

The main difference with MinimalPresentationOfAffineSemigroup (11.3.6) is that the matrix
M can have repeated rows and these are not treated as a set.

Example
gap> M := [[2,0],[0,2],[1,1]];
[ [ 2, 0 ], [ 0, 2 ], [ 1, 1 ] ]
gap> GeneratorsOfKernelCongruence(M);
[ [ [ 0, 0, 2 ], [ 1, 1, 0 ] ] ]

11.3.4 CanonicalBasisOfKernelCongruence

▷ CanonicalBasisOfKernelCongruence(M, Ord) (operation)

M is matrix with nonnegative integer coefficients, Ord a term ordering. The output is a canonical
basis of the congruence {(x,y) | xM = yM} (see [RGS99b]). This corresponds with the exponents of
the Gröbner basis of the kernel ideal of the morphism xi 7→ Y mi , with mi the ith row of M.

Accepted term orderings are lexicographic (MonomialLexOrdering()), graded lexicographic
(MonomialGrlexOrdering() ) and reversed graded lexicographic (MonomialGrevlexOrdering() ).

Example
gap> M:=[[3],[5],[7]];;
gap> CanonicalBasisOfKernelCongruence(M,MonomialLexOrdering());
[ [ [ 0, 7, 0 ], [ 0, 0, 5 ] ], [ [ 1, 0, 1 ], [ 0, 2, 0 ] ],

[ [ 1, 5, 0 ], [ 0, 0, 4 ] ], [ [ 2, 3, 0 ], [ 0, 0, 3 ] ],
[ [ 3, 1, 0 ], [ 0, 0, 2 ] ], [ [ 4, 0, 0 ], [ 0, 1, 1 ] ] ]

gap> CanonicalBasisOfKernelCongruence(M,MonomialGrlexOrdering());
[ [ [ 0, 7, 0 ], [ 0, 0, 5 ] ], [ [ 1, 0, 1 ], [ 0, 2, 0 ] ],

[ [ 1, 5, 0 ], [ 0, 0, 4 ] ], [ [ 2, 3, 0 ], [ 0, 0, 3 ] ],
[ [ 3, 1, 0 ], [ 0, 0, 2 ] ], [ [ 4, 0, 0 ], [ 0, 1, 1 ] ] ]

gap> CanonicalBasisOfKernelCongruence(M,MonomialGrevlexOrdering());
[ [ [ 0, 2, 0 ], [ 1, 0, 1 ] ], [ [ 3, 1, 0 ], [ 0, 0, 2 ] ],

[ [ 4, 0, 0 ], [ 0, 1, 1 ] ] ]

11.3.5 GraverBasis

▷ GraverBasis(M) (operation)

M is matrix with integer coefficients. The output is a Graver basis for M .
Example

gap> gr:=GraverBasis([[3,5,7]]);
[ [ -7, 0, 3 ], [ -5, 3, 0 ], [ -4, 1, 1 ], [ -3, -1, 2 ], [ -2, -3, 3 ],

[ -1, -5, 4 ], [ -1, 2, -1 ], [ 0, -7, 5 ], [ 0, 7, -5 ], [ 1, -2, 1 ],
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[ 1, 5, -4 ], [ 2, 3, -3 ], [ 3, 1, -2 ], [ 4, -1, -1 ], [ 5, -3, 0 ],
[ 7, 0, -3 ] ]

11.3.6 MinimalPresentation (for affine semigroup)

▷ MinimalPresentation(a) (operation)

▷ MinimalPresentationOfAffineSemigroup(a) (operation)

a is an affine semigroup. The output is a minimal presentation for a .
There are four methods implemented for this function, depending on the packages loaded. All

of them use elimination, and Herzog’s correspondence, computing the kernel of a ring homomor-
phism ([Her70]). The fastest procedure is achieved when SingularInterface is loaded, followed
by Singular. The procedure that does not use external packages uses internal GAP Gröbner basis
computations and thus it is slower. Also in this case, from the Gröbner basis, a minimal set of gen-
erating binomials must be refined, and for this Rclasses are used (if NormalizInterface is loaded,
then the factorizations are faster). The 4ti2 implementation uses 4ti2 internal Gröbner bases and
factorizations are done via zsolve.

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;
gap> MinimalPresentation(a);
[ [ [ 0, 2, 0 ], [ 1, 0, 1 ] ] ]
gap> MinimalPresentationOfAffineSemigroup(a);
[ [ [ 0, 2, 0 ], [ 1, 0, 1 ] ] ]

11.3.7 BettiElements (of affine semigroup)

▷ BettiElements(a) (operation)

▷ BettiElementsOfAffineSemigroup(a) (operation)

a is an affine semigroup. The output is the set of Betti elements of a (defined as for numerical
semigroups).

This function relies on the computation of a minimal presentation.
Example

gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;
gap> BettiElements(a);
[ [ 2, 2 ] ]
gap> BettiElementsOfAffineSemigroup(a);
[ [ 2, 2 ] ]

11.3.8 ShadedSetOfElementInAffineSemigroup

▷ ShadedSetOfElementInAffineSemigroup(v, a) (function)

a is an affine semigroup and v is an element in a . This is a translation to affine semigroups of
ShadedSetOfElementInNumericalSemigroup (4.1.7).
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11.3.9 IsGeneric (for affine semigroups)

▷ IsGeneric(a) (property)

▷ IsGenericAffineSemigroup(a) (property)

a is an affine semigroup.
The same as IsGenericNumericalSemigroup (4.3.2) but for affine semigroups.
This property implies IsUniquelyPresentedAffineSemigroup (11.3.10).

11.3.10 IsUniquelyPresented (for affine semigroups)

▷ IsUniquelyPresented(a) (property)

▷ IsUniquelyPresentedAffineSemigroup(a) (property)

a is an affine semigroup.
The same as the homonym function for numerical semigroups (4.3.1), but for affine semigroups.

11.3.11 DegreesOfPrimitiveElementsOfAffineSemigroup

▷ DegreesOfPrimitiveElementsOfAffineSemigroup(a) (operation)

a is an affine semigroup. The output is the set of primitive elements of a (defined as for numerical
semigroups).

This function has three implementations (methods), one using Graver basis via the Lawrence lift-
ing of a and the other (much faster) using NormalizInterface. Also a 4ti2 version using its Graver
basis computation is provided.

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;
gap> DegreesOfPrimitiveElementsOfAffineSemigroup(a);
[ [ 0, 2 ], [ 1, 1 ], [ 2, 0 ], [ 2, 2 ] ]

11.4 Factorizations in affine semigroups

The invariants presented here are defined as for numerical semigroups (Chapter 9).
As with presentations, the user should take into account that minimal generators are stored in a

set, and thus might be arranged in a different way to the initial input.

11.4.1 FactorizationsVectorWRTList

▷ FactorizationsVectorWRTList(v, ls) (operation)

v is a list of nonnegative integers and ls is a list of lists of nonnegative integers. The output is set
of factorizations of v in terms of the elements of ls .

If no extra package is loaded, then factorizations are computed recursively; and thus slowly. If
NormalizInterface is loaded, then a system of equations is solved with Normaliz, and the perfor-
mance is much better. If 4ti2Interface is loaded instead, then factorizations are calculated using
zsolve command of 4ti2.
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Example
gap> FactorizationsVectorWRTList([5,5],[[2,0],[0,2],[1,1]]);
[ [ 2, 2, 1 ], [ 1, 1, 3 ], [ 0, 0, 5 ] ]

11.4.2 Factorizations (for an element in an affine semigroup)

▷ Factorizations(v, a) (operation)

▷ Factorizations(a, v) (operation)

v is a list of nonnegative integers and a is an affine semigroup. The output is set of factorizations
of v in terms of the minimal generators of of a .

Example
gap> a:=AffineSemigroup([[2,0],[0,2],[1,1]]);
<Affine semigroup in 2 dimensional space, with 3 generators>
gap> Factorizations([5,5],a);
[ [ 2, 1, 2 ], [ 1, 3, 1 ], [ 0, 5, 0 ] ]
gap> Factorizations(a,[5,5]);
[ [ 2, 1, 2 ], [ 1, 3, 1 ], [ 0, 5, 0 ] ]
gap> MinimalGenerators(a);
[ [ 0, 2 ], [ 1, 1 ], [ 2, 0 ] ]

11.4.3 Elasticity (for the factorizations of an element in an affine semigroup)

▷ Elasticity(n, a) (operation)

▷ Elasticity(a, n) (operation)

▷ ElasticityOfFactorizationsElementWRTAffineSemigroup(n, a) (function)

a is an affine semigroup and n an element of a . The output is the maximum length divided by the
minimum length of the factorizations of n in terms of the minimal generating set of a .

Example
gap> a:=AffineSemigroup([[2,0],[0,2],[1,1]]);;
gap> Elasticity([5,5],a);
1
gap> Elasticity(a,[5,5]);
1
gap> ElasticityOfFactorizationsElementWRTAffineSemigroup([5,5],a);
1

11.4.4 Elasticity (for affine semigroups)

▷ Elasticity(a) (operation)

▷ ElasticityOfAffineSemigroup(a) (operation)

a is an affine semigroup. The output is the elasticity of a (defined as for numerical semigroups).
The procedure used is based on [Phi10], where it is shown that the elasticity can be computed by

using circuits. The set of circuits is calculated using [ES96].
Example

gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;
gap> Elasticity(a);
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1
gap> ElasticityOfAffineSemigroup(a);
1

11.4.5 DeltaSet (for an affine semigroup)

▷ DeltaSet(a) (operation)

▷ DeltaSetOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the Delta set of a (defined as for numerical semigroups).
The the procedure used is explained in [GSOW19].

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;
gap> DeltaSet(a);
[ ]
gap> s:=NumericalSemigroup(10,13,15,47);;
gap> a:=AsAffineSemigroup(s);;
gap> DeltaSetOfAffineSemigroup(a);
[ 1, 2, 3, 5 ]

11.4.6 CatenaryDegree (for affine semigroups)

▷ CatenaryDegree(a) (operation)

▷ CatenaryDegreeOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the catenary degree of a (defined as for numerical semi-
groups).

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;
gap> CatenaryDegree(a);
2
gap> CatenaryDegreeOfAffineSemigroup(a);
2

11.4.7 EqualCatenaryDegreeOfAffineSemigroup

▷ EqualCatenaryDegreeOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the equal catenary degree of a (defined as for numerical
semigroups).

This function relies on the results presented in [GSOSRN13].

11.4.8 HomogeneousCatenaryDegreeOfAffineSemigroup

▷ HomogeneousCatenaryDegreeOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the homogeneous catenary degree of a (defined as for
numerical semigroups).

This function is based on [GSOSRN13].
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11.4.9 MonotoneCatenaryDegreeOfAffineSemigroup

▷ MonotoneCatenaryDegreeOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the monotone catenary degree of a (defined as for numer-
ical semigroups), computed as explained in [Phi10].

Example
gap> a:=AffineSemigroup("inequalities",[[2,-1],[-1,3]]);
<Affine semigroup>
gap> GeneratorsOfAffineSemigroup(a);
[ [ 1, 1 ], [ 1, 2 ], [ 2, 1 ], [ 3, 1 ] ]
gap> CatenaryDegreeOfAffineSemigroup(a);
3
gap> EqualCatenaryDegreeOfAffineSemigroup(a);
2
gap> HomogeneousCatenaryDegreeOfAffineSemigroup(a);
3
gap> MonotoneCatenaryDegreeOfAffineSemigroup(a);
3

11.4.10 TameDegree (for affine semigroups)

▷ TameDegree(a) (operation)

▷ TameDegreeOfAffineSemigroup(a) (operation)

a is an affine semigroup. The output is the tame degree of a (defined as for numerical semigroups).
If a is given by equations (or its equations are known), then the procedure explained in [GSOW19] is
used.

