AutoScore: An Interpretable Machine Learning-Based Automatic Clinical Score Generator

A novel interpretable machine learning-based framework to automate the development of a clinical scoring model for predefined outcomes. Our novel framework consists of six modules: variable ranking with machine learning, variable transformation, score derivation, model selection, domain knowledge-based score fine-tuning, and performance evaluation.The The original AutoScore structure is described in the research paper<doi:10.2196/21798>. A full tutorial can be found here<https://nliulab.github.io/AutoScore/>. Users or clinicians could seamlessly generate parsimonious sparse-score risk models (i.e., risk scores), which can be easily implemented and validated in clinical practice. We hope to see its application in various medical case studies.

Version: 1.0.0
Depends: R (≥ 3.5.0)
Imports: tableone, pROC, randomForest, ggplot2, knitr, Hmisc, car, coxed, dplyr, ordinal, survival, tidyr, plotly, magrittr, randomForestSRC, rlang, survAUC, survminer
Suggests: rpart, rmarkdown
Published: 2022-10-15
DOI: 10.32614/CRAN.package.AutoScore
Author: Feng Xie ORCID iD [aut, cre] (<https://orcid.org/0000-0002-0215-667X>), Yilin Ning ORCID iD [aut] (<https://orcid.org/0000-0002-6758-4472>), Han Yuan ORCID iD [aut] (<https://orcid.org/0000-0002-2674-6068>), Mingxuan Liu ORCID iD [aut] (<https://orcid.org/0000-0002-4274-9613>), Seyed Ehsan Saffari ORCID iD [aut] (<https://orcid.org/0000-0002-6473-4375>), Siqi Li ORCID iD [aut] (<https://orcid.org/0000-0002-1660-105X>), Bibhas Chakraborty ORCID iD [aut] (<https://orcid.org/0000-0002-7366-0478>), Nan Liu ORCID iD [aut] (<https://orcid.org/0000-0003-3610-4883>)
Maintainer: Feng Xie <xief at u.duke.nus.edu>
BugReports: https://github.com/nliulab/AutoScore/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/nliulab/AutoScore
NeedsCompilation: no
Citation: AutoScore citation info
CRAN checks: AutoScore results

Documentation:

Reference manual: AutoScore.pdf
Vignettes: Brief Introduction (source, R code)

Downloads:

Package source: AutoScore_1.0.0.tar.gz
Windows binaries: r-devel: AutoScore_1.0.0.zip, r-release: AutoScore_1.0.0.zip, r-oldrel: AutoScore_1.0.0.zip
macOS binaries: r-release (arm64): AutoScore_1.0.0.tgz, r-oldrel (arm64): AutoScore_1.0.0.tgz, r-release (x86_64): AutoScore_1.0.0.tgz, r-oldrel (x86_64): AutoScore_1.0.0.tgz
Old sources: AutoScore archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=AutoScore to link to this page.