LearnPCA: Functions, Data Sets and Vignettes to Aid in Learning Principal Components Analysis (PCA)

Principal component analysis (PCA) is one of the most widely used data analysis techniques. This package provides a series of vignettes explaining PCA starting from basic concepts. The primary purpose is to serve as a self-study resource for anyone wishing to understand PCA better. A few convenience functions are provided as well.

Version: 0.3.4
Depends: rpart, class, nnet
Imports: markdown, shiny, stats, graphics
Suggests: ChemoSpec, chemometrics, knitr, tinytest, roxut, rmarkdown, plot3D, ade4, plotrix, latex2exp, plotly, xtable, bookdown
Published: 2024-04-26
DOI: 10.32614/CRAN.package.LearnPCA
Author: Bryan A. Hanson ORCID iD [aut, cre] (<https://orcid.org/0000-0003-3536-8246>), David T. Harvey [aut]
Maintainer: Bryan A. Hanson <hanson at depauw.edu>
BugReports: https://github.com/bryanhanson/LearnPCA/issues
License: GPL-3
URL: https://bryanhanson.github.io/LearnPCA/
NeedsCompilation: no
Materials: NEWS
In views: ChemPhys
CRAN checks: LearnPCA results

Documentation:

Reference manual: LearnPCA.pdf
Vignettes: Vignette 01: A Guide to Learning PCA with LearnPCA (Start Here) (source, R code)
Vignette 02: A Conceptual Introduction to PCA (source, R code)
Vignette 03: Step-by-Step PCA (source, R code)
Vignette 04: Understanding Scores and Loadings (source, R code)
Vignette 05: Visualizing PCA in 3D (source, R code)
Vignette 06: The Math Behind PCA (source, R code)
Vignette 07: Functions for PCA (source, R code)
Vignette 08: Notes (source, R code)

Downloads:

Package source: LearnPCA_0.3.4.tar.gz
Windows binaries: r-devel: LearnPCA_0.3.4.zip, r-release: LearnPCA_0.3.4.zip, r-oldrel: LearnPCA_0.3.4.zip
macOS binaries: r-release (arm64): LearnPCA_0.3.4.tgz, r-oldrel (arm64): LearnPCA_0.3.4.tgz, r-release (x86_64): LearnPCA_0.3.4.tgz, r-oldrel (x86_64): LearnPCA_0.3.4.tgz
Old sources: LearnPCA archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=LearnPCA to link to this page.