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;
gap> TameDegree(a);
2
gap> TameDegreeOfAffineSemigroup(a);
2

11.4.11 OmegaPrimality (for an element in an affine semigroup)

▷ OmegaPrimality(v, a) (operation)

▷ OmegaPrimality(a, v) (operation)

▷ OmegaPrimalityOfElementInAffineSemigroup(v, a) (operation)

v is a list of nonnegative integers and a is an affine semigroup. The output is the omega primality
of a (defined as for numerical semigroups). Returns 0 if the element is not in the semigroup.

The implementation of this procedure is performed as explained in [BGSG11] (also, if the semi-
group has defining equations, then it takes advantage of this fact as explained in this reference).

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;
gap> OmegaPrimality(a,[5,5]);
6
gap> OmegaPrimality([5,5],a);
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6
gap> OmegaPrimalityOfElementInAffineSemigroup([5,5],a);
6

11.4.12 OmegaPrimality (for an affine semigroup)

▷ OmegaPrimality(a) (operation)

▷ OmegaPrimalityOfAffineSemigroup(a) (function)

a is an affine semigroup. The output is the omega primality of a (defined as for numerical semi-
groups).

Example
gap> a:=AffineSemigroup([2,0],[0,2],[1,1]);;
gap> OmegaPrimality(a);
2
gap> OmegaPrimalityOfAffineSemigroup(a);
2

11.5 Finitely generated ideals of affine semigroups

Let S be an affine semigroup contained in Nn for some positive integer n. We say that I ⊆ Zn is an
ideal of S if I + S ⊆ I. A subset X is a system of generators of I if I =

⋃
i∈X i+ S. And this system

is a minimal system if no proper subset of X generates I. In this section we present some procedures
dealing with finitely generated ideals of affine semigroups.

11.5.1 IdealOfAffineSemigroup

▷ IdealOfAffineSemigroup(l, S) (function)

▷ +(l, S) (function)

S is an affine semigroup, and l a list of lists of integers (with the same length as the dimension of
S ) or l is a list of integers with the same length as the dimension of S (a principal ideal). The output
is the ideal of S generated by l .

There are several shortcuts for this function, as shown in the example.
Example

gap> a:=AffineSemigroup([2,0],[0,2]);;
gap> i:=IdealOfAffineSemigroup([[1,0],[0,3]],a);
<Ideal of affine semigroup>
gap> [[1,0],[0,3]]+a=i;
true
gap> [0,1]+a;
<Ideal of affine semigroup>
gap> IsSubset(i,[1,0]+a);
true
gap> IsSubset([1,0]+a,i);
false
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11.5.2 IsIdealOfAffineSemigroup

▷ IsIdealOfAffineSemigroup(Obj) (function)

Tests if the object Obj is an ideal of an affine semigroup.
Example

gap> i:=[2,0]+AffineSemigroup([2,0],[0,2]);;
gap> IsIdealOfAffineSemigroup(i);
true

11.5.3 MinimalGenerators (for ideal of an affine semigroup)

▷ MinimalGenerators(I) (attribute)

I is an ideal of a numerical semigroup. The output is the minimal system of generators of I .
Example

gap> i:=[[1,0],[3,0]]+AffineSemigroup([2,0],[0,2]);;
gap> MinimalGenerators(i);
[ [ 1, 0 ] ]

11.5.4 Generators (for ideal of an affine semigroup)

▷ Generators(I) (attribute)

I is an ideal of an affine semigroup. The output is a system of generators of the ideal.
Example

gap> i:=[[1,0],[3,0]]+AffineSemigroup([2,0],[0,2]);;
gap> Generators(i);
[ [ 1, 0 ], [ 3, 0 ] ]

11.5.5 AmbientAffineSemigroupOfIdeal

▷ AmbientAffineSemigroupOfIdeal(I) (function)

I is an ideal of an affine semigroup, say S. The output is S.
Example

gap> i:=[2,0]+AffineSemigroup([2,0],[0,2]);;
gap> AmbientAffineSemigroupOfIdeal(i);
<Affine semigroup in 2 dimensional space, with 2 generators>

11.5.6 IsIntegral (for ideals of affine semigroups)

▷ IsIntegral(I) (property)

▷ IsIntegralIdealOfAffineSemigroup(I) (property)

I is an ideal of an affine semigroup, say S. Detects if I ⊆ S.
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Example
gap> a:=AffineSemigroup([2,0],[0,2]);;
gap> IsIntegral([1,0]+a);
false
gap> IsIntegral([2,0]+a);
true

11.5.7 BelongsToIdealOfAffineSemigroup

▷ BelongsToIdealOfAffineSemigroup(l, I) (function)

▷ \in(l, I) (operation)

I is an ideal of an affine semigroup, l is list of integers. The output is true if l belongs to I .
l in I can be used for short.

Example
gap> a:=AffineSemigroup([2,0],[0,2]);;
gap> i:=[2,0]+a;
<Ideal of affine semigroup>
gap> [2,0] in i;
true
gap> [4,4] in i;
true
gap> [1,2] in i;
false

11.5.8 SumIdealsOfAffinSemigroup

▷ SumIdealsOfAffinSemigroup(I, J) (function)

▷ +(I, J) (operation)

I, J are ideals of an affine semigroup. The output is the sum of both ideals {i+ j | i ∈ I , j ∈ J}.
Example

gap> a:=AffineSemigroup([2,0],[0,2]);;
gap> i:=[2,0]+a;
<Ideal of affine semigroup>
gap> j:=[[1,0],[0,1]]+a;
<Ideal of affine semigroup>
gap> i+j;
<Ideal of affine semigroup>
gap> MinimalGenerators(i+j);
[ [ 2, 1 ], [ 3, 0 ] ]

11.5.9 MultipleOfIdealOfAffineSemigroup

▷ MultipleOfIdealOfAffineSemigroup(n, I) (function)

▷ *(n, I) (function)

I is an ideal of an affine semigroup, n is a non negative integer. The output is the ideal I + · · ·+I
(n times).

n * I can be used for short.
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Example
gap> a:=AffineSemigroup([2,0],[0,2]);;
gap> j:=[[1,0],[0,1]]+a;
<Ideal of affine semigroup>
gap> 2*j;
<Ideal of affine semigroup>
gap> MinimalGenerators(2*j);
[ [ 0, 2 ], [ 1, 1 ], [ 2, 0 ] ]

11.5.10 TranslationOfIdealOfAffineSemigroup

▷ TranslationOfIdealOfAffineSemigroup(l, I) (function)

▷ +(l, I) (function)

Given an ideal I of an affine semigroup S and a list of integers l , returns an ideal of the numerical
semigroup S generated by {i1 + l, . . . , in + l}, where {i1, . . . , in} is the system of generators of I .

As a synonym to TranslationOfIdealOfNumericalSemigroup(l, I), the expression l + I
may be used.

Example
gap> a:=AffineSemigroup([2,0],[0,2]);;
gap> j:=[[1,0],[0,1]]+a;;
gap> [2,2]+j;
<Ideal of affine semigroup>
gap> MinimalGenerators([2,2]+j);
[ [ 2, 3 ], [ 3, 2 ] ]

11.5.11 UnionIdealsOfAffineSemigroup

▷ UnionIdealsOfAffineSemigroup(I, J) (function)

▷ Union(I, J) (function)

I, J are ideals of an affine semigroup. The output is the union of both ideals.
Example

gap> a:=AffineSemigroup([2,0],[0,2]);;
gap> i:=[2,0]+a;;
gap> j:=[[1,0],[0,1]]+a;;
gap> Union(i,j);
<Ideal of affine semigroup>
gap> MinimalGenerators(Union(i,j));
[ [ 0, 1 ], [ 1, 0 ], [ 2, 0 ] ]

11.5.12 Intersection (for ideals of affine semigroups)

▷ Intersection(I, J) (operation)

▷ IntersectionIdealsOfAffineSemigroup(I, J) (function)

Given two ideals I and J of an affine semigroup S returns the ideal of the affine semigroup S that
is the intersection of the ideals I and J .
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Example
gap> a:=AffineSemigroup([1,0],[0,1]);;
gap> i:=[2,0]+a;;
gap> j:=[[1,0],[0,1]]+a;;
gap> Intersection(i,j);
#I Using contejeanDevieAlgorithm for Hilbert Basis. Please, consider using NormalizInterface, 4ti2Interface or 4ti2gap.
#I Using contejeanDevieAlgorithm for Hilbert Basis. Please, consider using NormalizInterface, 4ti2Interface or 4ti2gap.
<Ideal of affine semigroup>
gap> MinimalGenerators(Intersection(i,j));
#I Using contejeanDevieAlgorithm for Hilbert Basis. Please, consider using NormalizInterface, 4ti2Interface or 4ti2gap.
#I Using contejeanDevieAlgorithm for Hilbert Basis. Please, consider using NormalizInterface, 4ti2Interface or 4ti2gap.
[ [ 2, 0 ] ]

11.5.13 MaximalIdeal (for affine semigroups)

▷ MaximalIdeal(S) (operation)

Returns the maximal ideal of the affine semigroup S .
Example

gap> a:=AffineSemigroup([2,0],[0,2]);;
gap> MinimalGenerators(MaximalIdeal(a));
[ [ 0, 2 ], [ 2, 0 ] ]



Chapter 12

Good semigroups

We will only cover here good semigroups of N2.
A good semigroup S is a submonoid of N2, with the following properties.
(G1) It is closed under infimums (minimum componentwise).
(G2) If a,b ∈ M and ai = bi for some i ∈ {1,2}, then there exists c ∈ M such that ci > ai = bi and

c j = min{a j,b j}, with j∈{1,2}\{i}.
(G3) There exists C ∈ Nn such that C+Nn ⊆ S.
Value semigroups of algebroid branches are good semigroups, but there are good semigroups that

are not of this form. Since good semigroups are closed under infimums, if C1 and C2 fulfill Ci+Nn ⊆ S,
then C1 ∧C2 +Nn ⊆ S. So there is a minimum C fulfilling C+Nn ⊆ S, which is called the conductor
of S.

The contents of this chapter are described in [DGSMT18].

12.1 Defining good semigroups

Good semigroups can be constructed with numerical duplications, amalgamations, cartesian products,
or by giving some of its generators and a candidate for conductor. Not every set determines a good
semigroup; this is because the intersection of good semigroups might not be a good semigroup. So
the terminology "good semigroup generated" by a set is a bit fragile.

12.1.1 IsGoodSemigroup

▷ IsGoodSemigroup(S) (function)

Detects if S is an object of type good semigroup.

12.1.2 NumericalSemigroupDuplication

▷ NumericalSemigroupDuplication(S, E) (function)

S is a numerical semigroup and E is an ideal of S with E ⊆ S. The output is S ▷◁ E = D∪ (E ×
E)∪{a∧b | a ∈ D,b ∈ E ×E}, where D = {(s,s) | s ∈ S}.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=6+s;;

135
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gap> dup:=NumericalSemigroupDuplication(s,e);
<Good semigroup>
gap> l:=Cartesian([1..11],[1..11]);;
gap> Intersection(dup,l);
[ [ 3, 3 ], [ 5, 5 ], [ 6, 6 ], [ 6, 7 ], [ 6, 8 ], [ 6, 9 ], [ 6, 10 ],

[ 6, 11 ], [ 7, 6 ], [ 7, 7 ], [ 8, 6 ], [ 8, 8 ], [ 9, 6 ], [ 9, 9 ],
[ 9, 10 ], [ 9, 11 ], [ 10, 6 ], [ 10, 9 ], [ 10, 10 ], [ 11, 6 ],
[ 11, 9 ], [ 11, 11 ] ]

gap> [384938749837,349823749827] in dup;
true

12.1.3 AmalgamationOfNumericalSemigroups

▷ AmalgamationOfNumericalSemigroups(S, E, b) (function)

S is a numerical semigroup, E is an ideal of a numerical semigroup T with E ⊆ T , and b is an
integer such that multiplication by b is a morphism from S to T , say g. The output is S ▷◁g E =
D∪ (g−1(E)×E)∪{a∧b | a ∈ D,b ∈ g−1(E)×E}, where D = {(s,bs) | s ∈ S}.

