CRAN Package Check Results for Maintainer ‘Rafael de Andrade Moral <rafael_moral at yahoo.com.br>’

Last updated on 2024-12-22 12:49:43 CET.

Package NOTE OK
hnp 11 2
jointNmix 10 3

Package hnp

Current CRAN status: NOTE: 11, OK: 2

Version: 1.2-6
Check: Rd cross-references
Result: NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: hnp.Rd: glm.nb, multinom Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-x86_64

Version: 1.2-6
Check: package dependencies
Result: NOTE Package suggested but not available for checking: ‘glmmADMB’ Flavors: r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Package jointNmix

Current CRAN status: NOTE: 10, OK: 3

Version: 1.0
Check: Rd files
Result: NOTE checkRd: (-1) jointNmix.Rd:30: Lost braces; missing escapes or markup? 30 | The function fits a bivariate extension to Royle's (2004) N-mixture model to data on the abundance of two species collected at R sites over T time occasions. The model for observation on site i at time t for species 1 can be specified as \deqn{Y_{1it}|N_{1i} ~ Bin(N_{1i},p_{1it})}\deqn{N_{1i} ~ a count distribution with mean \lambda_{1i}.} The model for species 2 is \deqn{Y_{2it}|N_{1i},N_{2i} ~ Bin(N_{2i},p_{2it})}\deqn{N_{2i}|N_{1i} ~ a count distribution with mean \psi+\lambda_{2i}N_{1i}.} Here, users may define a Poisson or negative binomial distribution for the latent abundances N_{1i} and N_{2i}. | ^ checkRd: (-1) jointNmix.Rd:30: Lost braces; missing escapes or markup? 30 | The function fits a bivariate extension to Royle's (2004) N-mixture model to data on the abundance of two species collected at R sites over T time occasions. The model for observation on site i at time t for species 1 can be specified as \deqn{Y_{1it}|N_{1i} ~ Bin(N_{1i},p_{1it})}\deqn{N_{1i} ~ a count distribution with mean \lambda_{1i}.} The model for species 2 is \deqn{Y_{2it}|N_{1i},N_{2i} ~ Bin(N_{2i},p_{2it})}\deqn{N_{2i}|N_{1i} ~ a count distribution with mean \psi+\lambda_{2i}N_{1i}.} Here, users may define a Poisson or negative binomial distribution for the latent abundances N_{1i} and N_{2i}. | ^ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64