Interface ChannelPipeline

All Superinterfaces:
ChannelInboundInvoker, ChannelOutboundInvoker, Iterable<Map.Entry<String,ChannelHandler>>
All Known Implementing Classes:
DefaultChannelPipeline, EmbeddedChannel.EmbeddedChannelPipeline

A list of ChannelHandlers which handles or intercepts inbound events and outbound operations of a Channel. ChannelPipeline implements an advanced form of the Intercepting Filter pattern to give a user full control over how an event is handled and how the ChannelHandlers in a pipeline interact with each other.

Creation of a pipeline

Each channel has its own pipeline and it is created automatically when a new channel is created.

How an event flows in a pipeline

The following diagram describes how I/O events are processed by ChannelHandlers in a ChannelPipeline typically. An I/O event is handled by either a ChannelInboundHandler or a ChannelOutboundHandler and be forwarded to its closest handler by calling the event propagation methods defined in ChannelHandlerContext, such as ChannelHandlerContext.fireChannelRead(Object) and ChannelOutboundInvoker.write(Object).
                                                 I/O Request
                                            via Channel or
                                        ChannelHandlerContext
                                                      |
  +---------------------------------------------------+---------------+
  |                           ChannelPipeline         |               |
  |                                                  \|/              |
  |    +---------------------+            +-----------+----------+    |
  |    | Inbound Handler  N  |            | Outbound Handler  1  |    |
  |    +----------+----------+            +-----------+----------+    |
  |              /|\                                  |               |
  |               |                                  \|/              |
  |    +----------+----------+            +-----------+----------+    |
  |    | Inbound Handler N-1 |            | Outbound Handler  2  |    |
  |    +----------+----------+            +-----------+----------+    |
  |              /|\                                  .               |
  |               .                                   .               |
  | ChannelHandlerContext.fireIN_EVT() ChannelHandlerContext.OUT_EVT()|
  |        [ method call]                       [method call]         |
  |               .                                   .               |
  |               .                                  \|/              |
  |    +----------+----------+            +-----------+----------+    |
  |    | Inbound Handler  2  |            | Outbound Handler M-1 |    |
  |    +----------+----------+            +-----------+----------+    |
  |              /|\                                  |               |
  |               |                                  \|/              |
  |    +----------+----------+            +-----------+----------+    |
  |    | Inbound Handler  1  |            | Outbound Handler  M  |    |
  |    +----------+----------+            +-----------+----------+    |
  |              /|\                                  |               |
  +---------------+-----------------------------------+---------------+
                  |                                  \|/
  +---------------+-----------------------------------+---------------+
  |               |                                   |               |
  |       [ Socket.read() ]                    [ Socket.write() ]     |
  |                                                                   |
  |  Netty Internal I/O Threads (Transport Implementation)            |
  +-------------------------------------------------------------------+
 
An inbound event is handled by the inbound handlers in the bottom-up direction as shown on the left side of the diagram. An inbound handler usually handles the inbound data generated by the I/O thread on the bottom of the diagram. The inbound data is often read from a remote peer via the actual input operation such as SocketChannel.read(ByteBuffer). If an inbound event goes beyond the top inbound handler, it is discarded silently, or logged if it needs your attention.

An outbound event is handled by the outbound handler in the top-down direction as shown on the right side of the diagram. An outbound handler usually generates or transforms the outbound traffic such as write requests. If an outbound event goes beyond the bottom outbound handler, it is handled by an I/O thread associated with the Channel. The I/O thread often performs the actual output operation such as SocketChannel.write(ByteBuffer).

For example, let us assume that we created the following pipeline:

 ChannelPipeline p = ...;
 p.addLast("1", new InboundHandlerA());
 p.addLast("2", new InboundHandlerB());
 p.addLast("3", new OutboundHandlerA());
 p.addLast("4", new OutboundHandlerB());
 p.addLast("5", new InboundOutboundHandlerX());
 
In the example above, the class whose name starts with Inbound means it is an inbound handler. The class whose name starts with Outbound means it is a outbound handler.

In the given example configuration, the handler evaluation order is 1, 2, 3, 4, 5 when an event goes inbound. When an event goes outbound, the order is 5, 4, 3, 2, 1. On top of this principle, ChannelPipeline skips the evaluation of certain handlers to shorten the stack depth:

Forwarding an event to the next handler

As you might noticed in the diagram shows, a handler has to invoke the event propagation methods in ChannelHandlerContext to forward an event to its next handler. Those methods include: and the following example shows how the event propagation is usually done:
 public class MyInboundHandler extends ChannelInboundHandlerAdapter {
     @Override
     public void channelActive(ChannelHandlerContext ctx) {
         System.out.println("Connected!");
         ctx.fireChannelActive();
     }
 }

 public class MyOutboundHandler extends ChannelOutboundHandlerAdapter {
     @Override
     public void close(ChannelHandlerContext ctx, ChannelPromise promise) {
         System.out.println("Closing ..");
         ctx.close(promise);
     }
 }
 

Building a pipeline

A user is supposed to have one or more ChannelHandlers in a pipeline to receive I/O events (e.g. read) and to request I/O operations (e.g. write and close). For example, a typical server will have the following handlers in each channel's pipeline, but your mileage may vary depending on the complexity and characteristics of the protocol and business logic:

  1. Protocol Decoder - translates binary data (e.g. ByteBuf) into a Java object.
  2. Protocol Encoder - translates a Java object into binary data.
  3. Business Logic Handler - performs the actual business logic (e.g. database access).
and it could be represented as shown in the following example:
 static final EventExecutorGroup group = new DefaultEventExecutorGroup(16);
 ...

 ChannelPipeline pipeline = ch.pipeline();

 pipeline.addLast("decoder", new MyProtocolDecoder());
 pipeline.addLast("encoder", new MyProtocolEncoder());

 // Tell the pipeline to run MyBusinessLogicHandler's event handler methods
 // in a different thread than an I/O thread so that the I/O thread is not blocked by
 // a time-consuming task.
 // If your business logic is fully asynchronous or finished very quickly, you don't
 // need to specify a group.
 pipeline.addLast(group, "handler", new MyBusinessLogicHandler());
 
Be aware that while using DefaultEventLoopGroup will offload the operation from the EventLoop it will still process tasks in a serial fashion per ChannelHandlerContext and so guarantee ordering. Due the ordering it may still become a bottle-neck. If ordering is not a requirement for your use-case you may want to consider using UnorderedThreadPoolEventExecutor to maximize the parallelism of the task execution.

Thread safety

A ChannelHandler can be added or removed at any time because a ChannelPipeline is thread safe. For example, you can insert an encryption handler when sensitive information is about to be exchanged, and remove it after the exchange.