Example
gap> s:=NumericalSemigroup(2,3);;
gap> t:=NumericalSemigroup(3,4);;
gap> e:=3+t;;
gap> dup:=AmalgamationOfNumericalSemigroups(s,e,2);;
gap> [2,3] in dup;
true

12.1.4 CartesianProductOfNumericalSemigroups

▷ CartesianProductOfNumericalSemigroups(S, T) (function)

S and T are numerical semigroups. The output is S×T , which is a good semigroup.
Example

gap> s:=NumericalSemigroup(2,3);;
gap> t:=NumericalSemigroup(3,4);;
gap> IsGoodSemigroup(CartesianProductOfNumericalSemigroups(s,t));
true

12.1.5 GoodSemigroup

▷ GoodSemigroup(X, C) (function)

X is a list of points with nonnegative integer coordinates and C is a pair of nonnegative integers (a
list with two elements). If M is the affine and infimum closure of X , decides if it is a good semigroup,
and if so, outputs it.

Example
gap> G:=[[4,3],[7,13],[11,17],[14,27],[15,27],[16,20],[25,12],[25,16]];
[ [ 4, 3 ], [ 7, 13 ], [ 11, 17 ], [ 14, 27 ], [ 15, 27 ], [ 16, 20 ],

[ 25, 12 ], [ 25, 16 ] ]
gap> C:=[25,27];
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[ 25, 27 ]
gap> GoodSemigroup(G,C);
<Good semigroup>

12.2 Notable elements

Good semigroups are a natural extension of numerical semigroups, and so some of their notable ele-
ments are called in the same way as in the one dimensional case.

12.2.1 BelongsToGoodSemigroup

▷ BelongsToGoodSemigroup(v, S) (operation)

▷ \in(v, S) (operation)

S is a good semigroup and v is a pair of integers. The output is true if v is in S , and false
otherwise. Other ways to use this operation are \in(v,S) and v in S.

Example
gap> s:=NumericalSemigroup(2,3);;
gap> e:=6+s;;
gap> dup:=NumericalSemigroupDuplication(s,e);;
gap> BelongsToGoodSemigroup([2,2],dup);
true
gap> [2,2] in dup;
true
gap> [3,2] in dup;
false

12.2.2 Conductor (for good semigroups)

▷ Conductor(S) (function)

▷ ConductorOfGoodSemigroup(S) (function)

S is a good semigroup. The output is its conductor.
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=6+s;;
gap> dup:=NumericalSemigroupDuplication(s,e);
<Good semigroup>
gap> Conductor(dup);
[ 11, 11 ]
gap> ConductorOfGoodSemigroup(dup);
[ 11, 11 ]

12.2.3 Multiplicity (for good semigroups)

▷ Multiplicity(S) (attribute)

S is a good semigroup. The output is its multiplicity (the minimum of the nonzero elements of the
semigroup with respect to the usual partial order). It the semigroup is not local, it returns an error.
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Example
gap> s:=GoodSemigroup([[2,2],[3,3]],[4,4]);
<Good semigroup>
gap> Multiplicity(s);
[ 2, 2 ]

12.2.4 IsLocal (for good semigroups)

▷ IsLocal(S) (property)

S is a good semigroup. Returns true if the semigroup is local, and false otherwise.
Example

gap> s:=GoodSemigroup([[2,2],[3,3]],[4,4]);
<Good semigroup>
gap> IsLoca(s);
true

12.2.5 SmallElements (for good semigroup)

▷ SmallElements(S) (function)

▷ SmallElementsOfGoodSemigroup(S) (function)

S is a good semigroup. The output is its set of small elements, that is, the elements smaller than
its conductor with respect to the usual partial ordering.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=6+s;;
gap> dup:=NumericalSemigroupDuplication(s,e);
<Good semigroup>
gap> SmallElementsOfGoodSemigroup(dup);
[ [ 0, 0 ], [ 3, 3 ], [ 5, 5 ], [ 6, 6 ], [ 6, 7 ], [ 6, 8 ], [ 6, 9 ],

[ 6, 10 ], [ 6, 11 ], [ 7, 6 ], [ 7, 7 ], [ 8, 6 ], [ 8, 8 ], [ 9, 6 ],
[ 9, 9 ], [ 9, 10 ], [ 9, 11 ], [ 10, 6 ], [ 10, 9 ], [ 10, 10 ],
[ 11, 6 ], [ 11, 9 ], [ 11, 11 ] ]

12.2.6 RepresentsSmallElementsOfGoodSemigroup

▷ RepresentsSmallElementsOfGoodSemigroup(X) (function)

X is a list of points in the nonnegative orthant of the plane with integer coordinates. Determines if
it represents the set of small elements of a good semigroup.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=6+s;;
gap> dup:=NumericalSemigroupDuplication(s,e);
<Good semigroup>
gap> SmallElementsOfGoodSemigroup(dup);
[ [ 0, 0 ], [ 3, 3 ], [ 5, 5 ], [ 6, 6 ], [ 6, 7 ], [ 6, 8 ], [ 6, 9 ], [ 6, 10 ],

[ 6, 11 ], [ 7, 6 ], [ 7, 7 ], [ 8, 6 ], [ 8, 8 ], [ 9, 6 ], [ 9, 9 ], [ 9, 10 ],
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[ 9, 11 ], [ 10, 6 ], [ 10, 9 ], [ 10, 10 ], [ 11, 6 ], [ 11, 9 ], [ 11, 11 ] ]
gap> RepresentsSmallElementsOfGoodSemigroup(last);
true

12.2.7 GoodSemigroupBySmallElements

▷ GoodSemigroupBySmallElements(X) (function)

X is a list of points in the nonnegative orthant of the plane with integer coordinates. Determines
if it represents the set of small elements of a good semigroup, and then outputs the good semigroup
having X as set of small elements.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=6+s;;
gap> dup:=NumericalSemigroupDuplication(s,e);
<Good semigroup>
gap> SmallElementsOfGoodSemigroup(dup);
[ [ 0, 0 ], [ 3, 3 ], [ 5, 5 ], [ 6, 6 ], [ 6, 7 ], [ 6, 8 ], [ 6, 9 ], [ 6, 10 ],

[ 6, 11 ], [ 7, 6 ], [ 7, 7 ], [ 8, 6 ], [ 8, 8 ], [ 9, 6 ], [ 9, 9 ], [ 9, 10 ],
[ 9, 11 ], [ 10, 6 ], [ 10, 9 ], [ 10, 10 ], [ 11, 6 ], [ 11, 9 ], [ 11, 11 ] ]

gap> G:=GoodSemigroupBySmallElements(last);
<Good semigroup>
gap> dup=G;
true

12.2.8 MaximalElementsOfGoodSemigroup

▷ MaximalElementsOfGoodSemigroup(S) (attribute)

S is a good semigroup. The output is the set of elements (x,y) of S with the following property:
there is no other element (x′,y′) in S with (x,y)≤ (x′,y′) sharing a coordinate with (x,y).

Example
gap> G:=[[4,3],[7,13],[11,17]];;
gap> g:=GoodSemigroup(G,[11,17]);;
gap> mx:=MaximalElementsOfGoodSemigroup(g);
[ [ 0, 0 ], [ 4, 3 ], [ 7, 13 ], [ 8, 6 ] ]

12.2.9 IrreducibleMaximalElementsOfGoodSemigroup

▷ IrreducibleMaximalElementsOfGoodSemigroup(S) (attribute)

S is a good semigroup. The output is the set of elements nonzero maximal elements that cannot
be expressed as a sum of two nonzero maximal elements of the good semigroup.

Example
gap> G:=[[4,3],[7,13],[11,17]];;
gap> g:=GoodSemigroup(G,[11,17]);;
gap> IrreducibleMaximalElementsOfGoodSemigroup(g);
[ [ 4, 3 ], [ 7, 13 ] ]
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12.2.10 GoodSemigroupByMaximalElements

▷ GoodSemigroupByMaximalElements(S, T, M, C) (function)

S and T are numerical semigroups, M is a list of pairs in S×T . C is the conductor, and thus a pair
of nonnegative integers. The output is the set of elements of S×T that are not above an element in
M , that is, if they share a coordinate with an element in M , then they must be smaller or equal to that
element with respect to the usual partial ordering. The output is a good semigroup, if M is an correct
set of maximal elements.

Example
gap> G:=[[4,3],[7,13],[11,17]];;
gap> g:=GoodSemigroup(G,[11,17]);;
gap> sm:=SmallElements(g);;
gap> mx:=MaximalElementsOfGoodSemigroup(g);;
gap> s:=NumericalSemigroupBySmallElements(Set(sm,x->x[1]));;
gap> t:=NumericalSemigroupBySmallElements(Set(sm,x->x[2]));;
gap> Conductor(g);
[ 11, 15 ]
gap> gg:=GoodSemigroupByMaximalElements(s,t,mx,[11,15]);
<Good semigroup>
gap> gg=g;
true

12.2.11 MinimalGoodGenerators

▷ MinimalGoodGenerators(S) (attribute)

▷ MinimalGoodGeneratingSystemOfGoodSemigroup(S) (function)

S is a good semigroup. The output is its minimal good generating system (which is unique in the
local case, [DGSMT18]).

MinimalGoodGeneratingSystemOfGoodSemigroup and MinimalGoodGenerators are syn-
onyms.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=6+s;;
gap> dup:=NumericalSemigroupDuplication(s,e);
<Good semigroup>
gap> MinimalGoodGenerators(dup);
[ [ 3, 3 ], [ 5, 5 ], [ 6, 11 ], [ 7, 7 ], [ 11, 6 ] ]
gap> MinimalGoodGeneratingSystemOfGoodSemigroup(dup);
[ [ 3, 3 ], [ 5, 5 ], [ 6, 11 ], [ 7, 7 ], [ 11, 6 ] ]

12.2.12 ProjectionOfAGoodSemigroup

▷ ProjectionOfAGoodSemigroup(S, num) (function)

S is a good semigroup and num is an integer, 1 or 2, which identify the numerical semigroup
projection to compute. The output is the projection Si = {αi | (α1,α2) ∈ S}.
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Example
gap> S:=GoodSemigroupBySmallElements([ [ 0, 0 ], [ 4, 5 ], [ 4, 6 ], [ 8, 5 ],
[ 8, 7 ], [ 8, 8 ], [ 8, 10 ], [ 11, 5 ], [ 11, 7], [ 11, 8 ], [ 11, 10 ],
[ 12, 5 ], [ 12, 7 ], [ 12, 8 ], [ 12, 10 ], [ 15, 5 ], [ 15, 7 ], [ 15, 8 ],
[ 15, 10 ], [ 16, 5 ], [ 16, 7 ], [ 16, 8 ], [ 16, 10 ], [ 18, 5 ], [ 19, 7 ],
[ 19, 8 ], [ 19, 10 ], [ 20, 7 ], [ 20, 8 ], [ 20, 10 ], [ 22, 7 ], [ 22, 8 ],
[ 22, 10 ], [ 23, 7 ], [ 23, 8 ], [ 23, 10 ], [ 24, 7 ], [ 24, 8 ], [ 24, 10 ],
[ 25, 7 ], [ 25, 8 ], [ 26, 7 ], [ 26, 10 ] ]);
<Good semigroup>
gap> S1:=ProjectionOfGoodSemigroup(S,1);;
gap> SmallElements(S1);
[ 0, 4, 8, 11, 12, 15, 16, 18, 19, 20, 22 ]
gap> S2:=ProjectionOfGoodSemigroup(S,2);;
gap> SmallElements(S2);
[ 0, 5, 6, 7, 8, 10 ]

12.2.13 Genus (for good semigroup)

▷ Genus(S) (attribute)

▷ GenusOfGoodSemigroup(S) (function)

S is a good semigroup. The output is the genus of S , defined as g(S) = d(N2 \C(S)), where
C(S) = {(α1,α2) ∈ S | (α1,α2)≥ c}, and c is the conductor.

Example
gap> S:=GoodSemigroupBySmallElements([ [ 0, 0 ], [ 4, 5 ], [ 4, 6 ], [ 8, 5 ],
[ 8, 7 ], [ 8, 8 ], [ 8, 10 ], [ 11, 5 ], [ 11, 7], [ 11, 8 ], [ 11, 10 ],
[ 12, 5 ], [ 12, 7 ], [ 12, 8 ], [ 12, 10 ], [ 15, 5 ], [ 15, 7 ], [ 15, 8 ],
[ 15, 10 ], [ 16, 5 ], [ 16, 7 ], [ 16, 8 ], [ 16, 10 ], [ 18, 5 ], [ 19, 7 ],
[ 19, 8 ], [ 19, 10 ], [ 20, 7 ], [ 20, 8 ], [ 20, 10 ], [ 22, 7 ], [ 22, 8 ],
[ 22, 10 ], [ 23, 7 ], [ 23, 8 ], [ 23, 10 ], [ 24, 7 ], [ 24, 8 ], [ 24, 10 ],
[ 25, 7 ], [ 25, 8 ], [ 26, 7 ], [ 26, 10 ] ]);
<Good semigroup>
gap> GenusOfGoodSemigroup(S);
21

12.2.14 Length (for good semigroup)

▷ Length(S) (attribute)

▷ LengthOfGoodSemigroup(S) (function)

S is a good semigroup. The output is the lenght of S , defined as g(S) = d(S \C(S)), where
C(S) = {(α1,α2) ∈ S | (α1,α2)≥ c} (c is the conductor).

When the good semigroup is the good semigroup of valuation of a ring R, it corresponds to the
length of R/C as R-module, with C the conductor of R. See [BDF00b], [BDF00a], [DdlM88].

Example
gap> S:=GoodSemigroupBySmallElements([ [ 0, 0 ], [ 4, 5 ], [ 4, 6 ], [ 8, 5 ],
[ 8, 7 ], [ 8, 8 ], [ 8, 10 ], [ 11, 5 ], [ 11, 7], [ 11, 8 ], [ 11, 10 ],
[ 12, 5 ], [ 12, 7 ], [ 12, 8 ], [ 12, 10 ], [ 15, 5 ], [ 15, 7 ], [ 15, 8 ],
[ 15, 10 ], [ 16, 5 ], [ 16, 7 ], [ 16, 8 ], [ 16, 10 ], [ 18, 5 ], [ 19, 7 ],
[ 19, 8 ], [ 19, 10 ], [ 20, 7 ], [ 20, 8 ], [ 20, 10 ], [ 22, 7 ], [ 22, 8 ],
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[ 22, 10 ], [ 23, 7 ], [ 23, 8 ], [ 23, 10 ], [ 24, 7 ], [ 24, 8 ], [ 24, 10 ],
[ 25, 7 ], [ 25, 8 ], [ 26, 7 ], [ 26, 10 ] ]);
<Good semigroup>
gap> Length(S);
15
gap> LengthOfGoodSemigroup(S);
15

12.2.15 AperySetOfGoodSemigroup

▷ AperySetOfGoodSemigroup(S) (function)

S is a good semigroup. The output is the list of the Apery set of S , defined as Ap(S) = {α ∈ S |
α − e /∈ S, where e is the multiplicity of the good semigroup.

Example
gap> S:=GoodSemigroupBySmallElements([ [ 0, 0 ], [ 4, 5 ], [ 4, 6 ], [ 8, 5 ],
[ 8, 7 ], [ 8, 8 ], [ 8, 10 ], [ 11, 5 ], [ 11, 7], [ 11, 8 ], [ 11, 10 ],
[ 12, 5 ], [ 12, 7 ], [ 12, 8 ], [ 12, 10 ], [ 15, 5 ], [ 15, 7 ], [ 15, 8 ],
[ 15, 10 ], [ 16, 5 ], [ 16, 7 ], [ 16, 8 ], [ 16, 10 ], [ 18, 5 ], [ 19, 7 ],
[ 19, 8 ], [ 19, 10 ], [ 20, 7 ], [ 20, 8 ], [ 20, 10 ], [ 22, 7 ], [ 22, 8 ],
[ 22, 10 ], [ 23, 7 ], [ 23, 8 ], [ 23, 10 ], [ 24, 7 ], [ 24, 8 ], [ 24, 10 ],
[ 25, 7 ], [ 25, 8 ], [ 26, 7 ], [ 26, 10 ] ]);
<Good semigroup>
gap> AperySetOfGoodSemigroup(S);
[ [ 0, 0 ], [ 4, 6 ], [ 8, 5 ], [ 8, 7 ], [ 8, 8 ], [ 8, 12 ], [ 8, 13 ],

[ 8, 14 ], [ 8, 15 ], [ 11, 5 ], [ 11, 7 ], [ 11, 8 ], [ 11, 10 ],
[ 11, 11 ], [ 11, 12 ], [ 11, 13 ], [ 11, 14 ], [ 11, 15 ], [ 12, 5 ],
[ 12, 7 ], [ 12, 8 ], [ 12, 11 ], [ 12, 14 ], [ 15, 5 ], [ 15, 7 ],
[ 15, 8 ], [ 15, 11 ], [ 15, 14 ], [ 16, 5 ], [ 16, 7 ], [ 16, 8 ],
[ 16, 11 ], [ 16, 14 ], [ 18, 5 ], [ 19, 7 ], [ 19, 8 ], [ 19, 11 ],
[ 19, 14 ], [ 20, 7 ], [ 20, 8 ], [ 20, 11 ], [ 20, 14 ], [ 22, 7 ],
[ 22, 8 ], [ 22, 11 ], [ 22, 12 ], [ 22, 13 ], [ 22, 14 ], [ 22, 15 ],
[ 23, 7 ], [ 23, 8 ], [ 23, 10 ], [ 23, 11 ], [ 23, 14 ], [ 24, 7 ],
[ 24, 8 ], [ 24, 10 ], [ 24, 11 ], [ 24, 14 ], [ 25, 7 ], [ 25, 8 ],
[ 26, 7 ], [ 26, 10 ], [ 26, 11 ], [ 26, 14 ], [ 27, 7 ], [ 27, 10 ],
[ 27, 11 ], [ 27, 14 ], [ 28, 7 ], [ 28, 10 ], [ 28, 11 ], [ 28, 14 ],
[ 29, 7 ], [ 29, 10 ], [ 29, 11 ], [ 29, 14 ], [ 29, 15 ], [ 30, 7 ],
[ 30, 10 ], [ 30, 11 ], [ 30, 13 ], [ 30, 14 ] ]

12.2.16 StratifiedAperySetOfGoodSemigroup

▷ StratifiedAperySetOfGoodSemigroup(S) (function)

S is a good semigroup. The function prints the number of level of the Apery Set. The output is a
list where the ith element is the ith level of the Apery Set of S .

Example
gap> S:=GoodSemigroupBySmallElements([ [ 0, 0 ], [ 4, 5 ], [ 4, 6 ], [ 8, 5 ],
[ 8, 7 ], [ 8, 8 ], [ 8, 10 ], [ 11, 5 ], [ 11, 7], [ 11, 8 ], [ 11, 10 ],
[ 12, 5 ], [ 12, 7 ], [ 12, 8 ], [ 12, 10 ], [ 15, 5 ], [ 15, 7 ], [ 15, 8 ],
[ 15, 10 ], [ 16, 5 ], [ 16, 7 ], [ 16, 8 ], [ 16, 10 ], [ 18, 5 ], [ 19, 7 ],
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[ 19, 8 ], [ 19, 10 ], [ 20, 7 ], [ 20, 8 ], [ 20, 10 ], [ 22, 7 ], [ 22, 8 ],
[ 22, 10 ], [ 23, 7 ], [ 23, 8 ], [ 23, 10 ], [ 24, 7 ], [ 24, 8 ], [ 24, 10 ],
[ 25, 7 ], [ 25, 8 ], [ 26, 7 ], [ 26, 10 ] ]);;
gap> StratifiedAperySetOfGoodSemigroup(S);
[ [ [ 0, 0 ] ], [ [ 4, 6 ], [ 8, 5 ], [ 11, 5 ] ],

[ [ 8, 7 ], [ 11, 7 ], [ 12, 5 ], [ 15, 5 ], [ 16, 5 ], [ 18, 5 ] ],
[ [ 8, 8 ], [ 11, 8 ], [ 12, 7 ], [ 15, 7 ], [ 16, 7 ], [ 19, 7 ],

[ 20, 7 ], [ 22, 7 ], [ 23, 7 ], [ 24, 7 ], [ 25, 7 ] ],
[ [ 8, 12 ], [ 8, 13 ], [ 8, 14 ], [ 11, 10 ], [ 11, 11 ], [ 12, 8 ],

[ 15, 8 ], [ 16, 8 ], [ 19, 8 ], [ 20, 8 ], [ 22, 8 ], [ 23, 8 ],
[ 24, 8 ], [ 25, 8 ], [ 26, 7 ], [ 27, 7 ], [ 28, 7 ], [ 29, 7 ],
[ 30, 7 ] ],

[ [ 8, 15 ], [ 11, 12 ], [ 11, 13 ], [ 11, 14 ], [ 12, 11 ], [ 15, 11 ],
[ 16, 11 ], [ 19, 11 ], [ 20, 11 ], [ 22, 11 ], [ 23, 10 ], [ 24, 10 ],
[ 26, 10 ], [ 27, 10 ], [ 28, 10 ], [ 29, 10 ], [ 30, 10 ] ],

[ [ 11, 15 ], [ 12, 14 ], [ 15, 14 ], [ 16, 14 ], [ 19, 14 ], [ 20, 14 ],
[ 22, 12 ], [ 22, 13 ], [ 22, 14 ], [ 23, 11 ], [ 24, 11 ], [ 26, 11 ],
[ 27, 11 ], [ 28, 11 ], [ 29, 11 ], [ 30, 11 ] ],

[ [ 22, 15 ], [ 23, 14 ], [ 24, 14 ], [ 26, 14 ], [ 27, 14 ], [ 28, 14 ],
[ 29, 14 ], [ 30, 13 ] ], [ [ 29, 15 ], [ 30, 14 ] ] ]

12.3 Symmetric good semigroups

The concept of symmetry in a numerical semigroup extends to good semigroups. Here we describe a
test for symmetry.

12.3.1 IsSymmetric (for good semigroups)

▷ IsSymmetric(S) (attribute)

▷ IsSymmetricGoodSemigroup(S) (attribute)

S is a good semigroup. Determines if S is a symmetric good semigroup.
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=CanonicalIdealOfNumericalSemigroup(s);;
gap> e:=15+e;;
gap> dup:=NumericalSemigroupDuplication(s,e);;
gap> IsSymmetric(dup);
true
gap> IsSymmetricGoodSemigroup(dup);
true

12.4 Arf good closure

The definition of Arf good semigroup is similar to the definition of Arf numerical semigroup. In this
section, we provide a function to compute the Arf good closure of a good semigroup.
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12.4.1 ArfClosure (of good semigroup)

▷ ArfClosure(S) (operation)

▷ ArfGoodSemigroupClosure(S) (function)

S is a good semigroup. Determines the Arf good semigroup closure of S .
Example

gap> G:=[[3,3],[4,4],[5,4],[4,6]];
[ [ 3, 3 ], [ 4, 4 ], [ 5, 4 ], [ 4, 6 ] ]
gap> C:=[6,6];
[ 6, 6 ]
gap> S:=GoodSemigroup(G,C);
<Good semigroup>
gap> SmallElements(S);
[ [ 0, 0 ], [ 3, 3 ], [ 4, 4 ], [ 4, 6 ], [ 5, 4 ], [ 6, 6 ] ]
gap> A:=ArfClosure(S);
<Good semigroup>
gap> SmallElements(A);
[ [ 0, 0 ], [ 3, 3 ], [ 4, 4 ] ]
gap> ArfGoodSemigroupClosure(S) = ArfClosure(S);
true

12.5 Good ideals

A relative ideal I of a relative good semigroup M is a relative good ideal if I fulfills conditions (G1)
and (G2) of the definition of good semigroup.

12.5.1 GoodIdeal

▷ GoodIdeal(X, S) (function)

X is a list of points with nonnegative integer coordinates and S is good semigroup. Decides if the
closure of X +S under infimums is a relative good ideal of S, and if so, outputs it.

Example
gap> G:=[[4,3],[7,13],[11,17],[14,27],[15,27],[16,20],[25,12],[25,16]];
[ [ 4, 3 ], [ 7, 13 ], [ 11, 17 ], [ 14, 27 ], [ 15, 27 ], [ 16, 20 ],
[ 25, 12 ], [ 25, 16 ] ]
gap> C:=[25,27];
[ 25, 27 ]
gap> g := GoodSemigroup(G,C);
<Good semigroup>
gap> i:=GoodIdeal([[2,3]],g);
<Good ideal of good semigroup>

12.5.2 GoodGeneratingSystemOfGoodIdeal

▷ GoodGeneratingSystemOfGoodIdeal(I) (function)

I is a good ideal of a good semigroup. The output is a good generating system of I .
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Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=10+s;;
gap> d:=NumericalSemigroupDuplication(s,e);;
gap> e:=GoodIdeal([[2,3],[3,2],[2,2]],d);;
gap> GoodGeneratingSystemOfGoodIdeal(e);
[ [ 2, 2 ], [ 2, 3 ], [ 3, 2 ] ]

12.5.3 AmbientGoodSemigroupOfGoodIdeal

▷ AmbientGoodSemigroupOfGoodIdeal(I) (function)

If I is a good ideal of a good semigroup M, then the output is M. The output is a good generating
system of I .

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=10+s;;
gap> a:=AmalgamationOfNumericalSemigroups(s,e,5);;
gap> e:=GoodIdeal([[2,3],[3,2],[2,2]],a);;
gap> a=AmbientGoodSemigroupOfGoodIdeal(e);
true

12.5.4 MinimalGoodGeneratingSystemOfGoodIdeal

▷ MinimalGoodGeneratingSystemOfGoodIdeal(I) (function)

I is a good ideal of a good semigroup. The output is the minimal good generating system of I .
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=10+s;;
gap> d:=NumericalSemigroupDuplication(s,e);;
gap> e:=GoodIdeal([[2,3],[3,2],[2,2]],d);;
gap> MinimalGoodGeneratingSystemOfGoodIdeal(e);
[ [ 2, 3 ], [ 3, 2 ] ]

12.5.5 BelongsToGoodIdeal

▷ BelongsToGoodIdeal(v, I) (operation)

▷ \in(v, I) (operation)

I is a good ideal of a good semigroup and v is a pair of integers. The output is true if v is in I ,
and false otherwise. Other ways to use this operation are \in(v,I) and v in I.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=10+s;;
gap> d:=NumericalSemigroupDuplication(s,e);;
gap> e:=GoodIdeal([[2,3],[3,2]],d);;
gap> [1,1] in e;
false
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gap> [2,2] in e;
true

12.5.6 SmallElements (for good ideal)

▷ SmallElements(I) (function)

▷ SmallElementsOfGoodIdeal(I) (function)

I is a good ideal. The output is its set of small elements, that is, the elements smaller than its
conductor and larger than its minimum element (with respect to the usual partial ordering).

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=10+s;;
gap> d:=NumericalSemigroupDuplication(s,e);;
gap> e:=GoodIdeal([[2,3],[3,2]],d);;
gap> SmallElements(e);
[ [ 2, 2 ], [ 2, 3 ], [ 3, 2 ], [ 5, 5 ], [ 5, 6 ], [ 6, 5 ], [ 7, 7 ] ]

12.5.7 CanonicalIdealOfGoodSemigroup

▷ CanonicalIdealOfGoodSemigroup(S) (function)

S is a good semigroup. The output is the canonical ideal of S .
Example

gap> s:=NumericalSemigroup(3,5,7);;
gap> e:=10+s;;
gap> d:=NumericalSemigroupDuplication(s,e);;
gap> c:=CanonicalIdealOfGoodSemigroup(d);;
gap> MinimalGoodGeneratingSystemOfGoodIdeal(c);
[ [ 0, 0 ], [ 2, 2 ] ]

12.5.8 AbsoluteIrreduciblesOfGoodSemigroup

▷ AbsoluteIrreduciblesOfGoodSemigroup(S) (function)

S is a good semigroup; this function returns the absolute irreducibles of S : nonzero elements of the
semigroup that are irreducible with respect to both operations (that is, in the semiring (S,min,+)). The
notations (x,∞) and (∞,y) denote that starting from a certain element the respective line is included in
the semigroup.

Example
gap> S:=GoodSemigroupBySmallElements([ [ 0, 0 ], [ 5, 4 ], [ 5, 8 ], [ 5, 11 ],
[ 5, 12 ], [ 5, 13 ], [ 6, 4 ], [ 7, 8 ], [ 7, 11 ], [ 7, 12 ], [ 7, 14 ],
[ 8, 8 ], [ 8, 11 ], [ 8, 12 ], [ 8, 15 ], [ 8, 16 ], [ 8, 17 ], [ 8, 18 ],
[ 10, 8 ], [ 10, 11 ], [ 10, 12 ], [ 10, 15 ], [ 10, 16 ], [ 10, 17 ],
[ 10, 18 ], [ 11, 8 ], [ 11, 11 ], [ 11, 12 ], [ 11, 15 ], [ 11, 16 ],
[ 11, 17 ], [ 12, 8 ], [ 12, 11 ], [ 12, 12 ], [ 12, 15 ], [ 12, 16 ],
[ 12, 18 ] ]);
<Good semigroup>
gap> AbsoluteIrreduciblesOfGoodSemigroup(S);
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[ [ 5, 13 ], [ 6, 4 ], [ 7, 14 ], [ 8, infinity ], [ 10, infinity ],
[ 12, infinity ], [ infinity, 8 ], [ infinity, 11 ], [ infinity, 18 ] ]

12.5.9 TracksOfGoodSemigroup

▷ TracksOfGoodSemigroup(S) (function)

S is a good semigroup. This function returns the tracks of the good semigroup (see [MZ20] for the
definition of track). Tracks behave like minimal generators in a numerical semigroups, because remov-
ing the elements of a track from the semigroup, with the exception of the infimums of incomparable
elements, we obtain a good semigroup contained in S .

A track T (α1, . . . ,αn) is represented with the list of the elements α1, . . . ,αn that determine it
completely.

Example
gap> S:=GoodSemigroupBySmallElements([ [ 0, 0 ], [ 4, 3 ], [ 8, 6 ], [ 8, 7 ],
[ 12, 6 ], [ 12, 9 ], [ 12, 10 ], [ 16, 6 ], [ 16, 9 ], [ 16, 12 ], [ 16, 13 ],
[ 16, 14 ], [ 18, 6 ], [ 20, 9 ], [ 20, 12 ], [ 20, 13 ], [ 20, 15 ], [ 20, 16 ],
[ 20, 17 ], [ 22, 9 ], [ 24, 12 ], [ 24, 13 ], [ 24, 15 ], [ 24, 16 ], [ 24, 18 ],
[ 26, 12 ], [ 26, 13 ], [ 28, 12 ], [ 28, 15 ], [ 28, 16 ], [ 28, 18 ],[ 30, 12 ],
[ 30, 15 ], [ 30, 16 ], [ 30, 18 ] ]);
<Good semigroup>
gap> TracksOfGoodSemigroup(S);
[ [ [ 4, 3 ] ], [ [ 8, 7 ], [ 18, 6 ] ],

[ [ 30, infinity ], [ infinity, 16 ] ],
[ [ 31, infinity ], [ infinity, 16 ] ], [ [ 31, infinity ] ],
[ [ 33, infinity ], [ infinity, 16 ] ], [ [ 33, infinity ] ] ]



Chapter 13

External packages

The use of the packages NormalizInterface [GHS14] (an interface to Normalize [BIRC14]; or
in its absence 4ti2Interface[Gut], an interface to 4ti2[tt]), SingularInterface (an interface to
Singular [DGPS12]; or in its absence Singular [CdG12]) is highly recommended for many of the
functions presented in this chapter. However, whenever possible a method not depending on these
packages is also provided (though slower). The package tests if the user has downloaded any of the
above packages, and if so puts NumSgpsCanUsePackage to true, where Package is any of the above.

13.1 Using external packages

As mentioned above some methods are specifically implemented to take advantage of several external
packages. The following functions can be used in case these packages have not been loaded prior to
numericalsgps.

13.1.1 NumSgpsUse4ti2

▷ NumSgpsUse4ti2() (function)

Tries to load the package 4ti2Interface. If the package is available, then it also loads methods
implemented using functions in this package.

13.1.2 NumSgpsUse4ti2gap

▷ NumSgpsUse4ti2gap() (function)

Tries to load the package 4ti2gap. If the package is available, then it also loads methods imple-
mented using functions in this package.

13.1.3 NumSgpsUseNormalize

▷ NumSgpsUseNormalize() (function)

Tries to load the package NormalizInterface. If the package is available, then it also loads
methods implemented using functions in this package.

148
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13.1.4 NumSgpsUseSingular

▷ NumSgpsUseSingular() (function)

Tries to load the package singular. If the package is available, then it also loads methods imple-
mented using functions in this package.

To prevent incompatibilities, the package will not load if SingularInterface has been already
loaded.

13.1.5 NumSgpsUseSingularInterface

▷ NumSgpsUseSingularInterface() (function)

Tries to load the package SingularInterface. If the package is available, then it also loads
methods implemented using functions in this package.

To prevent incompatibilities, the package will not load if singular has been already loaded.



Chapter 14

Dot functions

14.1 Dot functions

We provide several functions to translate graphs, Hasse diagrams or trees related to numerical and
affine semigroups to the dot language. This can either be used with graphviz or any javascript library
that interprets dot language. We give the alternative to use DotSplash that uses viz.js.

14.1.1 DotBinaryRelation

▷ DotBinaryRelation(br) (function)

br is a binary relation. Returns a GraphViz dot that represents the binary relation br. The set of
vertices of the resulting graph is the source of br. Edges join those elements which are related with
respect to br.

Example
gap> br:=BinaryRelationByElements(Domain([1,2]), [DirectProductElement([1,2])]);
<general mapping: <object> -> <object> >
gap> Print(DotBinaryRelation(br));
digraph NSGraph{rankdir = TB; edge[dir=back];
1 [label="1"];
2 [label="2"];
2 -> 1;
}

14.1.2 HasseDiagramOfNumericalSemigroup

▷ HasseDiagramOfNumericalSemigroup(S, A) (function)

S is a numerical semigroup and A is a set of integers. Returns a binary relation which is the Hasse
diagram of A with respect to the ordering a ⪯ b if b−a in S.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> HasseDiagramOfNumericalSemigroup(s,[1,2,3]);
<general mapping: <object> -> <object> >
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14.1.3 HasseDiagramOfBettiElementsOfNumericalSemigroup

▷ HasseDiagramOfBettiElementsOfNumericalSemigroup(S) (function)

S is a numerical semigroup. Applies HasseDiagramOfBettiElementsOfNumericalSemigroup
with arguments S and its Betti elements.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> HasseDiagramOfBettiElementsOfNumericalSemigroup(s);
<general mapping: <object> -> <object> >

14.1.4 HasseDiagramOfAperyListOfNumericalSemigroup

▷ HasseDiagramOfAperyListOfNumericalSemigroup(S[, n]) (function)

S is a numerical semigroup, n is an integer (optional, if not provided, the multiplicity of the
semigroup is taken as its value). Applies HasseDiagramOfBettiElementsOfNumericalSemigroup
(14.1.3) with arguments S and the Apéry set of S with respect to n.

Example
gap> s:=NumericalSemigroup(3,5,7);;
gap> HasseDiagramOfAperyListOfNumericalSemigroup(s);
<general mapping: <object> -> <object> >
gap> HasseDiagramOfAperyListOfNumericalSemigroup(s,10);
<general mapping: <object> -> <object> >

14.1.5 DotTreeOfGluingsOfNumericalSemigroup

▷ DotTreeOfGluingsOfNumericalSemigroup(S) (function)

S is a numerical semigroup. It outputs a tree (in dot) representing the many ways S can be decom-
posed as a gluing of numerical semigroups (and goes recursively in the factors).

Example
gap> s:=NumericalSemigroup(4,6,9);;
gap> Print(DotOverSemigroupsNumericalSemigroup(s));
digraph NSGraph{rankdir = TB;
0 [label="< 4, 6, 9 >"];
0 [label="< 4, 6, 9 >", style=filled];
1 [label="< 4 > + < 6, 9 >" , shape=box];
2 [label="< 1 >", style=filled];
3 [label="< 2, 3 >", style=filled];
4 [label="< 2 > + < 3 >" , shape=box];
5 [label="< 1 >", style=filled];
6 [label="< 1 >", style=filled];
7 [label="< 4, 6 > + < 9 >" , shape=box];
8 [label="< 2, 3 >", style=filled];
10 [label="< 2 > + < 3 >" , shape=box];
11 [label="< 1 >", style=filled];
12 [label="< 1 >", style=filled];
9 [label="< 1 >", style=filled];
0 -> 1;
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1 -> 2;
1 -> 3;
3 -> 4;
4 -> 5;
4 -> 6;
0 -> 7;
7 -> 8;
7 -> 9;
8 -> 10;
10 -> 11;
10 -> 12;
}

〈 4, 6, 9 〉

〈 4 〉 + 〈 6, 9 〉 〈 4, 6 〉 + 〈 9 〉

〈 1 〉 〈 2, 3 〉

〈 2 〉 + 〈 3 〉

〈 1 〉 〈 1 〉

〈 2, 3 〉 〈 1 〉

〈 2 〉 + 〈 3 〉

〈 1 〉 〈 1 〉

14.1.6 DotOverSemigroupsNumericalSemigroup

▷ DotOverSemigroupsNumericalSemigroup(S) (function)

S is a numerical semigroup. It outputs the Hasse diagram (in dot) of oversemigroups of S.
Example

gap> s:=NumericalSemigroup(4,6,9);;
gap> Print(DotOverSemigroupsNumericalSemigroup(s));
digraph NSGraph{rankdir = TB; edge[dir=back];
1 [label="< 1 >", style=filled];
2 [label="< 2, 3 >", style=filled];
3 [label="< 2, 5 >", style=filled];
4 [label="< 2, 7 >", style=filled];
5 [label="< 2, 9 >", style=filled];
6 [label="< 3, 4, 5 >", style=filled];
7 [label="< 3, 4 >", style=filled];
8 [label="< 4, 5, 6, 7 >"];
9 [label="< 4, 5, 6 >", style=filled];
10 [label="< 4, 6, 7, 9 >"];
11 [label="< 4, 6, 9, 11 >"];
12 [label="< 4, 6, 9 >", style=filled];
1 -> 2;
2 -> 3;
2 -> 6;
3 -> 4;
3 -> 8;
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4 -> 5;
4 -> 10;
5 -> 11;
6 -> 7;
6 -> 8;
7 -> 10;
8 -> 9;
8 -> 10;
9 -> 11;
10 -> 11;
11 -> 12;
}

14.1.7 DotRosalesGraph (for affine semigroup)

▷ DotRosalesGraph(n, S) (operation)

▷ DotRosalesGraph(n, S) (operation)

S is either numerical or an affine semigroup and n is an element in S. It outputs the graph associated
to n in S (see GraphAssociatedToElementInNumericalSemigroup (4.1.2)).

Example
gap> s:=NumericalSemigroup(4,6,9);;
gap> Print(DotRosalesGraph(15,s));
graph NSGraph{
1 [label="6"];
2 [label="9"];
2 -- 1;
}

14.1.8 DotFactorizationGraph

▷ DotFactorizationGraph(f) (operation)

f is a set of factorizations. Returns the graph (in dot) of factorizations associated to f: a complete
graph whose vertices are the elements of f. Edges are labelled with distances between the nodes
they join. Kruskal algorithm is used to draw in red a spanning tree with minimal distances. Thus the
catenary degree is reached in the edges of the tree.

Example
gap> f:=FactorizationsIntegerWRTList(20,[3,5,7]);
[ [ 5, 1, 0 ], [ 0, 4, 0 ], [ 1, 2, 1 ], [ 2, 0, 2 ] ]
gap> Print(DotFactorizationGraph(f));
graph NSGraph{
1 [label=" (5, 1, 0)"];
2 [label=" (0, 4, 0)"];
3 [label=" (1, 2, 1)"];
4 [label=" (2, 0, 2)"];
2 -- 3[label="2", color="red"];
3 -- 4[label="2", color="red"];
1 -- 3[label="4", color="red"];
1 -- 4[label="4" ];
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2 -- 4[label="4" ];
1 -- 2[label="5" ];
}

14.1.9 DotEliahouGraph

▷ DotEliahouGraph(f) (operation)

f is a set of factorizations. Returns the Eliahou graph (in dot) of factorizations associated to f:
a graph whose vertices are the elements of f, and there is an edge between two vertices if they have
common support. Edges are labelled with distances between nodes they join.

Example
gap> f:=FactorizationsIntegerWRTList(20,[3,5,7]);
[ [ 5, 1, 0 ], [ 0, 4, 0 ], [ 1, 2, 1 ], [ 2, 0, 2 ] ]
gap> Print(DotEliahouGraph(f));
graph NSGraph{
1 [label=" (5, 1, 0)"];
2 [label=" (0, 4, 0)"];
3 [label=" (1, 2, 1)"];
4 [label=" (2, 0, 2)"];
2 -- 3[label="2" ];
3 -- 4[label="2" ];
1 -- 3[label="4" ];
1 -- 4[label="4" ];
1 -- 2[label="5" ];
}

14.1.10 SetDotNSEngine

▷ SetDotNSEngine(engine) (function)

This function sets the value of DotNSEngine to engine, which must be any of the following
"circo","dot","fdp","neato","osage","twopi". This tells viz.js which graphviz engine to use.

Example
gap> SetDotNSEngine("circo");
true

Here is an example with the default dot engine

 (5, 2, 0)

 (0, 5, 0)

5

 (6, 0, 1)

2

 (1, 3, 1)

4

 (2, 1, 2)

4

7

2

4 5

4

2

And one with circo engine
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 (5, 2, 0)

 (0, 5, 0)

5

 (6, 0, 1)

2

 (1, 3, 1)

4

 (2, 1, 2)
4

7

2

4

5

4

2

14.1.11 DotSplash

▷ DotSplash(dots...) (function)

Launches a browser and visualizes the dots diagrams provided as arguments. It outputs the html
page displayed as a string, and prints the location of the temporary file that contains it.



Appendix A

Generalities

Here we describe some functions which are not specific for numerical semigroups but are used to do
computations with them. As they may have interest by themselves, we describe them here.

A.1 Bézout sequences

A sequence of positive rational numbers a1/b1 < · · · < an/bn with ai,bi positive integers is a Bézout
sequence if ai+1bi −aibi+1 = 1 for all i ∈ {1, . . . ,n−1}.

The following function uses an algorithm presented in [BR09].

A.1.1 BezoutSequence

▷ BezoutSequence(arg) (function)

arg consists of two rational numbers or a list of two rational numbers. The output is a Bézout se-
quence with ends the two rational numbers given. (Warning: rational numbers are silently transformed
into irreducible fractions.)

Example
gap> BezoutSequence(4/5,53/27);
[ 4/5, 1, 3/2, 5/3, 7/4, 9/5, 11/6, 13/7, 15/8, 17/9, 19/10, 21/11, 23/12,

25/13, 27/14, 29/15, 31/16, 33/17, 35/18, 37/19, 39/20, 41/21, 43/22,
45/23, 47/24, 49/25, 51/26, 53/27 ]

A.1.2 IsBezoutSequence

▷ IsBezoutSequence(L) (function)

L is a list of rational numbers. IsBezoutSequence returns true or false according to whether
L is a Bézout sequence or not.

Example
gap> IsBezoutSequence([ 4/5, 1, 3/2, 5/3, 7/4, 9/5, 11/6]);
true
gap> IsBezoutSequence([ 4/5, 1, 3/2, 5/3, 7/4, 9/5, 11/3]);
Take the 6 and the 7 elements of the sequence
false
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A.1.3 CeilingOfRational

▷ CeilingOfRational(r) (function)

Returns the smallest integer greater than or equal to the rational r .
Example

gap> CeilingOfRational(3/5);
1

A.2 Periodic subadditive functions

A periodic function f of period m from the set N of natural numbers into itself may be specified
through a list of m natural numbers. The function f is said to be subadditive if f (i+ j)≤ f (i)+ f ( j)
and f (0) = 0.

A.2.1 RepresentsPeriodicSubAdditiveFunction

▷ RepresentsPeriodicSubAdditiveFunction(L) (function)

L is a list of integers. RepresentsPeriodicSubAdditiveFunction returns true or false ac-
cording to whether L represents a periodic subadditive function f periodic of period m or not. To
avoid defining f (0) (which we assume to be 0) we define f (m) = 0 and so the last element of the list
must be 0. This technical need is due to the fact that positions in a list must be positive (not a 0).

Example
gap> RepresentsPeriodicSubAdditiveFunction([1,2,3,4,0]);
true

A.2.2 IsListOfIntegersNS

▷ IsListOfIntegersNS(L) (function)

Detects whether L is a nonempty list of integers.
Example

gap> IsListOfIntegersNS([1,-1,0]);
true
gap> IsListOfIntegersNS(2);
false
gap> IsListOfIntegersNS([[2],3]);
false
gap> IsListOfIntegersNS([]);
false
gap> IsListOfIntegersNS([1,1/2]);
false



Appendix B

"Random" functions

Here we describe some functions which allow to create several "random" objects. We make use of the
function RandomList.

B.1 Random functions for numerical semigroups

B.1.1 RandomNumericalSemigroup

▷ RandomNumericalSemigroup(n, a[, b]) (function)

Returns a “random" numerical semigroup with no more than n generators in [1..a ] (or in [a ..b ],
if b is present).

Example
gap> RandomNumericalSemigroup(3,9);
<Numerical semigroup with 3 generators>
gap> RandomNumericalSemigroup(3,9,55);
<Numerical semigroup with 3 generators>

B.1.2 RandomListForNS

▷ RandomListForNS(n, a, b) (function)

Returns a set of length not greater than n of random integers in [a..b] whose GCD is 1. It is
used to create "random" numerical semigroups.

Example
gap> RandomListForNS(13,1,79);
[ 22, 26, 29, 31, 34, 46, 53, 61, 62, 73, 76 ]

B.1.3 RandomModularNumericalSemigroup

▷ RandomModularNumericalSemigroup(k[, m]) (function)

Returns a “random" modular numerical semigroup S(a,b) with a ≤ k (see 1) and multiplicity at
least m, were m is the second argument, which may not be present..

158



numericalsgps-- a package for numerical semigroups 159

Example
gap> RandomModularNumericalSemigroup(9);
<Modular numerical semigroup satisfying 5x mod 6 <= x >
gap> RandomModularNumericalSemigroup(10,25);
<Modular numerical semigroup satisfying 4x mod 157 <= x >

B.1.4 RandomProportionallyModularNumericalSemigroup

▷ RandomProportionallyModularNumericalSemigroup(k[, m]) (function)

Returns a “random" proportionally modular numerical semigroup S(a,b,c) with a ≤ k (see 1) and
multiplicity at least m, were m is the second argument, which may not be present.

Example
gap> RandomProportionallyModularNumericalSemigroup(9);
<Proportionally modular numerical semigroup satisfying 2x mod 3 <= 2x >
gap> RandomProportionallyModularNumericalSemigroup(10,25);
<Proportionally modular numerical semigroup satisfying 6x mod 681 <= 2x >

B.1.5 RandomListRepresentingSubAdditiveFunction

▷ RandomListRepresentingSubAdditiveFunction(m, a) (function)

Produces a “random" list representing a subadditive function (see 1) which is periodic with period
m (or less). When possible, the images are in [a..20*a] . (Otherwise, the list of possible images is
enlarged.)

Example
gap> RandomListRepresentingSubAdditiveFunction(7,9);
[ 173, 114, 67, 0 ]
gap> RepresentsPeriodicSubAdditiveFunction(last);
true

B.1.6 NumericalSemigroupWithRandomElementsAndFrobenius

▷ NumericalSemigroupWithRandomElementsAndFrobenius(n, mult, frob) (function)

Produces a "random" semigroup containing (at least) n elements greater than or equal to mult and
less than frob , chosen at random. The semigroup returned has multiplicity chosen at random but no
smaller than mult and having Frobenius number chosen at random but not greater than frob . Returns
f ail if frob is greater than mult .

Example
gap> ns := NumericalSemigroupWithRandomElementsAndFrobenius(5,10,50);
<Numerical semigroup with 17 generators>
gap> MinimalGeneratingSystem(ns);
[ 12, 13, 19, 27, 47 ]
gap> SmallElements(ns);
[ 0, 12, 13, 19, 24, 25, 26, 27, 31, 32, 36, 37, 38, 39, 40, 43 ]
gap> ns2 := NumericalSemigroupWithRandomElementsAndFrobenius(5,10,9);
#I The third argument must not be smaller than the second
fail



numericalsgps-- a package for numerical semigroups 160

gap> ns3 := NumericalSemigroupWithRandomElementsAndFrobenius(5,10,10);
<Proportionally modular numerical semigroup satisfying 20x mod 200 <= 10x >
gap> MinimalGeneratingSystem(ns3);
[ 10 .. 19 ]
gap> SmallElements(ns3);
[ 0, 10 ]

B.1.7 RandomNumericalSemigroupWithGenus

▷ RandomNumericalSemigroupWithGenus(g) (function)

Produces a pseudo-random numerical semigroup with genus g .
Example

gap> RandomNumericalSemigroupWithGenus(7);Gaps(last);
<Numerical semigroup with 7 generators>
[ 1, 2, 3, 4, 5, 6, 9 ]

B.2 Random functions for affine semigroups

B.2.1 RandomAffineSemigroupWithGenusAndDimension

▷ RandomAffineSemigroupWithGenusAndDimension(g, d) (function)

Produces a pseudo-random affine semigroup with genus g and dimension d .
Example

gap> RandomAffineSemigroupWithGenusAndDimension(10,3);Gaps(last);
<Affine semigroup in 3 dimensional space, with 66 generators>
[ [ 0, 1, 0 ], [ 0, 2, 0 ], [ 0, 3, 0 ], [ 0, 4, 0 ], [ 0, 5, 0 ],

[ 0, 7, 0 ], [ 1, 0, 0 ], [ 1, 1, 0 ], [ 2, 0, 0 ], [ 3, 0, 0 ] ]

B.2.2 RandomAffineSemigroup

▷ RandomAffineSemigroup(n, d, m) (function)

Returns an affine semigroup generated by a n*d matrix where d (the dimension) is randomly
choosen from [1..d ] and n (the number of generators) is randomly choosen from [1..n ]. The entries
of the matrix are randomly choosen from [0..m ] (when the third argument is not present, m is taken as
n*d )

Example
gap> RandomAffineSemigroup(5,5);Generators(last);
<Affine semigroup in 5 dimensional space, with 4 generators>
[ [ 4, 10, 10, 8, 20 ], [ 9, 12, 16, 3, 16 ], [ 14, 19, 14, 3, 20 ],

[ 16, 6, 0, 7, 13 ] ]
gap> RandomAffineSemigroup(5,5,3);Generators(last);
<Affine semigroup in 4 dimensional space, with 5 generators>
[ [ 0, 2, 1, 3 ], [ 1, 3, 3, 2 ], [ 2, 3, 3, 2 ], [ 3, 1, 2, 1 ],

[ 3, 3, 1, 0 ] ]
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B.2.3 RandomFullAffineSemigroup

▷ RandomFullAffineSemigroup(n, d, m) (function)

Returns a full affine semigroup either given by equations or inequalities (when no string is given,
one is choosen at random). The matrix is an n*d matrix where d (the dimension) is randomly choosen
from [1..d ] and n is randomly choosen from [1..n ]. When it is given by equations, the moduli are
choosen at random. The entries of the matrix (and moduli) are randomly choosen from [0..m ] (when
the third integer is not present, m is taken as n*d )

Example
gap> RandomFullAffineSemigroup(5,5,3);Generators(last);
<Affine semigroup>
#I Using contejeanDevieAlgorithm for Hilbert Basis. Please, consider using
NormalizInterface, 4ti2Interface or 4ti2gap.
[ [ 0, 0, 0, 0, 1 ], [ 0, 0, 0, 1, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 1, 0, 0, 0 ],

[ 1, 0, 0, 0, 0 ] ]

B.3 Random functions for good semigroups

B.3.1 RandomGoodSemigroupWithFixedMultiplicity

▷ RandomGoodSemigroupWithFixedMultiplicity(m, cond) (function)

This function produces a "random" semigroup with multiplicity m and with conductor bounded by
cond

Example
gap> S:=RandomGoodSemigroupWithFixedMultiplicity([6,7],[30,30]);
<Good semigroup>
gap> SmallElements(S);
[ [ 0, 0 ], [ 6, 7 ], [ 9, 8 ], [ 9, 10 ], [ 9, 11 ], [ 9, 14 ], [ 9, 15 ],

[ 9, 16 ], [ 10, 8 ], [ 11, 10 ], [ 11, 11 ], [ 12, 10 ], [ 12, 14 ],
[ 13, 10 ], [ 13, 15 ], [ 13, 16 ], [ 15, 10 ], [ 15, 15 ], [ 15, 16 ],
[ 16, 10 ], [ 16, 15 ], [ 17, 10 ], [ 17, 16 ] ]



Appendix C

Contributions

Sebastian Gutsche helped in the implementation of inference of properties from already known prop-
erties, and also with the integration of 4ti2Interface. Max Horn adapted the definition of the objects
numerical and affine semigroups; the behave like lists of integers or lists of lists of integers (affine
case), and one can intersect numerical semigroups with lists of integers, or affine semigroup with
cartesian products of lists of integers.

C.1 Functions implemented by A. Sammartano

A. Sammartano implemented the following functions.
IsAperySetGammaRectangular (6.2.11),
IsAperySetBetaRectangular (6.2.12),
IsAperySetAlphaRectangular (6.2.13),
TypeSequenceOfNumericalSemigroup (7.1.33),
IsGradedAssociatedRingNumericalSemigroupBuchsbaum (7.5.2),
IsGradedAssociatedRingNumericalSemigroupBuchsbaum (7.5.2),
TorsionOfAssociatedGradedRingNumericalSemigroup (7.5.3),
BuchsbaumNumberOfAssociatedGradedRingNumericalSemigroup (7.5.4),
IsMpureNumericalSemigroup (9.8.2),
IsPureNumericalSemigroup (9.8.1),
IsGradedAssociatedRingNumericalSemigroupGorenstein (7.5.5),
IsGradedAssociatedRingNumericalSemigroupCI (7.5.6).

C.2 Functions implemented by C. O’Neill

Chris implemented the following functions described in [BOP17]:
OmegaPrimalityOfElementListInNumericalSemigroup (9.4.2),
FactorizationsElementListWRTNumericalSemigroup (9.1.3),
DeltaSetPeriodicityBoundForNumericalSemigroup (9.2.7),
DeltaSetPeriodicityStartForNumericalSemigroup (9.2.8),
DeltaSetListUpToElementWRTNumericalSemigroup (9.2.9),
DeltaSetUnionUpToElementWRTNumericalSemigroup (9.2.10),
DeltaSetOfNumericalSemigroup (9.2.11).
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And contributed to:
DeltaSetOfAffineSemigroup (11.4.5). Also he implemented the new version of
AperyListOfNumericalSemigroupWRTElement (3.1.15).

C.3 Functions implemented by K. Stokes

Klara Stokes helped with the implementation of functions related to patterns for ideals of numerical
semigroups 7.4.

C.4 Functions implemented by I. Ojeda and C. J. Moreno Ávila

Ignacio and Carlos Jesús implemented the algorithms given in [Rou08] and [MCOT15] for the calcu-
lation of the Frobenius number and Apéry set of a numerical semigroup using Gröbner basis calcula-
tions. Since the new implementation by Chris was included, these algorithms are no longer used.

C.5 Functions implemented by I. Ojeda

Ignacio also implemented the following functions.
AlmostSymmetricNumericalSemigroupsFromIrreducibleAndGivenType (6.3.2),
AlmostSymmetricNumericalSemigroupsWithFrobeniusNumberAndType (6.3.5),
NumericalSemigroupsWithFrobeniusNumberAndMultiplicity (5.4.2),
IrreducibleNumericalSemigroupsWithFrobeniusNumberAndMultiplicity (6.1.6).
Ignacio also implemented the new versions of
AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber (6.3.4),
NumericalSemigroupsWithFrobeniusNumber (5.4.3),

C.6 Functions implemented by A. Sánchez-R. Navarro

Alfredo helped in the implementation of methods for 4ti2gap of the following functions.
FactorizationsVectorWRTList (11.4.1),
DegreesOfPrimitiveElementsOfAffineSemigroup (11.3.11),
MinimalPresentationOfAffineSemigroup (11.3.6).
He also helped in preliminary versions of the following functions.
CatenaryDegreeOfSetOfFactorizations (9.3.1),
TameDegreeOfSetOfFactorizations (9.3.6),
TameDegreeOfNumericalSemigroup (9.3.12),
TameDegreeOfAffineSemigroup (11.4.10),
OmegaPrimalityOfElementInAffineSemigroup (11.4.11),
CatenaryDegreeOfAffineSemigroup (11.4.6),
MonotoneCatenaryDegreeOfSetOfFactorizations (9.3.4).
EqualCatenaryDegreeOfSetOfFactorizations (9.3.3).
AdjacentCatenaryDegreeOfSetOfFactorizations (9.3.2).
HomogeneousCatenaryDegreeOfAffineSemigroup (11.4.8).
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C.7 Functions implemented by G. Zito

Giuseppe gave the algorithms for the current version functions
ArfNumericalSemigroupsWithFrobeniusNumber (8.2.4),
ArfNumericalSemigroupsWithFrobeniusNumberUpTo (8.2.5),
ArfNumericalSemigroupsWithGenus (8.2.6),
ArfNumericalSemigroupsWithGenusUpTo (8.2.7),
ArfCharactersOfArfNumericalSemigroup (8.2.3).

C.8 Functions implemented by A. Herrera-Poyatos

Andrés Herrera-Poyatos gave new implementations of
IsSelfReciprocalUnivariatePolynomial (10.1.11) and
IsKroneckerPolynomial (10.1.7). Andrés is also coauthor of the dot functions, see Chapter 14

C.9 Functions implemented by Benjamin Heredia

Benjamin Heredia implemented a preliminary version of
FengRaoDistance (9.7.1).

C.10 Functions implemented by Juan Ignacio García-García

Juan Ignacio implemented a preliminary version of
NumericalSemigroupsWithFrobeniusNumber (5.4.3).

C.11 Functions implemented by C. Cisto

Carmelo provided some functions to deal with affine semigroups given by gaps, and to compute gaps
of affine semigroups with finite genus, see for instance

AffineSemigroupByGaps (11.1.5),
RemoveMinimalGeneratorFromAffineSemigroup (11.1.13),
AddSpecialGapOfAffineSemigroup (11.1.14).

C.12 Functions implemented by N. Matsuoka

Naoyuki implemented the function associated to the generalized Gorenstein property, see Section 6.4.

C.13 Functions implemented by N. Maugeri

Nicola fixed the implementation of ArfGoodSemigroupClosure (12.4.1). He also implemented
ProjectionOfAGoodSemigroup (12.2.12),
GenusOfGoodSemigroup (12.2.13),
LengthOfGoodSemigroup (12.2.14),
AperySetOfGoodSemigroup (12.2.15),
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StratifiedAperySetOfGoodSemigroup (12.2.16),
AbsoluteIrreduciblesOfGoodSemigroup (12.5.8),
TracksOfGoodSemigroup (12.5.9),
RandomGoodSemigroupWithFixedMultiplicity (B.3.1). And the multiplicity and local prop-

erty for good semigroups.

C.14 Functions implemented by H. Martín Cruz

Helena helped in the implementation of the code for ideals of affine semigroups 11.5

C.15 Functions implemented by J. Angulo Rodríguez

Jorge implemented the code corresponding to decompositions of ideals into irre-
ducibles 7.2. He also implemented NumericalSemigroupByNuSequence (9.6.4) and
NumericalSemigroupByTauSequence (9.6.5).

C.16 Functions implemented by F. Strazzanti

Francesco helped in the implementation of the following methods.
IsAlmostCanonicalIdeal (7.1.31),
TraceIdealOfNumericalSemigroup (7.1.32),
IsNearlyGorenstein (6.4.2),
IsGeneralizedAlmostSymmetric (6.4.4),
IsHomogeneousNumericalSemigroup (9.8.3),
AsNumericalDuplication (5.2.6),
RFMatrices (9.1.6),
DilatationOfNumericalSemigroup (5.2.8).
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for affine semigroups, 134
for numerical semigroups, 65

MaximalIdealOfNumericalSemigroup, 65
MaximumDegree, 92
MaximumDegreeOfElementWRTNumerical-

Semigroup, 92
MEDClosure, 80
MEDNumericalSemigroupClosure, 80
MicroInvariants, 71
MicroInvariantsOfNumericalSemigroup, 71
MinimalArfGeneratingSystemOfArf-

NumericalSemigroup, 81
MinimalGeneratingSystem

for affine semigroup, 119
for ideal of numerical semigroup, 58
for numerical semigroup, 20

MinimalGeneratingSystemOfIdealOf-
NumericalSemigroup, 58

MinimalGeneratingSystemOfNumerical-
Semigroup, 20

MinimalGenerators
for affine semigroup, 119
for ideal of an affine semigroup, 131
for ideal of numerical semigroup, 58
for numerical semigroup, 20

MinimalGoodGeneratingSystemOfGood-
Ideal, 145

MinimalGoodGeneratingSystemOfGood-
Semigroup, 140

MinimalGoodGenerators, 140
MinimalMEDGeneratingSystemOfMED-

NumericalSemigroup, 80
MinimalPresentation

for affine semigroup, 125
for numerical semigroups, 32

MinimalPresentationOfAffineSemigroup,
125

MinimalPresentationOfNumerical-
Semigroup, 32

Minimum
minimum of ideal of numerical semigroup,

61
ModularNumericalSemigroup, 13
MoebiusFunction, 102
MoebiusFunctionAssociatedToNumerical-

Semigroup, 102
MonotoneCatenaryDegreeOfAffine-

Semigroup, 129
MonotoneCatenaryDegreeOfNumerical-

Semigroup, 98
MonotoneCatenaryDegreeOfSetOf-

Factorizations, 96
MultipleOfIdealOfAffineSemigroup, 132
MultipleOfIdealOfNumericalSemigroup, 63
MultipleOfNumericalSemigroup, 39
Multiplicity

for good semigroups, 137
for numerical semigroup, 19

MultiplicityOfNumericalSemigroup, 19
MultiplicitySequence, 71
MultiplicitySequenceOfNumerical-

Semigroup, 71

NearlyGorensteinVectors, 56
NextElementOfNumericalSemigroup, 22
NumberElement_IdealOfNumerical-

Semigroup, 62
NumberElement_NumericalSemigroup, 23
NumericalDuplication, 39
NumericalSemigroup

by (closed) interval, 14
by affine map, 13
by Apery list, 11
by fundamental gaps, 13
by gaps, 12
by generators, 10
by modular condition, 13
by open interval, 15
by proportionally modular condition, 14
by small elements, 12
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by subadditive function, 11
NumericalSemigroupByAffineMap, 13
NumericalSemigroupByAperyList, 11
NumericalSemigroupByFundamentalGaps, 13
NumericalSemigroupByGaps, 12
NumericalSemigroupByGenerators, 10
NumericalSemigroupByInterval, 14
NumericalSemigroupByNuSequence, 102
NumericalSemigroupByOpenInterval, 15
NumericalSemigroupBySmallElements, 12
NumericalSemigroupBySubAdditive-

Function, 11
NumericalSemigroupByTauSequence, 103
NumericalSemigroupDuplication, 135
NumericalSemigroupFromNumerical-

SemigroupPolynomial, 107
NumericalSemigroupPolynomial, 106
NumericalSemigroupsPlanarSingularity-

WithFrobeniusNumber, 52
NumericalSemigroupsWithFrobenius-

Number, 42
NumericalSemigroupsWithFrobenius-

NumberAndMultiplicity, 42
NumericalSemigroupsWithFrobenius-

NumberFG, 41
NumericalSemigroupsWithFrobenius-

NumberPC, 42
NumericalSemigroupsWithGenus, 43
NumericalSemigroupsWithGenusPC, 44
NumericalSemigroupsWithMaxPrimitive, 43
NumericalSemigroupsWithMaxPrimitive-

AndMultiplicity, 42
NumericalSemigroupsWithMaxPrimitivePC,

43
NumericalSemigroupsWithPseudo-

FrobeniusNumbers, 45
NumericalSemigroupWithRandomElements-

AndFrobenius, 159
NumSgpsUse4ti2, 148
NumSgpsUse4ti2gap, 148
NumSgpsUseNormalize, 148
NumSgpsUseSingular, 149
NumSgpsUseSingularInterface, 149

OmegaPrimality
for a numerical semigroup, 99

for a numerical semigroup and one of its ele-
ments, 99

for an affine semigroup, 130
for an affine semigroup and one of its ele-

ments, 129
for an element in a numerical semigroup, 99
for an element in an affine semigroup, 129

OmegaPrimalityOfAffineSemigroup, 130
OmegaPrimalityOfElementInAffine-

Semigroup, 129
OmegaPrimalityOfElementInNumerical-

Semigroup, 99
OmegaPrimalityOfElementListIn-

NumericalSemigroup, 99
OmegaPrimalityOfNumericalSemigroup, 99
OverSemigroups

of a numerical semigroup, 41
OverSemigroupsNumericalSemigroup, 41

PrimitiveRelationsOfKernelCongruence,
123

ProfileOfNumericalSemigroup, 31
ProjectionOfAGoodSemigroup, 140
ProportionallyModularNumerical-

Semigroup, 14
PseudoFrobenius, 26

for affine semigroup, 118
for ideal of numerical semigroup, 60

PseudoFrobeniusOfIdealOfNumerical-
Semigroup

for ideal of numerical semigroup, 60
PseudoFrobeniusOfNumericalSemigroup, 26

QuotientOfNumericalSemigroup, 39

RandomAffineSemigroup, 160
RandomAffineSemigroupWithGenusAnd-

Dimension, 160
RandomFullAffineSemigroup, 161
RandomGoodSemigroupWithFixed-

Multiplicity, 161
RandomListForNS, 158
RandomListRepresentingSubAdditive-

Function, 159
RandomModularNumericalSemigroup, 158
RandomNumericalSemigroup, 158
RandomNumericalSemigroupWithGenus, 160
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RandomProportionallyModularNumerical-
Semigroup, 159

RatliffRushClosure, 71
RatliffRushClosureOfIdealOfNumerical-

Semigroup, 71
RatliffRushNumber, 70
RatliffRushNumberOfIdealOfNumerical-

Semigroup, 70
RClassesOfSetOfFactorizations, 87
ReductionNumber

for ideals of numerical semigroups, 69
ReductionNumberIdealNumerical-

Semigroup, 69
RemoveMinimalGeneratorFromAffine-

Semigroup, 119
RemoveMinimalGeneratorFromNumerical-

Semigroup, 37
RepresentsGapsOfNumericalSemigroup, 16
RepresentsPeriodicSubAdditiveFunction,

157
RepresentsSmallElementsOfGood-

Semigroup, 138
RepresentsSmallElementsOfNumerical-

Semigroup, 16
RFMatrices, 88
RthElementOfNumericalSemigroup, 22

SaturatedClosure
for numerical semigroups, 84

SaturatedNumericalSemigroupClosure, 84
SaturatedNumericalSemigroupsWith-

FrobeniusNumber, 84
SemigroupOfValuesOfCurve_Global, 111
SemigroupOfValuesOfCurve_Local, 111
SemigroupOfValuesOfPlaneCurve, 110
SemigroupOfValuesOfPlaneCurveWith-

SinglePlaceAtInfinity, 109
SetDotNSEngine, 154
ShadedSetOfElementInAffineSemigroup,

125
ShadedSetOfElementInNumerical-

Semigroup, 34
SimpleForcedIntegersForPseudo-

Frobenius, 45
SmallElements

for good ideal, 146
for good semigroup, 138

for ideal of numerical semigroup, 60
for numerical semigroup, 21

SmallElementsOfGoodIdeal, 146
SmallElementsOfGoodSemigroup, 138
SmallElementsOfIdealOfNumerical-

Semigroup, 60
SmallElementsOfNumericalSemigroup, 21
SpecialGaps

for affine semigroup, 118
for numerical semigroup, 30

SpecialGapsOfNumericalSemigroup, 30
StarClosureOfIdealOfNumerical-

Semigroup, 73
StratifiedAperySetOfGoodSemigroup, 142
SubtractIdealsOfNumericalSemigroup, 64
SumIdealsOfAffinSemigroup, 132
SumIdealsOfNumericalSemigroup, 63

TameDegree
for affine semigroups, 129
for element in numerical semigroups, 98
for numerical semigroups, 98
for numerical semigroups and one of its ele-

ments, 98
for sets of factorizations, 96

TameDegreeOfAffineSemigroup, 129
TameDegreeOfElementInNumerical-

Semigroup, 98
TameDegreeOfNumericalSemigroup, 98
TameDegreeOfSetOfFactorizations, 96
TelescopicNumericalSemigroupsWith-

FrobeniusNumber, 51
TorsionOfAssociatedGradedRing-

NumericalSemigroup, 77
TraceIdeal

for numerical semigroups, 67
TraceIdealOfNumericalSemigroup, 67
TracksOfGoodSemigroup, 147
TranslationOfIdealOfAffineSemigroup,

133
TranslationOfIdealOfNumerical-

Semigroup, 64
TruncatedWilfNumberOfNumerical-

Semigroup, 31
Type

for ideal of numerical semigroup, 61
of a numerical semigroup, 27
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TypeSequence

for numerical semigroups, 67
TypeSequenceOfNumericalSemigroup, 67

Union
for ideals of affine semigroup, 133
for ideals of numerical semigroup, 65

UnionIdealsOfAffineSemigroup, 133

Weight
for numerical semigroup, 27

WilfNumber
for numerical semigroup, 30

WilfNumberOfNumericalSemigroup, 30
WittCoefficients, 109
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